Principles of Knowledge Representation and Reasoning

Albert-Ludwigs-Universität Freiburg

Dynamics of belief

Bernhard Nebel, Stefan Wölfl, and Julien Hué

Winter Semester 2012/2013

1 Introduction

Link between revision and update

Introduction Link between revision and update

Belief revision

Several sources belief merging

Bibliography

Nebel, Wölfl, Hué - KRR

Principles

Propositional logic flaws:

- The world is not always static.
- The knowledge about the world is sometimes uncertain or imprecise

Therefore:

- Need the possibility to incorporate new (possibly contradictory) beliefs;
- Need to take into account change in the world;

Introduction

Link between revision and upda

Belief revision

Several sources belief merging

The Guettier argument

Introduction

Plato - Theaetetus: A knowledge (a rightful opinion) is a piece of

Justified True Belief

Agrippa's trilemma - A problem with the justification:

- Either the justification stops to some unjustified belief;
- The justification is infinite (Socrates' clouds);
- The justification is supported by affirmations it is supposed to justify (Baron Münchhausen's hair).

Introduction

Link between revision and update

Belief revision

sources belief merging

Foundationalism and coherentism

FREIBU

Three solutions:

Foundationalism Allow for unjustified beliefs

- \rightarrow Formalization issues
- → Humans don't keep track of sources
- → TMS System

"Infinitism" Allow for infinite justification

 \rightarrow Does it really make sense?

Coherentism Allow for circular justifications

- \rightarrow What is a solid belief?
- → Belief revision/update
- In any cases, information is extremely important and should not be discarded carelessly.

Introduction

Link between revision and updat

Belief revision

sources belief merging

Social choice theory: the Arrow theorem

Arrow's impossibility theorem - there is no voting system which respects:

- Non-dictatorship (all voters should be taken into account);
- Universality (complete and deterministic ranking);
- Independance of irrelevant alternatives (ranking between x and y depends only on x and y);
- Pareto efficiency (if all preferences states x < y, then so must the results).

Introduction

Link between revision and update

Belief revision

sources belief merging

Revision or update

- We have a theory about the world, and the new information is meant to correct our theory
- belief revision: change your belief state minimally in order to accommodate the new information
 - We have a (supposedly) correct theory about the current state of the world, and the new information is meant to record a change in the world
- belief update: incorporate the change by assuming that the world has changed minimally

Introduction

Link between revision and update

Belief revision

Several sources belief merging

Update and revision are different

Assume the new information is consistent with our old beliefs.

- In case of belief revision, we would like to add the new information monotonically to our old beliefs.
- For belief update this is not necessarily the case.
 - Assume we know that the door is open or the window is open.
 - Assume we learn that the world has changed and the door is now closed
 - In this case, we do not want to add this information monotonically to our theory, since we would be forced to conclude that the window is open.

I ink hotwoon revision and undate

Overview of an operation

FREIBL

What are the criteria for definition of a belief revision operation?

Gärdenfors and Rott - belief revision (1995):

- How are beliefs represented?
- What is the relation between beliefs represented explicitly in the belief base and beliefs which can be derived from them?
- In the face of a contradiction, how to deal with both new and old information?

Introduction

Link between revision and update

Belief revision

sources belief merging

Belief base, belief set or interpretation?

General assumption:

- A belief set is a deductively closed theory, i.e., K = Cn(K) with Cn the consequence operator
- £: logical language (propositional logic)
- Th $_{\mathcal{L}}$: set of deductively closed theories (or belief sets) over \mathcal{L}

Belief change operations

Monotonic addition: $+: \mathsf{Th}_{\mathcal{L}} \times \mathcal{L} \to \mathsf{Th}_{\mathcal{L}}$

$$K + \psi = \operatorname{Cn}(K \cup \{\psi\})$$

Revision: $\dot{+}$: Th_C × \mathcal{L} \rightarrow Th_C

Introduction

Link between revision and update

Belief revision

Several sources belief merging

Semantic or syntactic

Z W Z

Consider $K = \{a, b\}$ and $K' = \{a \land b\}$. What is happening to $K \dotplus \{\neg a\}$?

Semantic

No difference between K and K'

а	b	\mathcal{I}
0	0	0
0	1	0
1	0	0
1	1	1

Syntactic

- $X = \{b\}$ is the only maximal subset of K s.t. $X \cup \{\neg a\}$ is consistent.
- $X' = \emptyset$ is the only maximal subset of K' s.t. $X' \cup \{\neg a\}$ is consistent.

Introduction

Link between revision and update

Belief revision

Several sources belief merging

2 Belief revision

- Formal properties
- Standard revision operations
- Semantic approaches

Introduction

Belief revision

Formal properties Standard revision operations

Semantic approaches

Several sources belief merging

What is a good revision operator?

Introduction

Belief revision

Formal properties Standard revision

operations
Semantic

Several sources - belief

- Consistency: a revision has to produce a consistent set of beliefs;
- Minimality of change: a revision has to change the fewest possible beliefs;
- Priority to the new information: the 'new' information is considered more important than the 'old' one.

The AGM postulates

Characterization for belief sets' revision

UNI FREIBUR

AGM postulates:

$$(\dot{+}1)$$
 $K \dot{+} \varphi \in \mathsf{Th}_{\mathcal{L}};$

$$(\dot{+}2) \quad \varphi \in K \dot{+} \varphi;$$

$$(\dot{+}3)$$
 $K \dot{+} \varphi \subseteq K + \varphi$;

$$(\dot{+}4)$$
 If $\neg \varphi \not\in K$, then $K + \varphi \subseteq K \dot{+} \varphi$;

$$(\dot{+}5)$$
 $K \dot{+} \varphi = Cn(\bot)$ only if $\vdash \neg \varphi$;

$$(\dot{+}6)$$
 If $\vdash \varphi \leftrightarrow \psi$ then $K \dotplus \varphi = K \dotplus \psi$;

$$(\dot{+}7)$$
 $K \dot{+} (\varphi \wedge \psi) \subseteq (K \dot{+} \varphi) + \psi$;

(
$$\dotplus$$
8) If $\neg \psi \not\in K \dotplus \varphi$,
then $(K \dotplus \varphi) + \psi \subseteq K \dotplus (\varphi \land \psi)$.

Introduction

Belief revision

revision
Formal properties

Standard revision operations
Semantic

Several sources belief merging

The Levi identity

UNI

Revision can be defined in terms of two suboperations.

- + (expansion) denotes the simple union of beliefs;
- (contraction) denotes the removal of information contradicting the input.

The Levi identity

$$K \dotplus \varphi \equiv Cn[(K - \neg \varphi) + \varphi]$$

Example

$$K = \{a, a \to b\}$$
 $\varphi \{\neg b\}$?
 $K - \neg \varphi = \{a\} \text{ or } \{a \to b\}$
 $K \dotplus \neg \varphi = \{a, \neg b\} \text{ or } \{a \to b, \neg b\}$

Introduction

Belief revision

Formal propertie

Standard revision operations

approaches

Several sources belief merging

Full-meet contraction

Definition

We denote by $K \perp \varphi$ the set of maximal (wrt set-theoretic inclusion) subsets J of K such that $J \not\vdash \varphi$.

Definition

Full-meet contraction is defined by $K - \varphi = \bigcap (K \perp \varphi)$.

Is full-meet contraction reasonable?

- No! It is far too cautious.
- ▶ It can nevertheless be used as a lower bound to any reasonable operator.

 $K \dotplus \varphi = \bigcap (K \bot \varphi) + \varphi$ is referred to as the full-meet revision.

Introduction

Belief revision

Standard revision

Semantic

approache

sources belief merging

SE SE

Proposition

Full-meet revision respects all AGM postulates.

Proof

- $(\dot{+}1)$ and $(\dot{+}2)$ are true by construction
 - $(\dot{+}3)$ Two cases: (1) If $K+\varphi$ is consistent then $K-\varphi=K$ and $K\dot{+}\varphi=K+\varphi$. (2) If $K+\varphi$ is inconsistent then $K+\varphi=\operatorname{Cn}(\bot)$ and $K\dot{+}\varphi\subseteq K+\varphi$.
 - $(\dot{+}4)$ Because $K \not\vdash \neg \varphi$ then $K \bot \varphi = \{K\}$ and thus $K \dotplus \varphi = K + \varphi$.
 - $(\dotplus 5) \quad \textit{K} \dotplus \textit{\phi} = \text{Cn}\big(\cap_{\alpha \in (\textit{K} \bot \textit{\phi})} \alpha \cup \textit{\phi} \big). \text{ But } \forall \alpha, \alpha \cup \textit{\phi} \not\vdash \bot, \text{ therefore } \\ \cap_{\alpha \in (\textit{K} \bot \textit{\phi})} \alpha \cup \textit{\phi} \not\vdash \bot \text{ (as PL is monotonic)}.$
 - (+6) Lets assume that $\alpha \in \mathcal{K} \perp \varphi$ but $\alpha \notin \mathcal{K} \perp \Psi$. Two cases: (1) $\alpha \cup \Psi \vdash \bot \stackrel{(\varphi \leftrightarrow \Psi)}{\longrightarrow} \alpha \cup \varphi \vdash \bot$ which is not possible. (2) $\exists \beta$ s.t. $\alpha \subsetneq \beta$ and $\beta \cup \Psi \nvdash \bot \stackrel{(\varphi \leftrightarrow \Psi)}{\longrightarrow} \beta \cup \varphi \nvdash \bot$ which is not possible.
- $(\dot{+}7)$ and $(\dot{+}8)$ Left as exercises...

Introduction

Belief revision

Standard revision

Semantic

Several sources belief merging

Maxi-choice contraction

FREIBU

On the other side, one can ask for the principle of minimality to be strictly respected.

Definition

A selection function for K is a function γ such that for all sentences φ :

- If $K \perp \varphi$ is non-empty, then $\gamma(K \perp \varphi)$ is a non-empty subset of $K \perp \varphi$, and
- If $K \perp \varphi$ is empty, then $\gamma(K \perp \varphi) = \{K\}$.

Definition

Maxichoice contraction is defined as $K - \varphi = \gamma(K \perp \varphi)$ where γ is a selection function.

Introduction

revision

Standard revision

Semantic

Several sources belief

Partial-meet contraction

Į,

Maxi-choice can be too bold: there is sometimes no reason to trust one piece more than one another.

Definition

A partial-meet revision operation is an operation defined as:

$$K \dotplus \varphi = \bigcap \gamma (K \bot \varphi) + \varphi$$

Seems to be a good compromise between full-meet and maxi-choice

Introduction

Belief revision

Formal properties
Standard revision

operations Semantic

approaches

Several sources belief merging

Distance-based revision operations

NE LE

Definition

The Dalal revision operation, denoted by $\dot{+}_D$, is defined as:

$$K \dotplus_D \varphi = \min(extMod(\varphi), \leq_K)$$

where d_H is the Hamming Distance and

$$\alpha \leq_{\mathsf{K}} \beta \text{ iff } \exists \omega \in \mathsf{extMod}(\mathsf{K}), \forall \omega' \in \mathsf{extMod}(\mathsf{K}), \mathsf{d}_{\mathsf{H}}(\alpha, \omega) \leq \mathsf{d}_{\mathsf{H}}(\beta, \omega')$$

Example

	а	b	С
\mathcal{I}_{φ_1}	0	0	0
\mathcal{I}_{arphi_1} \mathcal{I}_{arphi_2}	0	0	1
'-	0	1	0
\mathcal{I}_{K_1}	0	1	1
	1	0	0
\mathcal{I}_{K_2}	1	0	1
	1	1	0
\mathcal{I}_{K_3}	1	1	1

Let
$$\varphi = \{ \neg a, \neg b \}$$
 and $K = \{ (a \lor b) \land c \}$:

$$d(\mathcal{I}_{\varphi_1}, \mathcal{I}_{K_1}) = 2 \quad d(\mathcal{I}_{\varphi_2}, \mathcal{I}_{K_1}) = 1$$

$$d(\mathcal{I}_{\varphi_1}, \mathcal{I}_{K_2}) = 2 \quad d(\mathcal{I}_{\varphi_2}, \mathcal{I}_{K_2}) = 1$$

$$d(\mathcal{I}_{\varphi_1}, \mathcal{I}_{K_3}) = 3 \quad d(\mathcal{I}_{\varphi_2}, \mathcal{I}_{K_3}) = 2$$

Introduction

Belief revision

Formal properties Standard revision operations

Semantic approaches

Several sources - belief merging

Some complexity result

FREIBUI

Formula-based approaches

The question does Ψ belongs to $K \dotplus \varphi$ (if \dotplus is a full-meet revision operator) is $\Delta_2^p - (\Sigma_1^p \cup \Pi_1^p)$ provided that NP \neq co-NP.

proof

If \dotplus is a full-meet revision, $\Psi \in Cn(K) \dotplus \varphi$ can be solved by the following algorithm: if $K \not\models \neg \Psi$, then $K \cup \Psi \models \varphi$ else $\Psi \models \varphi \longrightarrow$ Membership in Δ_{2}^{p} .

Furthermore, SAT can be polynomially transformed to full-meet revision by solving $\Psi \in Cn(\Psi) \dotplus \top$ and UNSAT can be polynomially transform to full-meet revision by solving $\bot \in Cn(\emptyset) \dotplus \Psi$. Hence, assuming that full-meet revision belongs to both NP and co-NP would lead to NP = co-NP.

Introduction

Belief revision

Standard revision operations

Semantic approaches

Several sources belief merging

3 Several sources - belief merging

FREE BE

- Postulational aspects
- Distance-based merging
- Syntactic merging

Introduction

Belief revision

Several sources belief merging

Postulational aspects

merging Syntactic merging

Principles of belief merging

FREIBU

There is not only one source for the information:

- Voting procedure;
- Expert system;
- Distributed databases:
- multisource knowledge acquisition.

Constructing a belief base which represents the several sources and which:

- solves the contradiction;
- reduces the redundancies;
- is consistent.

Introduction

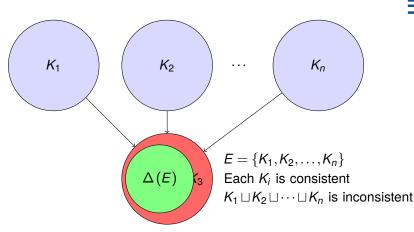
Belief revision

Several sources belief merging

> Postulational aspects Distance-based

> merging Syntactic mergin

Merging in the general case



Introduction

Belief revision

Several sources belief merging

Postulational aspects

merging Syntactic mergin

Formal framework

Ţ

General assumption:

- K_1, \ldots, K_n are belief bases;
- $E = \{K_1, ..., K_n\}$ is a multi-set of belief bases and is called a belief profile;
- *IC* is a propositional formula standing for constraints;
 - □ stands for multi-set union.

Introduction

Belief revision

Several sources belief merging

Postulational

Distance-based merging

merging Syntactic mergin

Bibliography

Operation

Belief merging operation: $\Delta: \mathcal{L}^n \times \mathcal{L} \to \mathcal{L}$ Sometimes also called fusion operation.

Konieczny-PinoPerez postulates

EIBURG

- (KP0) $\Delta_{IC}(E) \models IC$.
- (KP1) If *IC* is consistent, then $\Delta_{IC}(E)$ is consistent.
- (KP2) If $\bigwedge E \wedge IC$ is consistent, then $\Delta_{IC}(E) = \bigwedge E \wedge IC$.
- (KP3) If $E_1 \equiv E_2$ and $IC_1 \equiv IC_2$, then $\Delta_{IC_1}(E_1) \equiv \Delta_{IC_2}(E_2)$.
- (KP4) If $K_1 \models IC$ and $K_2 \models IC$, then $\Delta_{IC}(K_1 \sqcup K_2) \land K_1 \not\models \bot$ implies $\Delta_{IC}(K_1 \sqcup K_2) \land K_2 \not\models \bot$.
- $(\mathsf{KP5}) \ \Delta_{\mathit{IC}}(E_1) \wedge \Delta_{\mathit{IC}}(E_2) \models \Delta_{\mathit{IC}}(E_1 \sqcup E_2).$
- (KP6) If $\Delta_{IC}(E_1) \wedge \Delta_{IC}(E_2)$ is consistent, then $\Delta_{IC}(E_1 \sqcup E_2) \models \Delta_{IC}(E_1) \wedge \Delta_{IC}(E_2)$.
- $(\mathsf{KP7}) \ \Delta_{\mathit{IC}_1}(E) \wedge \mathit{IC}_2 \models \Delta_{\mathit{IC}_1 \wedge \mathit{IC}_2}(E).$
- (KP8) If $\Delta_{IC_1}(E) \wedge IC_2$ is consistent, then $\Delta_{IC_1 \wedge IC_2}(E) \models \Delta_{IC_1}(E) \wedge IC_2$.

Introduction

Belief revision

Several sources belief merging

Postulational aspects

> merging Syntactic merging

Arbitration or majority operations

UNI

Arbitration (Arb)

$$\left.\begin{array}{l} \Delta_{IC_{1}}(K_{1}) \leftrightarrow \Delta_{IC_{2}}(K_{2}) \\ \Delta_{IC_{1} \leftrightarrow \neg IC_{2}}(K_{1} \sqcup K_{2}) \leftrightarrow (IC_{1} \leftrightarrow \neg IC_{2}) \\ IC_{1} \neg \vdash IC_{2} \\ IC_{2} \neg \vdash IC_{1} \end{array}\right\} \Rightarrow \Delta_{IC_{1} \vee IC_{2}}(K_{1} \sqcup K_{2}) \leftrightarrow \Delta_{IC_{1}}(K_{1})$$

Majority (Maj)

$$\exists n, \Delta_{IC}(K_1 \sqcup K_2^n) \vdash \Delta_{IC}(K_2)$$

Independence from majority (IM)

$$\forall n, \Delta_{IC}(K_1 \sqcup K_2^n) \leftrightarrow \Delta_{IC}(K_1 \sqcup K_2)$$

Introduction

Belief revision

Several sources belief merging

Postulational aspects

Distance-based merging

Link between (IM) the KP postulates

Theorem

There exists no merging operator satisfying all the KP postulates and (IM).

Proof

Consider $E_1=\{K, \neg K\}$ and $E_2=\{K\}$ be two belief profiles. (IM) leads to $\Delta_{\top}(E_1\sqcup E_2)=\Delta_{\top}(E_1)$. (KP4) allows for $\Delta_{\top}(E_1)\not\vdash K$ and $\Delta_{\top}(E_1)\not\vdash \neg K$. From (KP2), we have that $\Delta_{\top}(E_2)\vdash K$ and thus $\Delta_{\top}(E_1)\land \Delta_{\top}(E_2)$ is consistent and from (KP6) we obtain $\Delta_{\top}(E_1\sqcup E_2)\vdash \Delta_{\top}(E_1)\land \Delta_{\top}(E_2)$, i.e.,

 $\Delta_{\top}(E_1) \vdash \Delta_{\top}(E_1) \land K$ and thus $\Delta_{\top}(E_1) \vdash K$ contradicting (KP4).

Introduction

Belief revision

Several sources belief merging

> Postulational aspects

Distance-based merging

Syntactic mergin

Link between (IM) and (Maj)

UNI

Theorem

If a merging operator satisfies (KP1) and (KP2) then it can not satisfies (IM) and (Maj) at the same time.

Proof

From (IM) and (Maj), we have for all E_1, K that

 $\Delta_{\top}(E_1 \sqcup K) \leftrightarrow \Delta_{\top}(E_1 \sqcup K^n) \vdash \Delta_{\top}(K).$

From (KP2), we deduce that $\forall K, \Delta_{\top}(E_1 \sqcup K) \vdash K$.

Consider K' such that $K \wedge K' \vdash \bot$. Then with E = K', we have

 $\Delta_{\top}(K' \sqcup K) \vdash K$. And also that $\Delta_{\top}(K \sqcup K') \vdash K'$ and thus that

 $\Delta_{\top}(K' \sqcup K) \vdash K \wedge K'$. Finally, $\Delta_{\top}(K' \sqcup K) \vdash \bot$ contradicting (KP1).

Introduction

Belief revision

Several sources belief merging

Postulational aspects

merging

Syntactic merging

Syncretic assignment

Definition

A syncretic assignment is a function which associates to a belief profile E a pre-order \leq_E over the interpretations such that for every belief profile E, E_1, E_2 and every belief base K, K' the following conditions hold:

- 1 If $\omega \models E$ and $\omega' \models E$ then $\omega \simeq_F \omega'$
- 2 If $\omega \models E$ and $\omega' \not\models E$ then $\omega <_E \omega'$
- 3 If $E_1 \leftrightarrow E_2$ then $\leq_{E_1} = \leq_{E_2}$
- $4 \ \forall \omega \models K, \exists \omega' \models K', \omega' \leq_{K \sqcup K'} \omega$
- 5 If $\omega \leq_{E_1} \omega'$ and $\omega \leq_{E_2} \omega'$ then $\omega \leq_{E_1 \sqcup E_2} \omega'$
- 6 If $\omega <_{E_1} \omega'$ and $\omega \leq_{E_2} \omega'$ then $\omega <_{E_1 \sqcup E_2} \omega'$

Introduction

Belief revision

Several sources belief merging

Postulational aspects

merging

Syntactic mergin

Syncretic assignment - Extra conditions

UNI

Definition

A majority syncretic assignment is a syncretic assignment which satisfies the following condition:

7 If
$$\omega <_{E_2} \omega'$$
, then $\exists n, \omega <_{E_1 \sqcup E_2^n} \omega'$

Definition

A fair syncretic assignment is a syncretic assignment which satisfies the following condition:

۶

$$\left. \begin{array}{c} \omega <_K \omega' \\ \omega <_{K'} \omega'' \\ \omega' \simeq_{K \sqcup K'} \omega'' \end{array} \right\} \Rightarrow \omega <_{K \sqcup K'} \omega'$$

Introduction

Belief revision

Several sources belief merging

Postulational aspects

> Distance-based merging

Syntactic merging

Syncretic assignment and KP postulates

FEB -

Theorem

We consider Δ_{IC} a merging operation. Δ_{IC} respects all (KP) postulates iff there exists a syncretic assignment which associates to every belief profile E a total pre-order \leq_E such that the result of the merging operation $\Delta_{IC}(E)$ as the set of minimal elements of Mod(IC) according to the pre-order \leq_E .

Theorem

An operator Δ is a majority (resp. arbitration) merging operation iff there exists a majority (resp. fair) syncretic assignment which associates to every belief profile E a total pre-order \leq_E such that the result of the merging operation $\Delta_{IC}(E)$ as the set of minimal elements of Mod(IC) according to the pre-order \leq_E .

Introductio

Belief revision

Several sources belief merging

Postulational aspects

merging

Syntactic mergin

Syntactic mergin

Distances and aggregation functions

Definition

BURG

Distances

 $d:\Omega\times\Omega\to\mathbb{N}$ is a distance between interpretations iff it respects

$$\forall \omega_1, \omega_2 \in \Omega, d(\omega_1, \omega_2) = d(\omega_2, \omega_1)$$

It induces the distance between an interpretation and a formula:

$$d(\omega, \varphi) = \min_{\omega' \models \varphi} d(\omega, \omega')$$

Aggregation function

 $f: \mathbb{N}^n \to \mathbb{N}$ is an aggregation function iff it respects

f is non-decreasing in each argument;

$$\forall (x_1,\ldots,x_n), f(x_1,\ldots,x_n) = 0 \text{ iff } x_1 = \ldots = x_n = 0;$$

$$\forall x_1, f(x_1) = x_1$$

Introductio

Belief revision

Several sources belief merging

Postulational aspects

Distance-based merging Syntactic merging

Syntactic mergin

Distances and aggregation functions

Some distance functions:

drastic
$$d_D(\omega_1, \omega_2) = 0$$
 if $\omega_1 = \omega_1$, 1 otherwise Hamming $d_H(\omega_1, \omega_2) = |\{x \in \mathcal{L} \mid \omega_1(x) \neq \omega_2(x)\}|$

Some aggregation functions: max, sum and lex.

Lexicographic aggregation

Given two vectors of numbers $\vec{a} = (a_1, \dots, a_n)$ and $\vec{b} = (b_1, \dots, b_n)$. Let σ and σ' be two permutations on $\{1, \dots, n\}$ s.t. $\forall i, a_{\sigma(i)} \geq a_{\sigma(i+1)}$ and $b_{\sigma'(i)} \geq b_{\sigma'(i+1)}$.

$$\vec{a} \leq_{lex} \vec{b}$$
 iff $\forall i, a_{\sigma(i)} = b_{\sigma'(i)}$ or $\exists i \geq 1$ s.t. $a_{\sigma(i)} < b_{\sigma'(i)}$ and $a_{\sigma(j)} = b_{\sigma'(j)}$ for all $1 \leq j < i$.

revision

Several

Distance-based meraina

Distance-based merging

Distance-based merging operators

d is a distance, *f* and *g* are aggregation functions, $E = \{K_1, \dots, K_n\}$ is belief profile and *C* is a formula:

$$\mathsf{Mod}(\Delta^{d,f,g}_{\mathit{IC}}(E)) = \{\omega \in \mathsf{Mod}(\mathit{IC}) \mid d(\omega,E) \text{ is minimal } \}$$

where

$$d(\omega, E) = g(d(\omega, K_1), \dots, d(\omega, K_n))$$

and for every $K_i = \{\varphi_{i,1}, \dots, \varphi_{i,n_i}\}$

$$d(\omega, K_i) = f(d(\omega, \varphi_{i,1}), \dots, d(\omega, \varphi_{i,n_i}))$$

Introduction

Belief revision

Several sources belief

Postulational

Distance-based merging

Syntactic mergin

Distance-based merging: example

A I EIBURG

Example

$$\textit{E} = \{\textit{K}_{1}, \textit{K}_{2}, \textit{K}_{3}, \textit{K}_{4}\}$$
 under the integrity constraint $\textit{IC} = \top$ where

$$K_1 = \{a \land b \land c, a \rightarrow \neg b\}$$

$$K_2 = \{a \land b\}$$

$$K_3 = \{\neg a \land \neg b, \neg b\}$$

$$K_4 = \{a, a \rightarrow b\}$$

$\Delta^{d_H,\text{sum},\text{lex}}$ Operator.

	$a \wedge b \wedge c$	a ightarrow eg b	$a \lor b$	$\neg a \land \neg b$	$\neg b$	а	$a \rightarrow b$	K_1, K_2, K_3, K_4	Ε
000	3	0	2	0	0	1	0	3, 2, 0, 1	3210
001	2	0	2	0	0	1	0	2, 2, 0, 1	2210
010	2	0	1	1	1	1	0	2, 1, 2, 1	2211
011	1	0	1	1	1	1	0	1, 1, 2, 1	2111
100	2	0	1	1	0	0	1	2, 1, 1, 1	2111
101	1	0	1	1	0	0	1	1, 1, 1, 1	1111
110	1	1	0	2	1	0	0	2,0,3,0	3200
111	0	1	0	2	1	0	0	1,0,3,0	3100

Introduction

Belief revision

Several sources belief merging

Postulational

Distance-based merging

Syntactic mergin

Table of complexity

Complexity for d_D

f/g	max	sum	lex		
max	BH_2	Θ_2^p	Θ_2^p		
sum	Θ_2^p	Θ_2^p	Δ_2^p		

Complexity for d_H

f/g	max	sum	lex
max	Θ_2^p	Θ_2^p	Δ_2^p
sum	Θ_2^p	Θ_2^p	Δ_2^p

Introduction

Belief revision

Several sources belief merging

Postulational aspects

> Distance-based merging

Syntactic merging

Removed Sets Fusion: Principle

FREIBU

3 steps:

- subset of formulas which restore consistency: Potential Removed Sets
- minimal subset of formulas which restore consistency:
 Removed Sets
- profile without these formulas: Removed Sets Fusion operation

Introduction

Belief revision

Several sources belief merging

Postulational aspects

Distance-bas merging

Syntactic merging

Potential Removed Set

FREIBUR

 $E = \{K_1, \dots, K_n\}$: a belief profile IC: constraints

s.t. $K_1 \sqcup \cdots \sqcup K_n \sqcup IC$ is inconsistent.

X: a subset of formulas from $K_1 \sqcup \cdots \sqcup K_n$.

Definition (Potential Removed Set)

X is a potential Removed Set of E constrainted by IC iff $((K_1 \sqcup \cdots \sqcup K_n) \backslash X) \sqcup IC$ is consistent.

Introduction

Belief revision

Several sources belief merging

Postulational aspects

Distance-bas merging

Syntactic merging

Potential Removed Sets

FREIBC

$$K_1 = \{a \mid b\} \quad K_2 = \{\neg a \lor \neg b\}$$

Example

Potential Removed Sets $R_1 = \{a\}$ $R_2 = \{b\}$ $R_3 = \{\neg a \lor \neg b\}$ $R_4 = \{a \quad b\}$ $R_5 = \{b \quad \neg a \lor \neg b\}$ $R_6 = \{\neg a \lor \neg b \quad a\}$ $R_7 = \{\neg a \lor \neg b \quad a \quad b\}$

Consistent subset

$$E \backslash R_1 = \{ \neg a \lor \neg b \quad b \}$$

$$E \backslash R_2 = \{ \neg a \lor \neg b \quad a \}$$

$$E \backslash R_3 = \{ a \quad b \}$$

$$E \backslash R_4 = \{ \neg a \lor \neg b \}$$

$$E \backslash R_5 = \{ a \}$$

$$E \backslash R_6 = \{ b \}$$

$$E \backslash R_7 = \emptyset$$

Introductio

Belief revision

Several sources belief merging

Postulational aspects

Distance-based merging

Syntactic merging

Removed Sets according to P

FREB

 $E = \{K_1, \dots, K_n\}$: a belief profile IC: constraints

s.t. $K_1 \sqcup \cdots \sqcup K_n \sqcup IC$ is inconsistent.

P: a merging strategy.

Definition (Removed Set)

X is a Removed Set of E constrainted by IC according to P iff:

- X is a potential Removed Set of E constrainted by IC;
- \blacksquare $\not\exists X' \subseteq K_1 \sqcup \cdots \sqcup K_n \text{ s.t. } X' \subset X;$
- $\blacksquare \not\exists X' \subseteq K_1 \sqcup \cdots \sqcup K_n \text{ s.t. } X' <_P X.$

Introduction

Belief revision

Several sources belief merging

> Postulational aspects Distance-based

merging Syntactic merging

Dyniadad merging

Removed Sets

FREIBL

$$K_1 = \{a \mid b\} \quad K_2 = \{\neg a \lor \neg b\}$$

Example

Removed Sets
$$C$$

$$R_1 = \{a\} \qquad E \setminus F$$

$$R_2 = \{b\} \qquad E \setminus F$$

$$R_3 = \{\neg a \lor \neg b\} \qquad E \setminus F$$

$$R_4 = \{a \mid b\} \qquad E \setminus F$$

$$R_5 = \{b \mid \neg a \lor \neg b\} \qquad E \setminus F$$

$$R_6 = \{\neg a \lor \neg b \mid a\}$$

$$R_7 = \{\neg a \lor \neg b \mid a \mid b\}$$

$$E \backslash R_1 = \{ \neg a \lor \neg b \quad b \}$$

$$E \backslash R_2 = \{ \neg a \lor \neg b \quad a \}$$

$$E \backslash R_3 = \{ a \quad b \}$$

$$E \backslash R_4 = \{ \neg a \lor \neg b \}$$

$$E \backslash R_5 = \{ a \}$$

 $E \backslash R_6 = \{b\}$ $E \backslash R_7 = \emptyset$

Consistent subset

Introduction

Belief revision

Several sources belief merging

aspects
Distance-based merging

Syntactic merging

Definition of the merging operator

UNI FREIBURG

 $E = \{K_1, \dots, K_n\}$: a belief profile IC: constraints

P: a merging strategy.

 $\mathcal{F}_{P,IC}\mathcal{R}(E)$: the set of Removed Sets of E constrainted by IC according to P.

Definition $(\Delta_{P,IC}^{RSF}(E))$

$$\Delta_{P,IC}^{RSF}(E) = \bigvee_{X \in \mathcal{F}_{P,IC} \mathcal{R}(E)} \{ ((K_1 \sqcup \cdots \sqcup K_n) \backslash X) \sqcup IC \}$$

Example

$$\begin{aligned} K_1 &= \{a \quad b\} \quad K_2 = \{\neg a \lor \neg b\} \\ \Delta^{RSF}_{\Sigma,IC}(E) &= \{\neg a \lor \neg b \quad b\} \lor \{\neg a \lor \neg b \quad a\} \lor \{a \quad b\} \end{aligned}$$

Introduction

Belief revision

Several sources belief merging

Postulational aspects

merging

Syntactic merging

Pre-order Sum

 $E = \{K_1, \dots, K_n\}$: a belief profile.

X,X': two potential Removed Sets of E.

Definition ($<_{\Sigma}$)

$$X \leq_{\Sigma} X'$$
 iff $\sum_{1 \leq i \leq n} |X \cap K_i| \leq \sum_{1 \leq i \leq n} |X' \cap K_i|$

Introduction

Belief revision

Several sources belief

Postulational aspects

Distance-bas merging

Syntactic merging

The Sum strategy

JNI REIBU

```
Profile E = \{K_1, K_2, K_3\}
```

$$\begin{aligned} K_1 = \{\neg d, & s \lor o, & s\} & K_2 = \{\neg s, & d \lor o, & \neg d \lor \neg o\} \\ & K_3 = \{s, & d, & o\} \end{aligned}$$

$$\Delta^{RSF}_{\Sigma,IC}(E) = \{ \neg d \quad s \lor o \quad s \quad d \lor o \quad \neg d \lor \neg o \quad s \quad o \}$$

Introduction

Belief revision

Several sources belief merging

Postulational aspects

merging Syntactic merging

Introduction

Belief revision

Several sources belief merging

Literature I

FREB FEB

Peter Gärdenfors and Hans Rott, **Belief revision**,

Handbook of Logic in Al and LP, 1995.

Carlos E. Alchourron, Peter Gärdenfors, David Makinson,

On the Logic of Theory Change: Partial Meet Contraction and Revision Functions,

Journal of Symbolic Logic, 1985.

Bernhard Nebel

Base Revision Operations and Schemes: Semantics, Representation and Complexity ECAI. 1994.

Sébastien Konieczny, Jérôme Lang, Pierre Marquis:

DA2 merging operators

Artificial Intelligence, 2004.

Introduction

Belief revision

> Several sources belief merging

Literature II

FREIB --B

Introduction

Belief revision

Several sources belief merging

Bibliography

Julien Hué, Eric Würbel, Odile Papini: Removed Sets Fusion: Performing Off The Shelf ECAI, 2008.