Principles of Knowledge Representation and Reasoning Answer Set Programming

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel, Stefan Wölfl, and Julien Hué

November 28, 2012; December 5, 2012

- The Gelfond-Lifschitz
- Logic of hereand-there
- SAT translation of ASP
- Answer set semantics: a formalization of negation-as-failure in logic programming (Prolog)
- Several formalizations: well-founded semantics, perfect-model semantics, inflationary semantics, ...
- Can be viewed as a simpler variant of default logic
- A better alternative to propositional logic in some applications

Nonmonotonic logic programs I

The Gelfond-

Logic of here-

reduct

of ASP

Let A be a set of propositional atoms.

Rules:

$$c \leftarrow b_1, \dots, b_m, \operatorname{not} d_1, \dots, \operatorname{not} d_k$$

where
$$\{c, b_1, \ldots, b_m, d_1, \ldots, d_k\} \subseteq A$$

- Meaning similar to default logic:
 If
 - we have derived b_1, \ldots, b_m and
 - 2 cannot derive any of d_1, \ldots, d_k ,
 - then derive c.
- Rules without right-hand side (facts): $c \leftarrow \top$
- Rules without left-hand side (constraints):

$$\perp \leftarrow b_1, \dots, b_m, \operatorname{not} d_1, \dots, \operatorname{not} d_k$$

Let A be a set of propositions.

Rules:

$$c \leftarrow b_1, \dots, b_m, \operatorname{not} d_1, \dots, \operatorname{not} d_k$$

where
$$\{c, b_1, \ldots, b_m, d_1, \ldots, d_k\} \subseteq A$$

- \blacksquare c is called the head of the rule (denoted by head(r));
- $b_1,...,b_m$ is called the positive body of the rule (denoted by body⁺(r));
- not $d_1, \ldots, \text{not } d_k$ is called the negative body of the rule (denoted by body $^-(r)$);
- The body of the rule consists in its positive and negative part (body(r) = body⁺(r) \cup body⁻(r)).

The Gelfond-Lifschitz reduct

Logic of hereand-there

Example

 $fly \leftarrow bird$, not abnormal. $abnormal \leftarrow penguin$. $bird \leftarrow penguin$.

Example

```
\begin{aligned} &1\{sol(X,Y,A): num(A)\}1.\\ &\leftarrow sol(X,Y,Z), sol(X,Y1,Z), Y \neq Y1.\\ &\leftarrow sol(X,Y,Z), sol(X1,Y,Z), X \neq X1.\\ &\leftarrow sol(W*3+W2,W1*3+W3,Z),\\ &\qquad sol(W*3+W4,W1*3+W5,Z), W3 \neq W5.\\ &\leftarrow sol(W*3+W2,W1*3+W3,Z),\\ &\qquad sol(W*3+W4,W1*3+W5,Z), W2 \neq W4.\end{aligned}
```

The Gelfond-Lifschitz reduct

Logic of hereand-there

Example

 $fly \leftarrow bird$, not abnormal. abnormal \leftarrow penguin. $bird \leftarrow$ penguin.

Example

```
\begin{split} &1\{sol(X,Y,A):num(A)\}1.\\ &\leftarrow sol(X,Y,Z),sol(X,Y1,Z),Y\neq Y1.\\ &\leftarrow sol(X,Y,Z),sol(X1,Y,Z),X\neq X1.\\ &\leftarrow sol(W*3+W2,W1*3+W3,Z),\\ &\qquad \qquad sol(W*3+W4,W1*3+W5,Z),W3\neq W5.\\ &\leftarrow sol(W*3+W2,W1*3+W3,Z),\\ &\qquad \qquad sol(W*3+W4,W1*3+W5,Z),W2\neq W4. \end{split}
```

The Gelfond-Lifschitz reduct

Logic of hereand-there

The Gelfond-

reduct

Logic of hereand-there

reduct

Definition (Deductive closure)

Let Π be a logic program without **not**, $X \subseteq \operatorname{Atoms}(\Pi)$. The closure $\operatorname{dcl}(\Pi) \subseteq \operatorname{Atoms}(\Pi)$ of Π is defined by iterative application of the rules in the obvious way. X is an answer set of Π if $X = \operatorname{dcl}(\Pi)$ and there is no constraint in Π violated by X.

Example

$$\Pi = \left\{ \begin{array}{lll} a & \leftarrow & b. & d & \leftarrow & f. & b. \\ d & \leftarrow & b. & c & \leftarrow & b, d. & e & \leftarrow & f. \end{array} \right\}$$

$$\Gamma_0 = \Gamma(\emptyset) = \{b\}$$

$$\Gamma_1 = \Gamma(\Gamma_0) = \{b, d, a\}$$

$$\Gamma_2 = \Gamma(\Gamma_1) = \{b, d, a, c\}$$

$$\Gamma_3 = \Gamma(\Gamma_2) = \{b, d, a, c\} = \Gamma_2$$

reduct

Definition (Deductive closure)

Let Π be a logic program without **not**, $X \subseteq \text{Atoms}(\Pi)$. The closure $dcl(\Pi) \subseteq \text{Atoms}(\Pi)$ of Π is defined by iterative application of the rules in the obvious way. X is an answer set of Π if $X = dcl(\Pi)$ and there is no constraint in Π violated by X.

Example

$$\Pi = \left\{ \begin{array}{l}
a \leftarrow b. & d \leftarrow f. & b. \\
d \leftarrow b. & c \leftarrow b, d. & e \leftarrow f.
\end{array} \right\}$$

$$\Gamma_0 = \Gamma(\emptyset) = \{b\}$$

$$\Gamma_1 = \Gamma(\Gamma_0) = \{b, d, a\}$$

$$\Gamma_2 = \Gamma(\Gamma_1) = \{b, d, a, c\}$$

$$\Gamma_3 = \Gamma(\Gamma_2) = \{b, d, a, c\} = \Gamma_2$$

The Gelfond-Lifschitz reduct

The Gelfond-Lifschitz reduct

Language and notations

answer sets

Logic of here-

NE BE

Definition (Reduct)

The reduct of a program Π with respect to a set of atoms $X \subseteq Atoms(\Pi)$ is defined as:

$$\Pi^X := \{c \leftarrow b_1, \dots, b_m \mid (c \leftarrow b_1, \dots, b_m, \mathsf{not}\, d_1, \dots, \mathsf{not}\, d_k) \in \Pi, \{d_1, \dots, d_k\} \cap X = \emptyset\}$$

Definition (Answer set)

 $X \subseteq Atoms(\Pi)$ is an answer set of Π if X is an answer set of Π^X .

The Gelfond-Lifschitz reduct

Language and

answer sets

Computation

Logic of here

SAT translations

of ASP

Definition (Reduct)

The reduct of a program Π with respect to a set of atoms $X \subset Atoms(\Pi)$ is defined as:

$$\Pi^X := \{c \leftarrow b_1, \dots, b_m \mid (c \leftarrow b_1, \dots, b_m, \operatorname{not} d_1, \dots, \operatorname{not} d_k) \in \Pi, \{d_1, \dots, d_k\} \cap X = \emptyset\}$$

Definition (Answer set)

 $X \subseteq \text{Atoms}(\Pi)$ is an answer set of Π if X is an answer set of Π^X .

The Gelfond-Lifschitz reduct

and-there

NE NE

Example

$$a \leftarrow \text{not}b. \ b \leftarrow \text{not}a.$$

 $d \leftarrow a. \ d. \leftarrow b.$

Example

$$a \leftarrow b. b \leftarrow a$$

Example

$$n$$
_woman \leftarrow not woman. father \leftarrow parent, n _woman. parent.

We say that X satisfies a rule r iff $X \models \text{head}(r) \lor \neg \text{body}(r)$. $\Rightarrow X$ can satisfy all rules and not be an answer set.

The Gelfond-Lifschitz reduct

notations

answer sets

Logic of here

SAT translations

Example

$$egin{array}{llll} a & \leftarrow & {\sf not}b. & b & \leftarrow & {\sf not}a. \ d & \leftarrow & a. & d. & \leftarrow & b. \end{array}$$

Example

$$a \leftarrow b, b \leftarrow a$$

Example

We say that X satisfies a rule r iff $X \models \text{head}(r) \lor \neg \text{body}(r)$. $\Rightarrow X$ can satisfy all rules and not be an answer set.

The Gelfond-Lifschitz reduct

notations

answer sets

and-there

Example

$$a \leftarrow \text{not}b.$$
 $b \leftarrow \text{not}a.$ $d \leftarrow a.$ $d. \leftarrow b.$

Example

$$a \leftarrow b$$
. $b \leftarrow a$

Example

 $woman \leftarrow not n_woman.$ $\leftarrow woman, n_woman.$ $mother \leftarrow parent, woman.$

n_woman ← not woman.
father ← parent,n_woman.
parent.

We say that X satisfies a rule r iff $X \models \text{head}(r) \lor \neg \text{body}(r)$. $\Rightarrow X$ can satisfy all rules and not be an answer set.

The Gelfond-Lifschitz reduct

notations

answer sets

Computation

Logic of here and-there

NE NE

Example

$$a \leftarrow \text{not}b.$$
 $b \leftarrow \text{not}a.$ $d \leftarrow a.$ $d. \leftarrow b.$

Example

$$\mathsf{a} \leftarrow \mathsf{b}. \; \mathsf{b} \leftarrow \mathsf{a}$$

Example

$$woman \leftarrow not n_woman.$$

 $\leftarrow woman, n_woman.$
 $mother \leftarrow parent, woman.$

$$n$$
_woman \leftarrow not woman.
father \leftarrow parent, n _woman.
parent.

We say that X satisfies a rule r iff $X \models \text{head}(r) \lor \neg \text{body}(r)$. $\Rightarrow X$ can satisfy all rules and not be an answer set.

The Gelfond-Lifschitz reduct

notations

answer sets

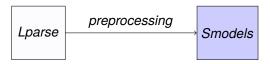
Logic of here-

and-there

translations of ASP

Lparse and smodels

Based on the Gelfond-Lifschitz reduction, Syrjanen created the ASP solver Smodels.



Allow for using variables and cardinality statements.

Example

```
b :- not a. a :- not b.
d :- a. d :- b.
```

The Gelfond-Lifschitz reduct

> Language and notations

Formal propert

answer sets

Logic of here

translations

The lparse format I

- propositions are any combination of lowercase letters;
- variables are any combination of letters starting with an uppercase letter;
- integers can be used and so can arithmetic operations (+, -, *, /, %).
- negation as failure is denoted by not.
- implication is denoted by ":-".

The Gelfond-Lifschitz reduct

> Language and notations

answer sets

Logic of here and-there

The lparse format II

- The literal
 - $1\{b1,\ldots,bm\}u$
 - is true iff at least I and at most u atoms are true within the set $\{b1, \ldots, bm\}$;
- #domain encodes the possible values in a given domain: #domain a(X). a(1..10). will replace occurrences of X by integers from 1 to 10.

The Gelfond-Lifschitz reduct

Language and

enswer sets

Logic of here-

The lparse format III

- Domains can also be set within a cardinality rule: {clique(X) : num(X)}. num(1..3). will be understood as {clique(1), clique(2), clique(3)}.
- Domains can be restricted thanks to relations. The rule :- size(X,Y), X<Y.
 will be instantiated only for value of X and Y s.t. X<Y.
- A subset of answer sets can be selected according to some optimization criteria.
 #minimize{a,b,c,d}.
 will choose the answer sets with the less number of atoms from {a,b,c,d}. Attention: Does not change the SAT/UNSAT question. You can only optimize one criterion at a time.

The Gelfond-Lifschitz

Language and

Formal properties

Computation

Logic of hereand-there

SAT translations

REE

Example

```
#domain a(X). a(1..2).
c(X) := not d(X) \cdot d(X) := not c(X) \cdot
a(1). a(2).
c := not d(1). c := not d(2).
d := not c(1). d := not c(2).
12113
1 4 1 1 5
1 3 1 1 2
15114
1600
1700
2 d(1) 3 c(1) 4 d(2)
```

The Gelfond-Lifschitz reduct

> Language and notations

Tiotations

answer sets

Computation

Logic of hereand-there

SAT translations of ASP

5 c(2) 6 a(1) 7 a(2)

How to represent a problem in ASP?

- Firstly, define what is a "solution candidate";
- Secondly, verify it fits the constraints
- Finally, keep only the best answer sets

Example

```
#domain node(X). #domain node(Y).
node(1..5). edge(1,2). edge(3,4).
edge(4,5). edge(4,2). edge(1,4).

uedge(X,Y) :- edge(X,Y), X < Y.
uedge(Y,X) :- edge(X,Y), Y < X.

{ clique(X) : node(X) }.
:- clique(X), clique(Y), not uedge(X,Y), X < Y.
```

The Gelfond-Lifschitz reduct

> Language and notations

answer sets

Logic of here

How to represent a problem in ASP?

- Firstly, define what is a "solution candidate";
- Secondly, verify it fits the constraints
- Finally, keep only the best answer sets

Example

```
#domain node(X). #domain node(Y).
node(1..5). edge(1,2). edge(3,4).
edge(4,5). edge(4,2). edge(1,4).

uedge(X,Y) :- edge(X,Y), X < Y.
uedge(Y,X) :- edge(X,Y), Y < X.

{ clique(X) : node(X) }.
:- clique(X), clique(Y), not uedge(X,Y), X < Y.</pre>
```

The Gelfond-Lifschitz reduct

> Language and notations

answer sets

Logic of hereand-there

SAT translations of ASP

#maximize { clique(X) : node(X) }.

- FREIB
- Membership in NP: Guess $X \subseteq \text{Atoms}(\Pi)$ (nondet. polytime), compute Π^X , compute its closure, compare to X (everything det. polytime).
- NP-hardness: Reduction from 3SAT: an answer set exists iff clauses are satisfiable:

$$p \leftarrow \text{not} \hat{p}.$$
 $\hat{p} \leftarrow \text{not} p$

for every proposition p occurring in the clauses, and

$$\leftarrow \operatorname{not} I_1', \operatorname{not} I_2', \operatorname{not} I_3'$$

for every clause $l_1 \vee l_2 \vee l_3$, where $l'_i = p$ if $l_i = p$ and $l'_i = \hat{p}$ if $l_i = \neg p$.

The Gelfond-Lifschitz

Language and

Formal properties of answer sets

Computation

and-there

translations

- Membership in NP: Guess $X \subseteq \text{Atoms}(\Pi)$ (nondet. polytime), compute Π^X , compute its closure, compare to X (everything det. polytime).
- NP-hardness: Reduction from 3SAT: an answer set exists iff clauses are satisfiable:

$$p \leftarrow \mathsf{not} \hat{p}. \qquad \hat{p} \leftarrow \mathsf{not} p.$$

for every proposition p occurring in the clauses, and

$$\leftarrow \operatorname{not} I_1', \operatorname{not} I_2', \operatorname{not} I_3'$$

for every clause $l_1 \vee l_2 \vee l_3$, where $l'_i = p$ if $l_i = p$ and $l'_i = \hat{p}$ if $l_i = \neg p$.

REIBURG

The Gelfond-Lifschitz reduct

Language and

Formal properties of answer sets

Computation

Logic of hereand-there

- Membership in NP: Guess $X \subseteq \text{Atoms}(\Pi)$ (nondet. polytime), compute Π^X , compute its closure, compare to X (everything det. polytime).
- NP-hardness: Reduction from 3SAT: an answer set exists iff clauses are satisfiable:

$$p \leftarrow \mathsf{not} \hat{p}.$$
 $\hat{p} \leftarrow \mathsf{not} p.$

for every proposition *p* occurring in the clauses, and

$$\leftarrow \mathsf{not} \mathit{I}'_1, \mathsf{not} \mathit{I}'_2, \mathsf{not} \mathit{I}'_3$$

for every clause $l_1 \vee l_2 \vee l_3$, where $l_i' = p$ if $l_i = p$ and $l_i' = \hat{p}$ if $l_i = \neg p$.

UNI

The Gelfond-Lifschitz reduct

Language and

Formal properties of answer sets

Computation

Logic of here

SAT translation

- Membership in NP: Guess $X \subseteq \text{Atoms}(\Pi)$ (nondet. polytime), compute Π^X , compute its closure, compare to X (everything det. polytime).
- NP-hardness: Reduction from 3SAT: an answer set exists iff clauses are satisfiable:

$$p \leftarrow \mathsf{not} \hat{p}.$$
 $\hat{p} \leftarrow \mathsf{not} p.$

for every proposition *p* occurring in the clauses, and

$$\leftarrow \operatorname{not} I_1', \operatorname{not} I_2', \operatorname{not} I_3'$$

for every clause $I_1 \vee I_2 \vee I_3$, where $I_i' = p$ if $I_i = p$ and $I_i' = \hat{p}$ if $I_i = \neg p$.

The Gelfond-Lifschitz

Language and

Formal properties of answer sets

Computation

Logic of here

and-there

ranslations of ASP

Some properties I

NE NE

Proposition

If an atom A belongs to an answer set of a logic program Π then A is the head of one of the rules of Π .

Proposition

Let F and G be sets of rules and let X be a set of atoms. Then the following holds:

$$(F \cup G)^X = \left\{ \begin{array}{ll} F^X \cup G^X, & \textit{if } X \models F \cup G \\ \bot, & \textit{otherwise} \end{array} \right\}$$

The Gelfond-Lifschitz reduct

> Language and notations Formal properties of

answer sets

Computation

Logic of here and-there

translations

NE NE

Proposition

Let F be a set of (non-constraint) rules and G be a set of constraints. A set of atoms X is an answer set of $F \cup G$ iff it is an answer set of F which satisfies G.

Proof.

 \Rightarrow X satisfies $F \cup G$. Then X satisfies the constraints in G and $(F \cup G)^X$ is $F^X \cup \neg \bot$ which is equivalent to F^X . Consequently X is minimal among the sets satisfying F^X iff it is minimal among the sets satisfying $(F \cup G)^X$.

 \Leftarrow X does not satisfy $F \cup G$. Then there exists a rule in F or a rule in G which is not satisfied, then X cannot be a model of F that satisfies

The Gelfond-Lifschitz reduct

Language and notations

Formal properties of answer sets

Computation

Logic of hereand-there

SAT translation:

Proposition

Let F be a set of (non-constraint) rules and G be a set of constraints. A set of atoms X is an answer set of $F \cup G$ iff it is an answer set of F which satisfies G.

Proof.

 \implies X satisfies $F \cup G$. Then X satisfies the constraints in G and $(F \cup G)^X$ is $F^X \cup \neg \bot$ which is equivalent to F^X . Consequently X is minimal among the sets satisfying F^X iff it is minimal among the sets satisfying $(F \cup G)^X$.

 \Leftarrow X does not satisfy $F \cup G$. Then there exists a rule in F or a rule in G which is not satisfied, then X cannot be a model of F that satisfies G.

The Gelfond-Lifschitz reduct

notations

Formal properties of answer sets

Computation

Computation

and-there

translations

Some properties II

NE NE

Proposition

Let F be a set of (non-constraint) rules and G be a set of constraints. A set of atoms X is an answer set of $F \cup G$ iff it is an answer set of F which satisfies G.

Proof.

 \implies X satisfies $F \cup G$. Then X satisfies the constraints in G and $(F \cup G)^X$ is $F^X \cup \neg \bot$ which is equivalent to F^X . Consequently X is minimal among the sets satisfying F^X iff it is minimal among the sets satisfying $(F \cup G)^X$.

 \subseteq X does not satisfy $F \cup G$. Then there exists a rule in F or a rule in G which is not satisfied, then X cannot be a model of F that satisfies G.

The Gelfond-Lifschitz reduct

> Language and notations

Formal properties of answer sets

Computation

and-there

translations

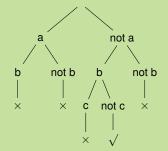
Smodels: principles

Smodels is:

- a Branch and Bound algorithm;
- based on the Gelfond-Lifschitz reduct;
- using reduct as a Forward-Checking procedure.

Example

a :- not b.
b :- not a.
c :- not c, a.



The Gelfond-Lifschitz reduct

> Language and notations

Formal propertie answer sets

Computation

and-there

Smodels I

Algorithm 1 Smodels algorithm

- 1: A := expand(P,A)
- 2: A := lookahead(P, A)
- 3: **if** conflict(P,A) **then**
- 4: return false
- 5: else if A covers Atoms(P) then
- 6: return stable(P,A)
- 7: else
- 8: x := heuristic(P,A)
- 9: **if** $smodels(P, A \cup \{X\})$ **then**
- 10: **return** true
- 11: **else**
- 12: **return** $smodels(P,A \cup \{not X\})$
- 13: **end if**
- 14: end if

Language and

notations

answer sets

Computation

and-there

translations

Smodels example (I)

Example

- (1) $a \leftarrow \text{not} b, \text{not} d$. (2) $d \leftarrow \text{not} a$.
- (3) $b \leftarrow \text{not } c$. (4) $c \leftarrow \text{not } a$.
 - 5) $e \leftarrow \text{not} f, \text{not} a.$ (6) $f \leftarrow \text{not} e.$

The Gelfond-Lifschitz reduct

Language and notations

Formal properties of answer sets

Computation

Logic of hereand-there

Smodels example (I)

Example

- (1) $a \leftarrow \text{not}b, \text{not}d.$ (2) $d \leftarrow \text{not}a.$
- (3) $b \leftarrow \text{not } c$. (4) $c \leftarrow \text{not } a$.
- (5) $e \leftarrow \text{not} f, \text{not} a.$ (6) $f \leftarrow \text{not} e.$

Case 1: *a* ⊆ *X*

- (4) cannot be fired,
 - $\rightarrow c \not\subseteq X$;
- (3) becomes c,
 - \rightarrow $b \subseteq X$;
- (1) cannot be fired,
 - $\rightarrow a \not\subseteq X$;
- \blacksquare $a \not\subseteq X$ and $a \subseteq X$,
 - \rightarrow contradiction.

The Gelfond-Lifschitz

Language and

Formal propertie

answer sets

Computation

Logic of hereand-there

Smodels example (I)

NE NE

Example

- (1) $a \leftarrow \text{not} b, \text{not} d$. (2) $d \leftarrow \text{not} a$.
- $(3) \quad b \quad \leftarrow \qquad \quad \mathsf{not} \, c. \quad (4) \quad c \quad \leftarrow \quad \mathsf{not} \, a.$
- (5) $e \leftarrow \text{not} f, \text{not} a.$ (6) $f \leftarrow \text{not} e.$

Case 1: *a* ⊆ *X*

- (4) cannot be fired, $\rightarrow c \not\subset X$;
- (3) becomes c, $\rightarrow b \subseteq X$;
- (1) cannot be fired,
- $\rightarrow a \not\subseteq X$;
- $a \not\subseteq X$ and $a \subseteq X$, → contradiction.

Case 2: *a ⊈ X*

- (2) becomes d, $\rightarrow d \subseteq X$;
- (4) becomes c, $\rightarrow c \subseteq X:$
- (3) cannot be fired, $\rightarrow b \not\subset X$;
- (1) cannot be fired, $\rightarrow a \not\subseteq X$;
- Nothing new to be expanded.

The Gelfond-Lifschitz

Language and

Formal properti

answer sets

Computation

Logic of here and-there

SAT translations

Smodels example (II)

NE NE

Example

- $(1) \quad a \quad \leftarrow \quad \mathsf{not} \, b, \mathsf{not} \, d. \quad (2) \quad d \quad \leftarrow \quad \mathsf{not} \, a.$
- $(3) \quad b \quad \leftarrow \qquad \text{not} \ c. \quad (4) \quad c \quad \leftarrow \quad \text{not} \ a.$
- (5) $e \leftarrow \text{not} f, \text{not} a.$ (6) $f \leftarrow \text{not} e.$

Case 2.1: *e* ⊂ *X*

After reduction:

$$e \leftarrow \mathsf{not} f$$
. $f \leftarrow \mathsf{not} e$.

- (6) cannot be fired,
 - $\rightarrow f \not\subseteq X$;
- (5) becomes e,
 - \rightarrow $e \subseteq X$;
- X covers all atoms, there is no contradiction. Solution: $\{c,d,e\}$ is a stable model.

The Gelfond-Lifschitz reduct

> Language and notations

Formal proper answer sets

Computation

and-there

The Gelfond-

Logic of here-

SAT translations of ASP

Logic of here-and-there

Equivalence between logic programs

Are the two following logic programs

$$\Pi_1 = a \leftarrow \operatorname{not} b. \quad b \leftarrow \operatorname{not} a.$$
 and
$$\Pi_2 = a \leftarrow \operatorname{not} b. \quad b \leftarrow \operatorname{not} c, \operatorname{not} a.$$

equivalent?

They are weakly equivalent but not strongly equivalent.

The Gelfond-Lifschitz reduct

Logic of hereand-there

Equivalence between logic programs

HEEN THE

Are the two following logic programs

equivalent?

They are weakly equivalent but not strongly equivalent.

The Gelfond-Lifschitz reduct

Logic of hereand-there

 Π_1 and Π_2 are weakly equivalent if they have the same answer sets.

Definition (Strong equivalence)

 Π_1 and Π_2 are strongly equivalent if for any Π , $\Pi_1 \cup \Pi$ and $\Pi_2 \cup \Pi$ have the same answer sets.

Example

$$\Pi_1 = a \leftarrow \text{not}b.$$
 $b \leftarrow \text{not}a.$
 $\Pi_2 = a \leftarrow \text{not}b.$ $b \leftarrow \text{not}c, \text{not}a.$

- Do Π_1 and Π_2 have the same answer sets?
- Do $\Pi_1 \cup \{c.\}$ and $\Pi_2 \cup \{c.\}$ have the same answer sets?

The Gelfond-Lifschitz reduct

Logic of hereand-there

NE NE

Definition (Weak equivalence)

 Π_1 and Π_2 are weakly equivalent if they have the same answer sets.

Definition (Strong equivalence)

 Π_1 and Π_2 are strongly equivalent if for any Π , $\Pi_1 \cup \Pi$ and $\Pi_2 \cup \Pi$ have the same answer sets.

Example

$$\Pi_1 = a \leftarrow \text{not}b.$$
 $b \leftarrow \text{not}a.$
 $\Pi_2 = a \leftarrow \text{not}b.$ $b \leftarrow \text{not}c,\text{not}a.$

- Do Π_1 and Π_2 have the same answer sets?
- Do $\Pi_1 \cup \{c.\}$ and $\Pi_2 \cup \{c.\}$ have the same answer sets?

The Gelfond-Lifschitz reduct

Logic of hereand-there

Definition (Weak equivalence)

 Π_1 and Π_2 are weakly equivalent if they have the same answer sets.

Definition (Strong equivalence)

 Π_1 and Π_2 are strongly equivalent if for any Π , $\Pi_1 \cup \Pi$ and $\Pi_2 \cup \Pi$ have the same answer sets.

Example

- Do Π_1 and Π_2 have the same answer sets?
- Do $\Pi_1 \cup \{c.\}$ and $\Pi_2 \cup \{c.\}$ have the same answer sets?

The Gelfond-Lifschitz reduct

Logic of hereand-there

Logic of here-and-there

The Gelfond-Lifschitz

> Logic of hereand-there

> > SAT translations of ASP

One can also consider logic programs through the logic of here-and-there.

- A pair of sets of atoms (X, Y) such that $X \subseteq Y$ is called an SE-interpretation;
- A SE-interpretation (X, Y) is called an SE-model iff $Y \models \Pi$ and $X \models \Pi^Y$.

Example

$$a \leftarrow \text{not} b$$
. $b \leftarrow \text{not} a$. $c \leftarrow a$.

Y		П	Χ
{a,c	} a.	<i>c</i> ← <i>a</i> .	{ <i>a</i> , <i>c</i> }
{b}	b.	$c \leftarrow a$.	{b}
{b,c	} b.	$c \leftarrow a$.	$\{b\}, \{b,c\}$
{a,b,c	c} c	c ← a.	$\{\emptyset\}, \{b\}, \{a,c\}, \{a,b,c\}$

Proposition (Characterization of answer sets)

Y is an answer set of Π iff (Y,Y) is an SE-model of Π and there is no (X,Y) within the SE-models of Π such that $X \subseteq Y$.

Example

 $a \rightarrow \text{not} b$. $b \leftarrow \text{not} a$. $c \leftarrow a$.

Y	П	X
{ <i>a</i> , <i>c</i> }	$a. c \leftarrow a.$	{a,c}
{b}	b. $c \leftarrow a$.	{b}
{ <i>b</i> , <i>c</i> }	b. $c \leftarrow a$.	$\{b\},\{b,c\}$
{ <i>a</i> , <i>b</i> , <i>c</i> }	$c \leftarrow a$.	$ \{\emptyset\}, \{b\}, \{a,c\}, \{a,b,c\} $

Thus, there are two answer sets here : $\{b\}$ and $\{a,c\}$

The set of SE-models of Π is denoted by $SE(\Pi)$.

The Gelfond-Lifschitz

Logic of hereand-there

The logic programs Π_1 and Π_2 are strongly equivalent iff they have the same set of SE-models.

Lemma

- Programs with the same SE-models are weakly equivalent.
- 2 The SE-models of $\Pi_1 \cup \Pi_2$ are exactly the SE-models common to Π_1 and Π_2 .

Proof.

 $\begin{tabular}{l} \begin{tabular}{l} \begin{tabu$

The Gelfond-Lifschitz reduct

Logic of hereand-there

Proposition

The logic programs Π_1 and Π_2 are strongly equivalent iff they have the same set of SE-models.

Proof.

Assume $\exists (X,Y) \in SE(\Pi_1)$ and $(X,Y) \notin SE(\Pi_2)$. Two cases: **Case** $Y \not\models \Pi_2 \ Y \not\models \Pi_2 \cup Y$ which means Y is not an answer set of $\Pi_2 \cup Y$. On contrary, $Y \models \Pi_1$ thus $Y \models \Pi_1 \cup Y$. Follows, $Y \models (\Pi_1 \cup Y)^Y$. No subset of Y satisfies $(\Pi_1 \cup Y)^Y$ and thus Y is a model of $\Pi_1 \cup Y$.

Case $Y \models \Pi_2$ Take $\Pi = X \cup \{L \leftarrow L' : L, L' \in Y \setminus X\}$. $Y \models \Pi_2 \cup \Pi$, follows $Y \models (\Pi_2 \cup \Pi)^Y$. Let Z be a subset of Y s.t. $Z \models (\Pi_2 \cup \Pi)^Y$ (= $\Pi_2^Y \cup \Pi$). We know that $X \subseteq Z$ and by assumption $X \not\models \Pi_2^Y$ so $X \not= Z$. There is some $L \in Y \setminus X$ that belongs to Z. It follows that $Y \setminus X \subseteq Z$. Thus, Z = Y, and so Y is an answer set $\Pi_2 \cup \Pi$. On contrary, X is proper subset of Y and satisfies $\Pi_1^Y \cup \Pi = (\Pi_1 \cup \Pi)^Y$. Y is not an answer set of $\Pi_1 \cup \Pi$.

The Gelfond-Lifschitz reduct

Logic of hereand-there

The Gelfond-Lifschitz

reduct

Logic of here-

SAT translations of ASP

consistent logic programs

Clark's completion

Definition (Dependency graph)

The dependency graph of a program Π is the directed graph G such that the vertexes of G are the atoms in Π , and G has an edge from a_0 to $a_1,...,a_m$ for each rule of the form $a_0 \leftarrow a_1,...,a_m,$ not $a_{m+1},...,$ not a_n in Π with $a_0 \neq \bot$.

Example

$$\Pi = \left\{ \begin{array}{cccccc} a & \leftarrow & b. & b & \leftarrow & a. & a & \leftarrow & \mathsf{not} c. \\ c & \leftarrow & d. & d & \leftarrow & c. & c & \leftarrow & \mathsf{not} a. \end{array} \right\}$$

■ If $\leftarrow B$ is a constraint in Π , then $\neg B$ is in Comp(Π).

Example

$$\Pi = \left\{ \begin{array}{cccccc} a & \leftarrow & b. & b & \leftarrow & a. & a & \leftarrow & \mathsf{not} c. \\ c & \leftarrow & d. & d & \leftarrow & c. & c & \leftarrow & \mathsf{not} a. \end{array} \right\}$$

$$Comp(\Pi) = \left\{ \begin{array}{cccc} a & \equiv & \neg c \lor b & b & \equiv & a \\ c & \equiv & \neg a \lor d & d & \equiv & c \end{array} \right\}$$

Comp(Π) has 3 models: $\{a,b\}$, $\{c,d\}$ and $\{a,b,c,d\}$.

The Gelfond-Lifschitz reduct

Logic of hereand-there

SAT translations of ASP

Positive-order consistent logic

Clark's completion

November 28, 2012; December 5, 2012

Tight programs

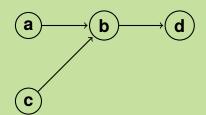
NE REL

Definition (Tight program)

A logic program Π is said to be tight (or positive-order consistent) if its dependency graph is cycle-free.

Example

$$\Pi = \left\{ \begin{array}{ccccc} d & \leftarrow & b. & b & \leftarrow & a. & a & \leftarrow & \text{not } c. \\ d & \leftarrow & b. & b & \leftarrow & c. & c & \leftarrow & \text{not } a. \end{array} \right\}$$



The Gelfond-Lifschitz reduct

Logic of hereand-there

SAT translations of ASP

Positive-order consistent log

Clark's completion

Proposition

If Π is a positive-order consistent logic program, then X is an answer set of Π if and only if X is a model of $Comp(\Pi)$.

Example

$$\Pi = \left\{ \begin{array}{cccccc} a & \leftarrow & b. & b & \leftarrow & a. & a & \leftarrow & \mathsf{not} c. \\ c & \leftarrow & d. & d & \leftarrow & c. & c & \leftarrow & \mathsf{not} a. \end{array} \right\}$$

$$Comp(\Pi) = \left\{ \begin{array}{cccc} a & \equiv & \neg c \lor b & b & \equiv & a \\ c & \equiv & \neg a \lor d & d & \equiv & c \end{array} \right\}$$

Comp(Π) has 3 models: $\{a,b\}$, $\{c,d\}$ and $\{a,b,c,d\}$.

The Gelfond-Lifschitz reduct

Logic of hereand-there

SAT translations of ASP

> Positive-order consistent logi programs

Clark's completion CLASP solver

E -

Definition (Well-supported model)

M is a well-supported model of Π if there exists a grounding sequence for M, i.e., there exists an order < between rules such that for every rule $r \in \Pi$ with a = head(r) and $M \models \text{body}(r)$, then $\forall b \in \text{body}^+(r), b < a$.

Theorem

If Π is a tight logic program then the model of $Comp(\Pi)$ are exactly the answer sets of Π .

The Gelfond-Lifschitz reduct

Logic of hereand-there

translations

Positive-order consistent logi

programs

Clark's completion

CLASD column

CLASP solver

Tightness and Clark's completion (proof)

REIBU

Proof.

 \Rightarrow If X is an answer set of Π , then it is a well-supported model of Π , then it is a minimal Herbrand model of Π , then it is a model of $Comp(\Pi)$.

The Gelfond-Lifschitz reduct

Logic of hereand-there

SAT translations of ASP

Positive-order consistent log

Clark's completion

CLASP solver

Loops

NE BE

Definition (Loop)

A loop of Π is a set L of atoms such that for each pair A,A' of atoms in L there is a path from A to A' in the dependency graph of Π whose intermediate nodes belong to L.

$$\begin{array}{lcl} R^+(L,\Pi) & = & \{p \leftarrow G \mid (p \leftarrow G) \in \Pi, p \in L, (\exists q) \ s.t. \ q \in G \land q \in L\} \\ R^-(L,\Pi) & = & \{p \leftarrow G \mid (p \leftarrow G) \in \Pi, p \in L, \neg(\exists q) \ s.t. \ q \in G \land q \in L\} \end{array}$$

Example

$$\Pi = \left\{ \begin{array}{cccccc} a & \leftarrow & b. & b & \leftarrow & a. & a & \leftarrow & \mathsf{not} c. \\ c & \leftarrow & d. & d & \leftarrow & c. & c & \leftarrow & \mathsf{not} a. \end{array} \right\}$$

$$R^+(L_1,\Pi) = \{a \leftarrow b. \ b \leftarrow a.\} \ R^-(L_1,\Pi) = \{a \leftarrow \text{not } c.\}$$

 $R^+(L_2,\Pi) = \{c \leftarrow d. \ d \leftarrow c.\} \ R^-(L_2,\Pi) = \{c \leftarrow \text{not } a.\}$

The Gelfond-Lifschitz reduct

Logic of hereand-there

SAT translations of ASP

> Positive-order consistent logi programs

Clark's completion CLASP solver

Loop formulas

Definition (Loop formulas)

Let $R^-(L,\Pi)$ be the following rules:

$$p_1 \leftarrow B_{11} \quad \cdots \quad p_1 \leftarrow B_{1k_1}$$

$$\vdots$$

$$p_n \leftarrow B_{n1} \quad \cdots \quad p_n \leftarrow B_{nk_n}$$

The loop formula associated with L is the following implication:

$$\neg [B_{11} \lor ... \lor B_{1k_1} \lor ... \lor B_{n1} \lor ... \lor B_{nk_n}] \rightarrow \bigwedge_{p \in L} \neg p$$

The Gelfond-Lifschitz reduct

Logic of hereand-there

SAT translations of ASP

of ASP
Positive-order

consistent log programs

Clark's completion

Example

$$\begin{array}{lll} R^+(L_1,\Pi) & = & \{a \leftarrow b. & b \leftarrow a.\} & R^-(L_1,\Pi) & = & \{a \leftarrow \mathsf{not} c.\} \\ R^+(L_2,\Pi) & = & \{c \leftarrow d. & d \leftarrow c.\} & R^-(L_2,\Pi) & = & \{c \leftarrow \mathsf{not} a.\} \\ LF(L_1) : c \rightarrow (\neg a \land \neg b) & LF(L_2) : a \rightarrow (\neg c \land \neg d) \end{array}$$

Theorem

Let Π be a logic program, then the models of $Comp(\Pi) \cup LF(\Pi)$ are exactly the answer sets of Π .

Example

$$\Pi = \left\{ \begin{array}{cccccc} a & \leftarrow & b. & b & \leftarrow & a. & a & \leftarrow & \mathsf{not} c. \\ c & \leftarrow & d. & d & \leftarrow & c. & c & \leftarrow & \mathsf{not} a. \end{array} \right\}$$

$$\mathsf{Comp}(\Pi) \cup \mathit{LF}(\Pi) = \left\{ \begin{array}{cccc} a & \equiv & \neg c \lor b & b & \equiv & a \\ c & \equiv & \neg a \lor d & d & \equiv & c \\ c & \rightarrow & (\neg a \land \neg b) & a & \rightarrow & (\neg c \land \neg d) \end{array} \right\}$$

Definition (Body clauses)

Let β be a body of a rule $\beta = \{p_1,...,p_m, \text{not}p_{m+1},..., \text{not}p_n\}$, then:

$$\delta(\beta) = \{\beta \vee \neg p_1 \vee ... \vee p_m \vee \neg p_{m+1} \vee ... \vee \neg p_n\}$$

$$\Delta(\beta) = \{ \{\neg \beta \lor p_1\}, ..., \{\neg \beta \lor p_m\}, \{\neg \beta \lor \neg p_{m+1}\}, ..., \{\neg \beta \lor \neg p_n\} \}$$

Example

$$\Pi = \left\{ \begin{array}{cccccc} a & \leftarrow & b. & b & \leftarrow & a. & a & \leftarrow & \mathsf{not} c. \\ c & \leftarrow & d. & d & \leftarrow & c. & c & \leftarrow & \mathsf{not} a. \end{array} \right\}$$

$$\Pi = \left\{ \begin{array}{cccc} \beta_1 \vee \neg b & \beta_2 \vee \neg a & \beta_3 \vee c & \beta_4 \vee \neg d & \beta_5 \vee \neg c & \beta_6 \vee a \\ \neg \beta_1 \vee b & \neg \beta_2 \vee a & \neg \beta_3 \vee \neg c & \neg \beta_4 \vee d & \neg \beta_5 \vee c & \neg \beta_6 \vee \neg a \end{array} \right\}$$

The Gelfond-Lifschitz reduct

Logic of hereand-there

translations of ASP

> consistent logic programs

Clark's completio

CLASP solver

reduct

Definition (Atoms clauses)

Let p be an atom appearing as head of rules whose body are $\{\beta_1,...,\beta_k\}$, then:

$$\delta(p) = \{ \neg p \lor \beta_1 \lor ... \lor \beta_k \}$$

Example

$$\Pi = \left\{ \begin{array}{cccccc} a & \leftarrow & b. & b & \leftarrow & a. & a & \leftarrow & \mathsf{not} c. \\ c & \leftarrow & d. & d & \leftarrow & c. & c & \leftarrow & \mathsf{not} a. \end{array} \right\}$$

$$\Pi = \left\{ \begin{array}{ccc} a \vee \neg \beta_1 & b \vee \neg \beta_2 & a \vee \neg \beta_3 & c \vee \neg \beta_4 \\ & d \vee \neg \beta_5 & c \vee \neg \beta_6 \\ \neg a \vee \beta_1 \vee \beta_3 & \neg b \vee \beta_2 & \neg c \vee \beta_4 \vee \beta_6 & \neg d \vee \beta_5 \end{array} \right\}$$

NE NE

Definition (External body)

For a program Π and some $U \subseteq \text{Atoms}(\Pi)$, we define the external bodies of U for Π , $EB_{\Pi}(U)$ as

$$\{\mathsf{body}(r) \mid r \in \Pi, \mathsf{head}(r) \in U, \mathsf{body}(r) \cap U = \emptyset\}$$

Definition (Loop clause)

For a set $U \subseteq Atoms(\Pi)$ and an atom $p \in U$:

$$\lambda(p,U) = \{\beta_1 \vee ... \vee \beta_k \vee \neg p\}$$

where
$$EB_{\Pi}(U) = \{\beta_1, ..., \beta_k\}.$$

We define
$$\Lambda_{\Pi} = \bigcup_{U \subseteq Atoms(\Pi), U \neq \emptyset} \{\lambda(p, U) \mid p \in U\}.$$

The Gelfond-Lifschitz reduct

Logic of hereand-there

SAT translation

translations of ASP

consistent logic programs

CLASP solver

CLASP translation IV

The Gelfond-

Proposition

X is an answer set of Π iff $X \cap Atoms(\Pi)$ is a model of the following CNF:

 $\Lambda_{\Pi} \cup \Delta(p) \cup \delta(p) \cup \delta(\beta) \cup \Delta(\beta)$

Lifschitz reduct

Logic of hereand-there

SAT translations

of ASP

programs

Cl ASP solver

Literature

Michael Gelfond and Vladimir Lifschitz.

The stable models semantics for logic programming.

ICLP/SLP, p.1070-1080, 1988.

Francois Fages.

Consistency of Clark's completion and existence of stable models. Meth. of Logic in CS, p51-60, 1994.

Meth. of Logic in C5, p51-60, 198

Hudson Turner.

Strong equivalence made easy: nested expressions and weight constraints.

TPLP, p609-622, 2003.

reduct

Logic of here-

and-there

SAT translations of ASP

Positive-order consistent logic

Clark's completio

CLASP solver

Literature

reduct
Logic of here-

SAT

translations of ASP

> consistent logic programs

Clark's completion

CLASP solver

FREIBL

Martin Gebser and Benjamin Kaufmann and André Neumann and Torsten Schaub.

Conflict-Driven Answer Set Solving.

Conflict-Driven Answer Set Solving

IJCAI, p.386-393, 2007.

Efficient Implementation of the Well-founded and Stable Model Semantics.

JICSLP, p.289-303, 1996.