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Nonmonotonic logic programs: background
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Answer set semantics: a formalization of negation-as-failure
in logic programming (Prolog)

Several formalizations: well-founded semantics,
perfect-model semantics, inflationary semantics, ...

Can be viewed as a simpler variant of default logic

A better alternative to propositional logic in some
applications
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Nonmonotonic logic programs I
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Let A be a set of propositional atoms.

Rules:

c < by,...,by,notdy,...,notdx

where {c,b1,...,bm,d1,...,dk} CA

Meaning similar to default logic:
If

we have derived b1, ...,b, and
cannot derive any of d1, ..., dx,

then derive c.
Rules without right-hand side (facts): c < T
Rules without left-hand side (constraints):

1 < by,...,bp,notdy,. .., notdx
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Nonmonotonic logic programs I1
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Let A be a set of propositions.

Rules:

Cc < by,...,bpm,notdy,...,notdx

where {c,b1,...,bpm,d1,...,dc} CA

c is called the head of the rule (denoted by head(r));
b1,...,bny is called the positive body of the rule (denoted by
body ™ (r));

notd,...,notdx is called the negative body of the rule
(denoted by body ™~ (r));

The body of the rule consists in its positive and negative
part ( body(r) = body™ (r) Ubody ™ (r) ).
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Nonmonotonic logic programs: examples
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Example

fly < bird,notabnormal.
abnormal < penguin.
bird < penguin.

November 28, 2012; December 5, 2012 Nebel, Wolfl, Hué — KRR 5/47



Example

fly < bird,notabnormal.
abnormal < penguin.
bird <+ penguin.

Example

1{sol(X,Y,A) : num(A)}1.
+sol(X,Y,Z),sol(X,Y1,2),Y # Y1.
+sol(X,Y,Z),so0l(X1,Y,Z),X # X1.
+ sol(W 3+ W2,W1x3+W3,2),

sol(W +3+ W4, W1«3+ W5,2), W3 # W5.
+ sol(W %3+ W2, W13+ W3,2),

sol(W %3+ W4, W1 x3+W5,Z), W2 + W4,
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not-free logic programs

Definition (Deductive closure)

Let I be a logic program without not, X C Atoms(1).

The closure dcl(IM) € Atoms(IM) of M is defined by iterative
application of the rules in the obvious way. X is an answer set of
I if X = dcl(I) and there is no constraint in I1 violated by X.
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not-free logic programs

Definition (Deductive closure)

Let I be a logic program without not, X C Atoms(1).

The closure dcl(IM) € Atoms(IM) of M is defined by iterative
application of the rules in the obvious way. X is an answer set of
I if X = dcl(I) and there is no constraint in I1 violated by X.

Example
n=Ja < b. d < f. b.
" ld « b ¢ < bd e <+ f
o =T(0) = {b}

My =r(lo)={b.d.a}
F2 S F(F1) = {b,d,a,c}
r3 = r(r2) = {bvdvavc} = r2
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The Gelfond-
Lifschitz
reduct

The Gelfond-Lifschitz reduct

November 28, 2012; December 5, 2012 Nebel, Wolfl, Hué — KRR 7147



Definition 1: Gelfond-Lifschitz reduct

The Gelfond-
Lifschitz
reduct
Language

Definition (Reduct)

The reduct of a program [1 with respect to a set of atoms Fomapats
X C Atoms() is defined as: Campatn

NX:={c«by,....bm |
(C<—b1,...,bm,notd1,...,notdk)eI'I,{d1,...,dk}ﬂX:(D}
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Definition 1: Gelfond-Lifschitz reduct

The Gelfond-
Lifschitz
reduct

Definition (Reduct) —

The reduct of a program I1 with respect to a set of atoms
X C Atoms() is defined as: -

NX:={c«by,....bm |
(c < by,...,bm,notdy,...,notdy) € M, {d1,...,dc }NX =0}

Definition (Answer set)

X C Atoms() is an answer set of [1if X is an answer set of 1%.
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[lustration of Gelfond-Lifschitz reduct
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Example
The Gelfond-

Lifschitz
notb. b <+ nota. reduct

(_
— a. d. <« b. -
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[lustration of Gelfond-Lifschitz reduct
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Example
The Gelfond-

Lifschitz
< notb. b <+ nota. reduct
<_

a d. <+ b. Language and

Example
a < b. b <+ a
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[lustration of Gelfond-Lifschitz reduct
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Example
The Gelfond-

Lifschitz
< notb. b <+ nota. reduct
<_

a d. <+ b. Lange

Example

©
T
S
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Example
woman <— notn_woman. n_woman <— notwoman.
< woman,n_woman. father < parent,n_woman.
mother < parent,woman. parent.
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[lustration of Gelfond-Lifschitz reduct
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Example
The Gelfond-
Lifschitz
reduct

< notb. b <+ nota.
— a d. <+ b.

Example

©
T
S
S
/[\
©

Example
woman <— notn_woman. n_woman <— notwoman.
< woman,n_woman. father < parent,n_woman.
mother < parent,woman. parent.

We say that X satisfies a rule r iff X = head(r) V —body(r).
= X can satisfy all rules and not be an answer set.
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Lparse and smodels
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Based on the Gelfond-Lifschitz reduction, Syrjanen created
the ASP solver Smodels.

Language and
notati

preprocessing Famatpcperes
Lparse Smodels .

Allow for using variables and cardinality statements.

b :- not a. a :- not b.
d :- a. d :- b.
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The Iparse format I
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propositions are any combination of lowercase letters; oo

Formal properties o

variables are any combination of letters starting with an
uppercase letter;

integers can be used and so can arithmetic operations
(+, =%, /,%).

negation as failure is denoted by not.

implication is denoted by ":-".
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The Iparse format I1
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Language and

The literal rtadons

Formal properties o

1{b1,...,bm}u
is true iff at least / and at most u atoms are true within the

set {b1,...,bm};

#domain encodes the possible values in a given domain:

#domain a(X). a(1..10).

will replace occurences of X by integers from 1 to 10.
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The lparse format III
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Domains can also be set within a cardinality rule:
{clique(X) : num(X)}. num(1..3).

will be understood as B
{clique(1), clique(2), clique(3)}. i

Domains can be restricted thanks to relations. The rule —
:— size(X,Y), X<Y.

will be instantiated only for value of X and Y s.t. X<Y.

A subset of answer sets can be selected according to some
optimization criteria.

#minimize{a,b,c,d}.

will choose the answer sets with the less number of atoms

from {a,b,c,d}. Attention: Does not change the

SAT/UNSAT question. You can only optimize one criterion

at a time.

November 28, 2012; December 5, 2012 Nebel, Wolfl, Hué — KRR 14 /47



The Iparse format IV

Example

#domain a(X). a(1..2).
c(X) :- not d(X). d(X) :- not c(X).

Language and
notations

a(1). a(2).
c :- not d(1). c :- not d(2).
d :- not c(1). d :- not c(2).

~N oo ws N
O O r KB K, B
O O K = =

SN oW

d(1) 3 c(1) 4 d(2)
c(2) 6 a(l) 7 a(2)

O NO R LB REB R, B -
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Guess - check - optimize
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How to represent a problem in ASP?
Firstly, define what is a "solution candidate";
Secondly, verify it fits the constraints
Finally, keep only the best answer sets oo

Form
nswer sets

November 28, 2012; December 5, 2012 Nebel, Wolfl, Hué — KRR 16 /47



Guess - check - optimize
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How to represent a problem in ASP?
Firstly, define what is a "solution candidate";
Secondly, verify it fits the constraints
Finally, keep only the best answer sets oo

For

Example

#domain node(X). #domain node(Y).
node(1..5). edge(1,2). edge(3,4).
edge(4,5). edge(4,2). edge(1,4).

uedge(X,Y) :- edge(X,Y), X < Y.
uedge(Y,X) :- edge(X,Y), Y < X.

{ clique(X) : node(X) .
:= clique(X), clique(Y), not uedge(X,Y), X < Y.

#maximize { clique(X) : node(X) }.

November 28, 2012; December 5, 2012 Nebel, Wolfl, Hué — KRR 16 /47



Complexity: existence of answer sets is

NP-complete
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Membership in NP: Guess X C Atoms([1) (nondet.
polytime), compute X, compute its closure, compare to X
(everything det. polytime).

Formal properties of
answer sets

November 28, 2012; December 5, 2012 Nebel, Wolfl, Hué — KRR 17147



Complexity: existence of answer sets is

NP-complete
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Membership in NP: Guess X C Atoms([1) (nondet.
polytime), compute X, compute its closure, compare to X
(everything det. polytime).

NP-hardness: Reduction from 3SAT: an answer set exists iff iotions
clauses are satisfiable: e
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Complexity: existence of answer sets is

NP-complete
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Membership in NP: Guess X C Atoms([1) (nondet.
polytime), compute X, compute its closure, compare to X
(everything det. polytime).

NP-hardness: Reduction from 3SAT: an answer set exists iff arer o
clauses are satisfiable: e

p < notp. p < notp.

for every proposition p occurring in the clauses
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Complexity: existence of answer sets is

NP-complete
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Membership in NP: Guess X C Atoms([1) (nondet.
polytime), compute X, compute its closure, compare to X
(everything det. polytime).

Formal properties of

NP-hardness: Reduction from 3SAT: an answer set exists iff arer o
clauses are satisfiable: e

p < notp. p < notp.
for every proposition p occurring in the clauses, and
< not/j,not/y, not/}

for every clause /1 VI VI3, where Il = pif [ = p and I/ = p if
/,' = —p.
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Some properties I

Proposition

If an atom A belongs to an answer set of a logic program I1 then
A is the head of one of the rules of IN.

Proposition

Let F and G be sets of rules and let X be a set of atoms. Then
the following holds:

FXUGX, ifXEFUG
X _ )
Fue)r = { 1, otherwise

November 28, 2012; December 5, 2012 Nebel, Wolfl, Hué — KRR 18 /47




Some properties II
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UNI

Proposition
Let F be a set of (non-constraint) rules and G be a set of o
constraints. A set of atoms X is an answer set of F UG iff it is an ot roprtesof

answer sets

answer set of F which satisfies G. Compaton
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Proposition

Let F be a set of (non-constraint) rules and G be a set of
constraints. A set of atoms X is an answer set of F UG iff it is an
answer set of F which satisfies G.

Formal properties of
answer sets

Proof.

X satisfies FUG. Then X satisfies the constraints in G and
(FUG)X is FX U—_1 which is equivalent to FX. Consequently X is
minimal among the sets satisfying FX iff it is minimal among the sets
satisfying (F U G)X.

November 28, 2012; December 5, 2012 Nebel, Wolfl, Hué — KRR 19/47



Some properties II
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Proposition

Let F be a set of (non-constraint) rules and G be a set of
constraints. A set of atoms X is an answer set of F UG iff it is an
answer set of F which satisfies G.

Formal properties of
answer sets

Proof.

X satisfies FUG. Then X satisfies the constraints in G and
(FUG)X is FX U—_1 which is equivalent to FX. Consequently X is
minimal among the sets satisfying FX iff it is minimal among the sets
satisfying (F U G)X.

X does not satisfy F UG. Then there exists a rule in F or a rule in
G which is not satisfied, then X cannot be a model of F that satisfies
G. O
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Smodels: principles
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Smodels is:
a Branch and Bound algorithm;
based on the Gelfond-Lifschitz reduct;
using reduct as a Forward-Checking procedure.

Formal prope
nswer sets

Computation

Example

N

not a
/N /N
: : EZE :- t|) no|tb /b\ no|tb
c :- not c, a. % X 6 e %
|
S

November 28, 2012; December 5, 2012 Nebel, Wolfl, Hué — KRR 20 /47



Smodels |

Algorithm 1 Smodels algorithm
1: A= expand(P,A)
2: A := lookahead(P,A)
3: if conflict(P,A) then

4 return false Fomaprenes
5. else if A covers Atoms(P) then Compiter
6: return stable(P,A)
7: else
8: X := heuristic(P,A)
9: if smodels(P,AU{X} then
10: return true
11:  else
12: return smodels(P,AU{notX}
13:  end if
14: end if

November 28, 2012; December 5, 2012 Nebel, Wolfl, Hué — KRR 21/47



Smodels example (I)
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Example

(1) a <« notb,notd. (2) d <+ nota.
(3) b <« notc. (4) ¢ <+ nota.
(5) e <« notf,nota. (6) f <+ note.

Computation

November 28, 2012; December 5, 2012 Nebel, Wolfl, Hué — KRR 22 /47



Smodels example (I)

Example

(1) a <« notb,notd. (2) d <+ nota.
(3) b <« notc. (4) ¢ <+ nota.
(5) e <« notf,nota. (6) f <+ note.

Case1:aCX

(4) cannot be fired,
—cZX;

(8) becomes c,
—bCX;

(1) cannot be fired,
—aZX;

agZ XandaCX,
— contradiction.

November 28, 2012; December 5, 2012 Nebel, Wolfl, Hué — KRR 22 /47



Smodels example (I)

(1) a <« notb,notd. (2) d <+ nota.
(38) b <« notc. (4) ¢ < nota.
(5) e <« notf,nota. (6) f <+ note. e
Case1:aC X Case2:a¢Z X
(4) cannot be fired, (2) becomes d,
—cZX; —dCX;
(3) becomes c, (4) becomes c,
—bCX; —cCX;
(1) cannot be fired, (8) cannot be fired,
—adZX; —bZX;
aZXandacCX, (1) cannot be fired,
— contradiction. —adZX;

Nothing new to be expanded.

November 28, 2012; December 5, 2012 Nebel, Wolfl, Hué — KRR 22 /47



Smodels example (II)

a <« notb,notd. (2) d + nota.
(3) b <« notc. (4) ¢ < nota.
e <« notf,nota. (6) f <+ note.

Computation

Case2.1:eCX

After reduction:
e < notf. f < note.

(6) cannot be fired,
—fZX;

(5) becomes e,
—eCX;

X covers all atoms, there is no contradiction.
Solution: {c,d, e} is a stable model.
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Logic of here-
and-there

Logic of here-and-there
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Equivalence between logic programs
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Are the two following logic programs

Logic of here-
and-there
My = a < notb. b <« nota.
and
M, = a < noth. b < notc,nota.
equivalent?
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Equivalence between logic programs
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Are the two following logic programs

Logic of here-
and-there
My = a < notb. b <+ nota.
and
M, = a < noth. b < notc,nota.
equivalent?

They are weakly equivalent but not strongly equivalent.

November 28, 2012; December 5, 2012 Nebel, Wolfl, Hué — KRR 26 /47



Weak equivalence/strong equivalence
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Definition (Weak equivalence)

1y and Iy are weakly equivalent if they have the same answer
sets.

Logic of here-
and-there

November 28, 2012; December 5, 2012 Nebel, Wolfl, Hué — KRR 27147



Weak equivalence/strong equivalence
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Definition (Weak equivalence)

1y and Iy are weakly equivalent if they have the same answer
sets.

Logic of here-
and-there

Definition (Strong equivalence)

1y and Iy are strongly equivalent if for any I1, Iy UT1 and
1> UT1 have the same answer sets.

November 28, 2012; December 5, 2012 Nebel, Wolfl, Hué — KRR 27147



Weak equivalence/strong equivalence

Definition (Weak equivalence)

1y and Iy are weakly equivalent if they have the same answer
sets.

Logic of here-
and-there

Definition (Strong equivalence)

1y and Iy are strongly equivalent if for any I1, Iy UT1 and
1> UT1 have the same answer sets.

Example
M= a <« notb. b <+ nota.
M= a <+ notb. b <+ notc,nota.

Do Iy and I, have the same answer sets?

Do Ny U{c.} and My U{c.} have the same answer sets?

November 28, 2012; December 5, 2012 Nebel, Wolfl, Hué — KRR 27147



Logic of here-and-there

One can also consider logic programs through the logic of
here-and-there.

A pair of sets of atoms (X, Y) such that X C Y is called an
SE-interpretation; Logic of here-

and-there
A SE-interpretation (X, Y) is called an SE-model iff Y =11
and X =Y.

Example

a<+notb. b<nota. c<+ a.

Y n” X
{a,c} |a c+«a. {a,c}
{b} b. ¢+ a. {b}
{b,c} |b. c+a. {b},{b,c}
{a,b,c} c<a. {0},{b},{a,c},{a,b,c}

November 28, 2012; December 5, 2012 Nebel, Wolfl, Hué — KRR 28 /47



Answer set definition II

Proposition (Characterization of answer sets)

Y is an answer set of 1 iff (Y,Y) is an SE-model of I and there
is no (X,Y) within the SE-models of I such that X C Y.

Logic of here-
and-there

Example

a—notb. b< nota. c<« a.

Y n” X
{a,c} |a c+a {a,c}
{b} b. c+a. {b}
{b,c} |b. c+a. {b},{b,c}
{a,b,c} c<a. {0},{b},{a,c},{a,b,c}

Thus, there are two answer sets here : {b} and {a,c}

The set of SE-models of I is denoted by SE(IM).

November 28, 2012; December 5, 2012 Nebel, Wolfl, Hué — KRR
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Strong equivalence: properties
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UNI

Proposition

The logic programs 11 and Iy are strongly equivalent iff they
have the same set of SE-models.

Lemma

Programs with the same SE-models are weakly equivalent.

The SE-models of 11 UTl, are exactly the SE-models
common to Iy and .

Logic of here-
and-there

Proof.

14 and Iy have the same SE-models. Consider 1. By lemma 2: 4 UT1
and [, UT1 have the same SE-models. By lemma 1: [y U1 and N> UT1 are
weakly equivalent. O
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Strong equivalence: properties

Proposition

The logic programs Iy and I, are strongly equivalent iff they
have the same set of SE-models.

Logic of here-
and-there

Proof.

Assume 3(X,Y) € SE(M¢) and (X, Y) & SE(IM,). Two cases:

Case Y [~ I, Y [= M, U Y which means Y is not an answer set of [, U Y. On
contrary, Y |= Ty thus Y |= M UY. Follows, Y |= (M; U Y)Y. No subset of Y
satisfies (My UY)Y and thus Y is a model of M; U Y.

Case Y =M Take M=XU{L<«+L" : L,l' € Y\X}. Y =T, U, follows

Y = (MaUM)Y. Let Z be asubset of Y s.t. Z = (Mp UMY (= NY UM). We
know that X C Z and by assumption X - I'I;' so X # Z. There is some

L € Y\X that belongs to Z. It follows that Y\X C Z. Thus, Z=Y, and so Y is
an answer set 1, UTI. On contrary, X is proper subset of Y and satisfies
nYun=(MNyUM)". Y is not an answer set of My UT. O
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SAT

SAT translations of ASP

tive-order
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Dependency graph
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Definition (Dependency graph)

The dependency graph of a program [1 is the directed graph G
such that the vertexes of G are the atoms in I'1, and G has an
edge from aq to a4, ...,an, for each rule of the form

ap < ai,...,am,notam+1,...,nota, in Mwith ag £ L.

Positive-order
consistent logic
programs

Example

n_a<—b.b<—a.a<—notc.
N e d. d « c

s complet
SLASP solver

c <+ nota.

OEBOENOEO

November 28, 2012; December 5, 2012 Nebel, Wolfl, Hué — KRR 33/47



Clark’s completion

UNI

FREIBURG

For each p € Atoms(I), let p < By, ...,p < By, be all the
rules about p € N, then p = By V... V By is in Comp([). In
particular, if n = 0 then the equivalence is p = L, which is
equivalent to —p.

If < B is a constraint in [1, then =B is in Comp(I1).

Example

a < b. b < a a <+ notc
rl:
c < d. d < ¢ c < nota
Comp( = -¢Vb b = a
p(M = -avd d = ¢

Comp(M) has 3 models: {a,b}, {c,d} and {a,b,c,d}.
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Tight programs
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Definition (Tight program)
A logic program [1 is said to be tight (or positive-order
consistent) if its dependency graph is cycle-free.

Example

Clark's completion

LASP
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Tightness and Clark’s completion
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Proposition

If I is a positive-order consistent logic program, then X is an
answer set of I if and only if X is a model of Comp(I).

Example -

a < b. b +« a a <+ notc
n=
< d. d < c¢. c <+ nota
a = —-¢cVb b = a
Comp( )—{ c = -avd d = c¢ }

Comp(I) has 3 models: {a,b}, {c,d} and {a,b,c,d}.
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Tightness and Clark’s completion (proof)

Definition (Well-supported model)

M is a well-supported model of I1 if there exists a grounding
sequence for M, i.e., there exists an order < between rules such
that for every rule r € I with a = head(r) and M = body(r), then
Vb € body™ (r),b < a.

Theorem

If N is a tight logic program then the model of Comp(N) are
exactly the answer sets of I1.
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Tightness and Clark’s completion (proof)
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Q
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UNI

Proof.

If X is an answer set of I1, then it is a well-supported model of 1,

then it is a minimal Herbrand model of [1, then it is a model of

Comp(IM).

Assume that M is model of Comp(I1) but not a well-supported

model of I1. 3x € M that cannot be finitely justified. M being a

supported model of (IT), then 3r € N with x = head(r) and Satéocompeton
M = body(r). Thus, there exists y € M which is upper in the

dependency graph that cannot be justified and thus, there exists a

zZ € M such that, etc... There is an infinite chain in the dependency

graph which is contradictory with the tightness hypothesis. O
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Loops

UNI

FREIBURG

Definition (Loop)

A loop of M is a set L of atoms such that for each pair A, A’ of
atoms in L there is a path from A to A’ in the dependency graph
of I whose intermediate nodes belong to L.

RT(L,)
R~(L,M)

{p+<G|(p+<G)eNpel,(3q)st.qe GAgeL} Posiive orcer
{p+G|(p+G)eNpel,~(3g9)st.qe GAge L}

Example
a <« b. b + a a <+ notc
I_I:
c < d. d < ¢ c¢ <+ nota.

R*(Ly,M)
R+(L27 rl)

{a<-b. b+a} R (Li,N)
{c+d. d+c} R (Lp,N)

{a + notc.}
{c < nota.}
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Loop formulas

Definition (Loop formulas)

Let R~ (L, ) be the following rules:
P1< By o p1 4 Big

Pn<Bpt - pn < Bpg,

The loop formula associated with L is the following implication:
—|[B11 V... \/B1k1 V..VBp V... \/Bnk,,] — /\ —p

Clark's completion

peL AP ol
Example
RY(Ly,M) = {a+b. b+a} R (L;,M) = {a<+ notc.}
Rt (La,M) = {c+d. d<c} R (L, = {c+nota}

LF(L1):c— (man—b) LF(Lp):a— (-cA—d)
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Clark + loop formulae

UNI
FREIBURG

Theorem
Let I be a logic program, then the models of Comp(IM) ULF ()
are exactly the answer sets of I'l.

Example

< a a < notc.
< €. C < nota.

o |
Il
—
(PR}
T
QT
Qo

a = -—cVb b = a
Comp(MULF(M)=<{ ¢ = -aVd d = ¢
¢c — (maAn-b) a — (-cA—d)
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CLASP translation |
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Definition (Body clauses)

Let B be a body of a rule B = {p1,...,Pm,NOtPm+1,...,N0tP, },
then:

8(B)={BV—p1V...VPmV—pmi1V...V-pn}
AB)={{=BVpi}t: s {=BVPm}:{=BY =Pmi1}s-s{"BV-pn}}

Positive-order
consistent lo;

Example CL‘AS"P . I

a < b. b +« a a <+ notc
I_I =
c < d. d < ¢ c < nota

nol Biv-b pov-a  Pgve puv-d Psv-c  Psva
=Bi1Vb —BoVa —fzV-c —fsVvVd —BsVc —fsV-a
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CLASP translation I
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Definition (Atoms clauses)
Let p be an atom appearing as head of rules whose body are

{Bi,-..-, Bk} then:
A(p) ={{pV-Bi},...{pV ~Bi}}
8(p) = {-PVB1 V...V B}

Positive-order
consistent lo;

Example
a < b. b < a a <+ notc
rl:
c < d. d < ¢ ¢ < nota.

{ aVv B4 bV —f aVv—fs cV P4 }

CLASP solver

M= dV“ﬁ5 CV“ﬁs

—aVBiVBs bV —cVBiVBs —dVpBs
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CLASP translation III
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Definition (External body)

For a program I and some U C Atoms([1), we define the
external bodies of U for I, EBr(U) as

{body(r) | r € M, head(r) € U,body(r) NU = 0}

Definition (Loop clause) i

For a set U C Atoms(I1) and an atom p € U: s st
Alp,U) ={B1 V...V BV —p}

where EBn(U) = {B1,..., Bk }-

We define An = UUgAtoms(I‘I),U;«éO{l(p7 U)|peU}.
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CLASTP translation IV

X is an answer set of I iff X N Atoms(I1) is a model of the
following CNF:

AnUA(p)US(p)US(B)UA(B)
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