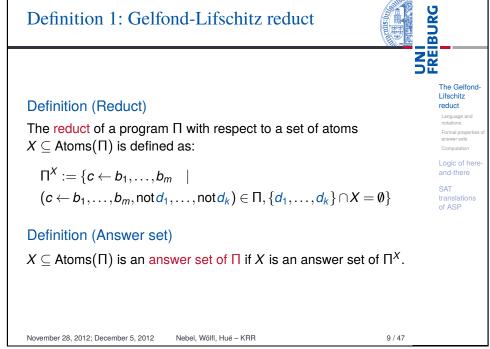
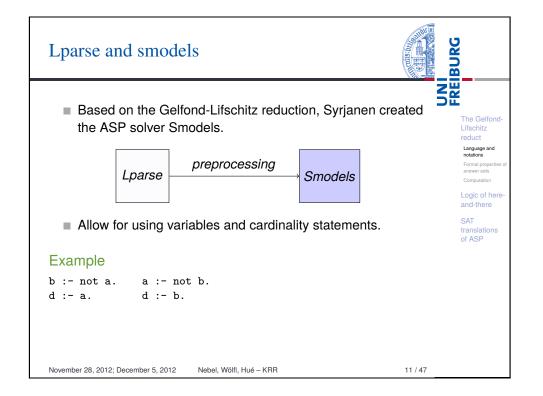
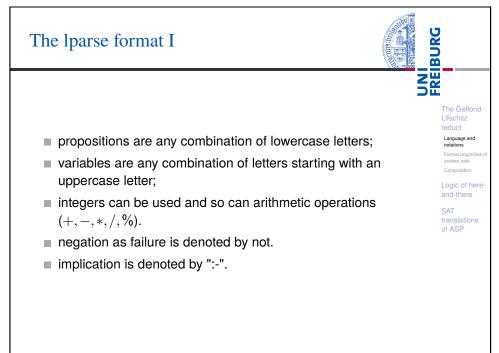


Definition 1: Gelfond-Lifschitz reduct



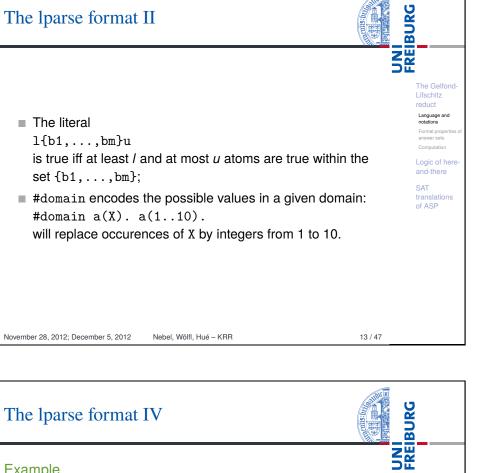


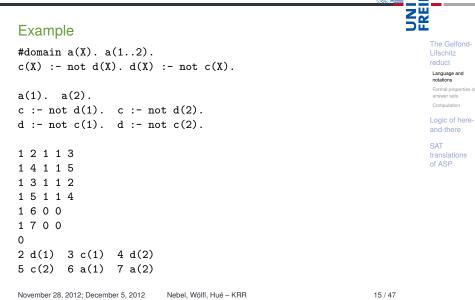
UNI FREIBURG Illustration of Gelfond-Lifschitz reduct Example The Gelfond-Lifschitz $a \leftarrow \text{not} b. b$ \leftarrow not a. reduct d а. \leftarrow d. b. Language and answer sets Example Computation Logic of here and-there $a \leftarrow b. b \leftarrow a.$ SAT translations of ASP Example woman \leftarrow not *n* woman. *n* woman \leftarrow not woman. \leftarrow woman, n woman. father \leftarrow parent, n woman. *mother* \leftarrow *parent*, *woman*. parent. We say that X satisfies a rule r iff $X \models head(r) \lor \neg body(r)$. \Rightarrow X can satisfy all rules and not be an answer set. November 28, 2012; December 5, 2012 Nebel, Wölfl, Hué - KRR 10/47



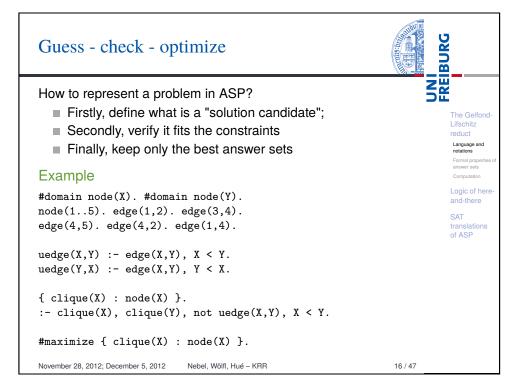
Nebel, Wölfl, Hué - KRR

November 28, 2012; December 5, 2012





The lparse format III	BURG
 Domains can also be set within a cardinality rule: {clique(X) : num(X)}. num(13). will be understood as {clique(1), clique(2), clique(3)}. Domains can be restricted thanks to relations. The rule :- size(X,Y), X<y. will be instantiated only for value of X and Y s.t. X<y.< li=""> A subset of answer sets can be selected according to some optimization criteria. #minimize{a,b,c,d}. will choose the answer sets with the less number of atoms from {a,b,c,d}. Attention: Does not change the SAT/UNSAT question. You can only optimize one criterion at a time. </y.<></y. 	Computation Compu
November 28, 2012; December 5, 2012 Nebel, Wölfl, Hué – KRR 14 / 47	



Complexity: existence of answer sets is NP-complete

e to X	The G Lifsch reduct
ists iff	Langua notation Formal answer

- Membership in NP: Guess X ⊆ Atoms(Π) (nondet. polytime), compute Π^X, compute its closure, compare to X (everything det. polytime).
- NP-hardness: Reduction from 3SAT: an answer set exists iff clauses are satisfiable:

$$p \leftarrow \operatorname{not} \hat{p}$$
. $\hat{p} \leftarrow \operatorname{not} p$.

SAT

of ASP

for every proposition *p* occurring in the clauses, and

 $\leftarrow \mathsf{not}\mathit{l}_1',\mathsf{not}\mathit{l}_2',\mathsf{not}\mathit{l}_3'$

for every clause $I_1 \vee I_2 \vee I_3$, where $I'_i = p$ if $I_i = p$ and $I'_i = \hat{p}$ if $I_i = \neg p$.

November 28, 2012; December 5, 2012 Nebel, Wölfl, Hué – KRR

17/47

BURG

The Gelfond

Language and

answer sets

Logic of here

translations

and-there

SAT

of ASP

Formal properties

reduct

Some properties II

Proposition

Let F be a set of (non-constraint) rules and G be a set of constraints. A set of atoms X is an answer set of $F \cup G$ iff it is an answer set of F which satisfies G.

Proof.

⇒ X satisfies $F \cup G$. Then X satisfies the constraints in G and $(F \cup G)^X$ is $F^X \cup \neg \bot$ which is equivalent to F^X . Consequently X is minimal among the sets satisfying F^X iff it is minimal among the sets satisfying $(F \cup G)^X$.

 \Leftarrow X does not satisfy $F \cup G$. Then there exists a rule in F or a rule in G which is not satisfied, then X cannot be a model of F that satisfies G.

Proposition

If an atom A belongs to an answer set of a logic program Π then A is the head of one of the rules of Π .

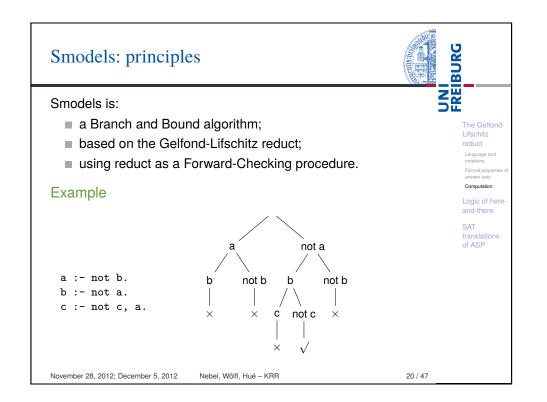
Proposition

Let F and G be sets of rules and let X be a set of atoms. Then the following holds:

$$(F \cup G)^{X} = \begin{cases} F^{X} \cup G^{X}, & \text{if } X \models F \cup G \\ \bot, & \text{otherwise} \end{cases}$$

November 28, 2012; December 5, 2012 Nebel, Wölfl, Hué – KRR

18 / 47



19/47

The Gelfond-Litschitz reduct Language and netations Formal properties arswer sels Computation

Logic of here

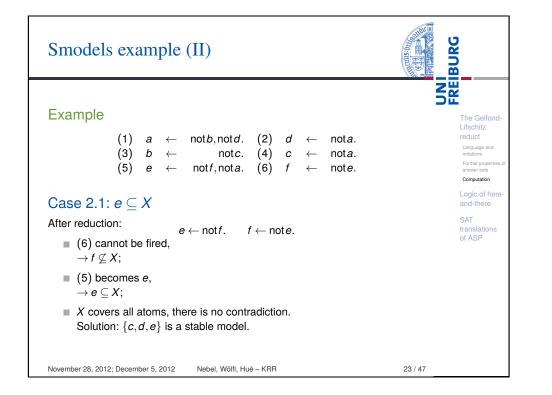
and-there

translations of ASP

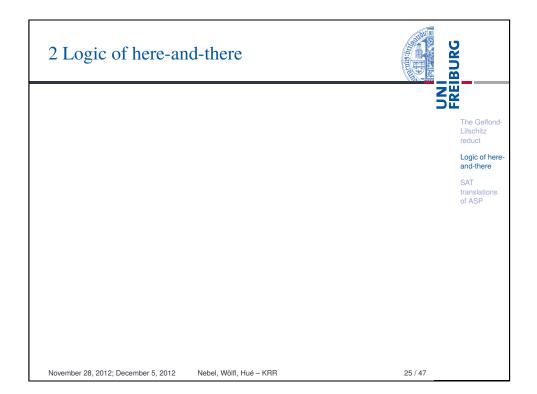
SAT

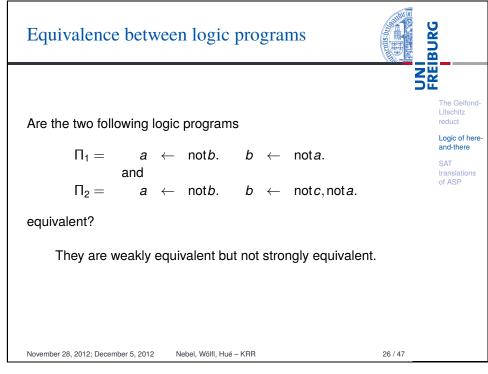
BURG

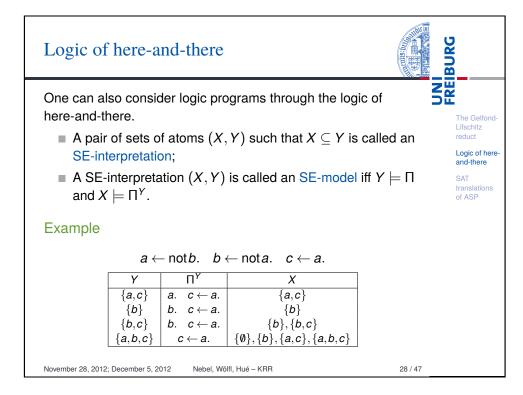
Smodels I	BURG
Algorithm 1 Smodels algorithm	
1: $A := expand(P,A)$ 2: $A := lookahead(P,A)$	The Gelfond-Lifschitz
3: if $conflict(P,A)$ then	reduct Language and notations
 4: return false 5: else if A covers Atoms(P) then 	Formal properties of answer sets Computation
6: return stable(P,A)	Logic of here- and-there
7: else	SAT
8: x := heuristic(P,A)	of ASP
9: if smodels $(P, A \cup \{X\}$ then	
10: return true	
11: else	
12: return <i>smodels</i> ($P, A \cup \{ not X \}$	
13: end if	
14: end if	
November 28, 2012; December 5, 2012 Nebel, Wölfl, Hué – KRR	21 / 47



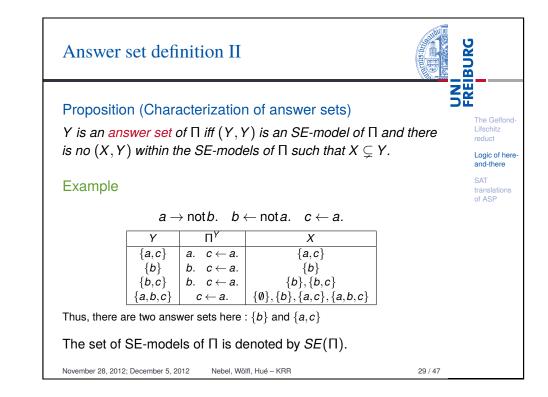
Example (1) $a \leftarrow notb, notd.(2) d \leftarrow nota.(3) b \leftarrow notc.(4) c \leftarrow nota.(5) e \leftarrow notf, nota.(6) f \leftarrow note.Case 1: a \subseteq X(4) cannot be fired,\rightarrow c \subseteq X;(2) becomes d,\rightarrow d \subseteq X;(3) becomes c,\rightarrow b \subseteq X;(4) becomes c,\rightarrow c \subseteq X;SATtranslationsc ASP(1) cannot be fired,\rightarrow a \subseteq X;(3) cannot be fired,\rightarrow b \subseteq X;SATtranslationsc ASP(1) cannot be fired,\rightarrow c ontradiction.(1) cannot be fired,\rightarrow a \subseteq X;(1) cannot be fired,\rightarrow a \subseteq X;(1) channot be fired,\rightarrow c \subseteq X;(1) cannot be fired,\rightarrow a \subseteq X;(1) cannot be fired,\rightarrow a \subseteq X;$	Smodels example	(I)	BURG
Case 1: $a \subseteq X$ Case 2: $a \not\subseteq X$ Logic of hereadd-here• (4) cannot be fired, $\rightarrow c \not\subseteq X;$ • (2) becomes $d,$ $\rightarrow d \subseteq X;$ SAT translations of ASP• (3) becomes $c,$ $\rightarrow b \subseteq X;$ • (4) becomes $c,$ $\rightarrow c \subseteq X;$ • (3) cannot be fired, $\rightarrow b \not\subseteq X;$ SAT translations of ASP• (1) cannot be fired, $\rightarrow a \not\subseteq X;$ • (3) cannot be fired, $\rightarrow b \not\subseteq X;$ • (1) cannot be fired, $\rightarrow a \not\subseteq X;$ • (1) cannot be fired, $\rightarrow a \not\subseteq X;$	$egin{array}{cccc} (1) & a & \leftarrow \ (3) & b & \leftarrow \end{array}$	not c. (4) $c \leftarrow$ not a.	Lifschitz reduct Language and notations Formal properties of
November 28, 2012; December 5, 2012 Nebel, Wölfl, Hué – KRR 22 / 47	■ (4) cannot be fired, → $c \not\subseteq X$; ■ (3) becomes c , → $b \subseteq X$; ■ (1) cannot be fired, → $a \not\subseteq X$; ■ $a \not\subseteq X$ and $a \subseteq X$, → contradiction.	 (2) becomes d, $\rightarrow d \subseteq X;$ (4) becomes c, $\rightarrow c \subseteq X;$ (3) cannot be fired $\rightarrow b \not\subseteq X;$ (1) cannot be fired $\rightarrow a \not\subseteq X;$ Nothing new to be 	Logic of here- and-there SAT translations of ASP d, d, expanded.







UNI FREIBURG Weak equivalence/strong equivalence Definition (Weak equivalence) The Gelfond Π_1 and Π_2 are weakly equivalent if they have the same answer reduct sets. Logic of here and-there Definition (Strong equivalence) SAT Π_1 and Π_2 are strongly equivalent if for any Π , $\Pi_1 \cup \Pi$ and of ASP $\Pi_2 \cup \Pi$ have the same answer sets. Example $\Pi_1 = a \leftarrow \text{not} b.$ b \leftarrow nota. $\Pi_2 = a \leftarrow \text{not} b.$ $b \leftarrow$ notc.nota. Do Π₁ and Π₂ have the same answer sets? Do $\Pi_1 \cup \{c.\}$ and $\Pi_2 \cup \{c.\}$ have the same answer sets? November 28, 2012; December 5, 2012 27/47 Nebel, Wölfl, Hué - KRR



Strong equivalence: properties

Proposition

The logic programs Π_1 and Π_2 are strongly equivalent iff they have the same set of SE-models.

Lemma

- Programs with the same SE-models are weakly equivalent.
- **2** The SE-models of $\Pi_1 \cup \Pi_2$ are exactly the SE-models common to Π_1 and Π_2 .

Proof.

 \leftarrow Π_1 and Π_2 have the same SE-models. Consider Π . By lemma 2: $\Pi_1 \cup \Pi_2$ and $\Pi_2 \cup \Pi$ have the same SE-models. By lemma 1: $\Pi_1 \cup \Pi$ and $\Pi_2 \cup \Pi$ are weakly equivalent.

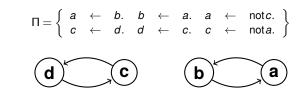
Proof.

 \Rightarrow Assume $\exists (X, Y) \in SE(\Pi_1)$ and $(X, Y) \notin SE(\Pi_2)$. Two cases: November 28, 2012; December 5, 2012 Nebel, Wölfl, Hué - KRR 30 / 47 contrary, $Y \models \Pi_1$ thus $Y \models \Pi_1 \cup Y$. Follows, $Y \models (\Pi_1 \cup Y)^Y$. No subset of Y satisfies $(\Pi_1 \cup Y)^Y$ and thus Y is a model of $\Pi_1 \cup Y$.

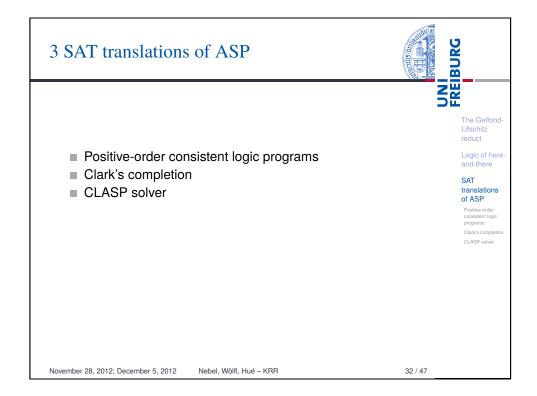
Dependency graph

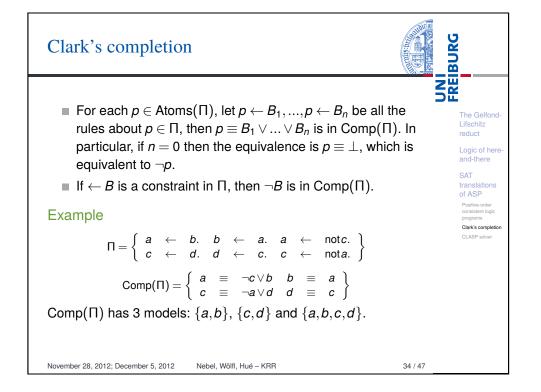
The dependency graph of a program Π is the directed graph G such that the vertexes of G are the atoms in Π , and G has an edge from a_0 to a_1, \ldots, a_m for each rule of the form $a_0 \leftarrow a_1, ..., a_m$, not $a_{m+1}, ...,$ not a_n in Π with $a_0 \neq \bot$.

Example



```
Nebel, Wölfl, Hué - KRR
                                                              33 / 47
```





BURG

TREI

UNI FREIBURG

The Gelfond

reduct

SAT

of ASP

programs

CLASP solver

Positive-order consistent logic

and-there

The Gelfond

Logic of here

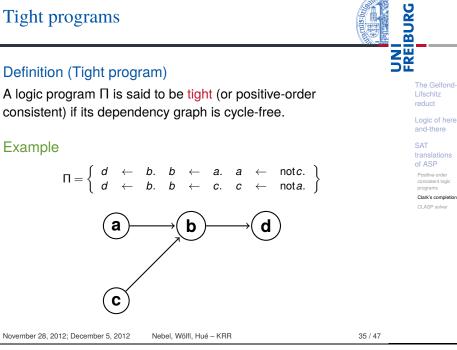
and-there

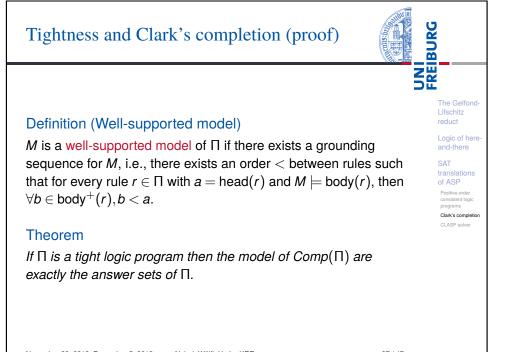
reduct

SAT

of ASP

Tight programs





Tightness and Clark's completion

36 / 47

Proposition

If Π is a positive-order consistent logic program, then X is an answer set of Π if and only if X is a model of $Comp(\Pi)$.

Example

Proof.

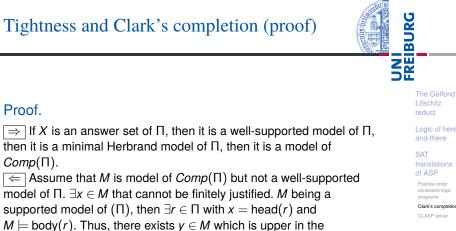
 $Comp(\Pi).$

November 28, 2012; December 5, 2012

 $\mathsf{Comp}(\Pi) = \left\{ \begin{array}{lll} a & \equiv & \neg c \lor b & b & \equiv & a \\ c & \equiv & \neg a \lor d & d & \equiv & c \end{array} \right\}$ Comp(Π) has 3 models: {*a*,*b*}, {*c*,*d*} and {*a*,*b*,*c*,*d*}.

Nebel, Wölfl, Hué - KRR

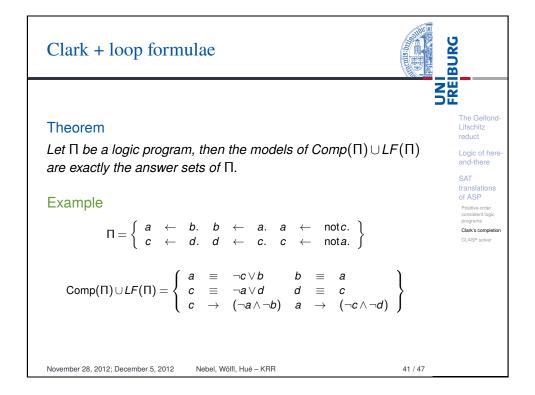
The Gelfond reduct Logic of here and-there SAT of ASP Positive-orde programs Clark's completio CLASP solver



dependency graph that cannot be justified and thus, there exists a $z \in M$ such that, etc... There is an infinite chain in the dependency graph which is contradictory with the tightness hypothesis.

and-there consistent logi Clark's completio

Loops	BURG
Definition (Loop)	L L L L L L L L L L L L L L L L L L L
A loop of Π is a set <i>L</i> of atoms such that for each pair <i>A</i> , <i>A</i> ' of atoms in <i>L</i> there is a path from <i>A</i> to <i>A</i> ' in the dependency graph	The Gelfond- Lifschitz reduct
of Π whose intermediate nodes belong to L.	Logic of here- and-there
$\begin{array}{ll} R^+(L,\Pi) &=& \{p \leftarrow G \mid (p \leftarrow G) \in \Pi, p \in L, (\exists q) \ s.t. \ q \in G \land q \in L\} \\ R^-(L,\Pi) &=& \{p \leftarrow G \mid (p \leftarrow G) \in \Pi, p \in L, \neg (\exists q) \ s.t. \ q \in G \land q \in L\} \end{array}$	SAT translations of ASP Posilive-order consistent logic programs Clarks completion CLASP solver
Example	CLASP solver
$\Pi = \left\{ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
November 28, 2012; December 5, 2012 Nebel, Wölfl, Hué – KRR 39 / 47	



Loop formulas	BURG
Definition (Loop formulas)	FRE
Let $R^{-}(L,\Pi)$ be the following rules:	The Gelfo Lifschitz
$p_1 \leftarrow B_{11} \cdots p_1 \leftarrow B_{1k_1}$	reduct
:	Logic of I and-there
$p_n \leftarrow B_{n1} \cdots p_n \leftarrow B_{nk_n}$	SAT translatio
The loop formula associated with L is the following implication:	of ASP Positive-ord
$\neg [B_{11} \lor \lor B_{1k_1} \lor \lor B_{n1} \lor \lor B_{nk_n}] \rightarrow \bigwedge \neg p$	consistent lo programs
$p \in L$	Clark's com CLASP solv
Example	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
$LF(L_1): c ightarrow (\neg a \land \neg b) \qquad LF(L_2): a ightarrow (\neg c \land \neg d)$	
November 28, 2012; December 5, 2012 Nebel, Wölfl, Hué – KRR 40 / 47	

