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Nonmonotonic logic programs: background

Answer set semantics: a formalization of negation-as-failure
in logic programming (Prolog)
Several formalizations: well-founded semantics,
perfect-model semantics, inflationary semantics, ...
Can be viewed as a simpler variant of default logic
A better alternative to propositional logic in some
applications
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Nonmonotonic logic programs I

Let A be a set of propositional atoms.

Rules:

c← b1, . . . ,bm,notd1, . . . ,notdk

where {c,b1, . . . ,bm,d1, . . . ,dk} ⊆ A

Meaning similar to default logic:
If

1 we have derived b1, . . . ,bm and
2 cannot derive any of d1, . . . ,dk ,

then derive c.
Rules without right-hand side (facts): c←>
Rules without left-hand side (constraints):

⊥← b1, . . . ,bm,notd1, . . . ,notdk
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Nonmonotonic logic programs II

Let A be a set of propositions.

Rules:

c← b1, . . . ,bm,notd1, . . . ,notdk

where {c,b1, . . . ,bm,d1, . . . ,dk} ⊆ A

c is called the head of the rule (denoted by head(r));
b1, . . . ,bm is called the positive body of the rule (denoted by
body+(r));
notd1, . . . ,notdk is called the negative body of the rule
(denoted by body−(r));
The body of the rule consists in its positive and negative
part ( body(r) = body+(r)∪body−(r) ).
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Nonmonotonic logic programs: examples

Example
fly← bird,notabnormal.
abnormal← penguin.

bird← penguin.

Example
1{sol(X ,Y ,A) : num(A)}1.
← sol(X ,Y ,Z),sol(X ,Y1,Z),Y 6= Y1.
← sol(X ,Y ,Z),sol(X1,Y ,Z),X 6= X1.
← sol(W ∗3+W2,W1∗3+W3,Z),

sol(W ∗3+W4,W1∗3+W5,Z),W3 6= W5.
← sol(W ∗3+W2,W1∗3+W3,Z),

sol(W ∗3+W4,W1∗3+W5,Z),W2 6= W4.
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not-free logic programs

Definition (Deductive closure)
Let Π be a logic program without not, X ⊆ Atoms(Π).
The closure dcl(Π)⊆ Atoms(Π) of Π is defined by iterative
application of the rules in the obvious way. X is an answer set of
Π if X = dcl(Π) and there is no constraint in Π violated by X .

Example

Π =

{
a ← b. d ← f . b.
d ← b. c ← b,d. e ← f .

}
Γ0 = Γ( /0) = {b}
Γ1 = Γ(Γ0) = {b,d,a}
Γ2 = Γ(Γ1) = {b,d,a,c}
Γ3 = Γ(Γ2) = {b,d,a,c}= Γ2
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1 The Gelfond-Lifschitz reduct

Language and notations
Formal properties of answer sets
Computation
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Definition 1: Gelfond-Lifschitz reduct

Definition (Reduct)
The reduct of a program Π with respect to a set of atoms
X ⊆ Atoms(Π) is defined as:

ΠX := {c← b1, . . . ,bm |
(c← b1, . . . ,bm,notd1, . . . ,notdk) ∈Π,{d1, . . . ,dk}∩X = /0}

Definition (Answer set)
X ⊆ Atoms(Π) is an answer set of Π if X is an answer set of ΠX .
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Illustration of Gelfond-Lifschitz reduct

Example
a ← notb. b ← nota.
d ← a. d. ← b.

Example

a ← b. b ← a.

Example
woman← notn_woman. n_woman← notwoman.
← woman,n_woman. father← parent,n_woman.

mother← parent,woman. parent.

We say that X satisfies a rule r iff X |= head(r)∨¬body(r).
⇒ X can satisfy all rules and not be an answer set.
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Lparse and smodels

Based on the Gelfond-Lifschitz reduction, Syrjanen created
the ASP solver Smodels.

Lparse Smodels
preprocessing

Allow for using variables and cardinality statements.

Example
b :- not a. a :- not b.
d :- a. d :- b.

November 28, 2012; December 5, 2012 Nebel, Wölfl, Hué – KRR 11 / 47

The Gelfond-
Lifschitz
reduct
Language and
notations

Formal properties of
answer sets

Computation

Logic of here-
and-there

SAT
translations
of ASP

The lparse format I

propositions are any combination of lowercase letters;
variables are any combination of letters starting with an
uppercase letter;
integers can be used and so can arithmetic operations
(+,−,∗,/,%).
negation as failure is denoted by not.
implication is denoted by ":-".
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The lparse format II

The literal
l{b1,...,bm}u
is true iff at least l and at most u atoms are true within the
set {b1,...,bm};
#domain encodes the possible values in a given domain:
#domain a(X). a(1..10).
will replace occurences of X by integers from 1 to 10.
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The lparse format III

Domains can also be set within a cardinality rule:
{clique(X) : num(X)}. num(1..3).
will be understood as
{clique(1), clique(2), clique(3)}.
Domains can be restricted thanks to relations. The rule
:- size(X,Y), X<Y.
will be instantiated only for value of X and Y s.t. X<Y.
A subset of answer sets can be selected according to some
optimization criteria.
#minimize{a,b,c,d}.
will choose the answer sets with the less number of atoms
from {a,b,c,d}. Attention: Does not change the
SAT/UNSAT question. You can only optimize one criterion
at a time.
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The lparse format IV

Example
#domain a(X). a(1..2).
c(X) :- not d(X). d(X) :- not c(X).

a(1). a(2).
c :- not d(1). c :- not d(2).
d :- not c(1). d :- not c(2).

1 2 1 1 3
1 4 1 1 5
1 3 1 1 2
1 5 1 1 4
1 6 0 0
1 7 0 0
0
2 d(1) 3 c(1) 4 d(2)
5 c(2) 6 a(1) 7 a(2)
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Guess - check - optimize

How to represent a problem in ASP?
Firstly, define what is a "solution candidate";
Secondly, verify it fits the constraints
Finally, keep only the best answer sets

Example
#domain node(X). #domain node(Y).
node(1..5). edge(1,2). edge(3,4).
edge(4,5). edge(4,2). edge(1,4).

uedge(X,Y) :- edge(X,Y), X < Y.
uedge(Y,X) :- edge(X,Y), Y < X.

{ clique(X) : node(X) }.
:- clique(X), clique(Y), not uedge(X,Y), X < Y.

#maximize { clique(X) : node(X) }.
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Complexity: existence of answer sets is
NP-complete

1 Membership in NP: Guess X ⊆ Atoms(Π) (nondet.
polytime), compute ΠX , compute its closure, compare to X
(everything det. polytime).

2 NP-hardness: Reduction from 3SAT: an answer set exists iff
clauses are satisfiable:

p← not p̂. p̂← notp.

for every proposition p occurring in the clauses, and

← not l′1,not l
′
2,not l

′
3

for every clause l1∨ l2∨ l3, where l′i = p if li = p and l′i = p̂ if
li = ¬p.
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Some properties I

Proposition
If an atom A belongs to an answer set of a logic program Π then
A is the head of one of the rules of Π.

Proposition
Let F and G be sets of rules and let X be a set of atoms. Then
the following holds:

(F ∪G)X =

{
FX ∪GX , if X |= F ∪G
⊥, otherwise

}
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Some properties II

Proposition
Let F be a set of (non-constraint) rules and G be a set of
constraints. A set of atoms X is an answer set of F ∪G iff it is an
answer set of F which satisfies G.

Proof.
⇒ X satisfies F ∪G. Then X satisfies the constraints in G and

(F ∪G)X is FX ∪¬⊥ which is equivalent to FX . Consequently X is
minimal among the sets satisfying FX iff it is minimal among the sets
satisfying (F ∪G)X .
⇐ X does not satisfy F ∪G. Then there exists a rule in F or a rule in
G which is not satisfied, then X cannot be a model of F that satisfies
G.
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Smodels: principles

Smodels is:
a Branch and Bound algorithm;
based on the Gelfond-Lifschitz reduct;
using reduct as a Forward-Checking procedure.

Example

a :- not b.
b :- not a.
c :- not c, a.

a

b

×

not b

×

not a

b

c

×

not c

√

not b

×
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Smodels I

Algorithm 1 Smodels algorithm
1: A := expand(P,A)
2: A := lookahead(P,A)
3: if conflict(P,A) then
4: return false
5: else if A covers Atoms(P) then
6: return stable(P,A)
7: else
8: x := heuristic(P,A)
9: if smodels(P,A∪{X} then

10: return true
11: else
12: return smodels(P,A∪{notX}
13: end if
14: end if
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Smodels example (I)

Example
(1) a ← notb,notd. (2) d ← nota.
(3) b ← notc. (4) c ← nota.
(5) e ← not f ,nota. (6) f ← note.

Case 1: a⊆ X
(4) cannot be fired,
→ c 6⊆ X ;

(3) becomes c,
→ b⊆ X ;

(1) cannot be fired,
→ a 6⊆ X ;

a 6⊆ X and a⊆ X ,
→ contradiction.

Case 2: a 6⊆ X
(2) becomes d,
→ d ⊆ X ;

(4) becomes c,
→ c ⊆ X ;

(3) cannot be fired,
→ b 6⊆ X ;

(1) cannot be fired,
→ a 6⊆ X ;

Nothing new to be expanded.
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Smodels example (II)

Example
(1) a ← notb,notd. (2) d ← nota.
(3) b ← notc. (4) c ← nota.
(5) e ← not f ,nota. (6) f ← note.

Case 2.1: e⊆ X
After reduction: e← not f . f ← note.

(6) cannot be fired,
→ f 6⊆ X ;

(5) becomes e,
→ e⊆ X ;

X covers all atoms, there is no contradiction.
Solution: {c,d,e} is a stable model.
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2 Logic of here-and-there
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Equivalence between logic programs

Are the two following logic programs

Π1 = a ← notb. b ← nota.
and

Π2 = a ← notb. b ← notc,nota.

equivalent?

They are weakly equivalent but not strongly equivalent.
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Weak equivalence/strong equivalence

Definition (Weak equivalence)
Π1 and Π2 are weakly equivalent if they have the same answer
sets.

Definition (Strong equivalence)
Π1 and Π2 are strongly equivalent if for any Π, Π1∪Π and
Π2∪Π have the same answer sets.

Example
Π1 = a ← notb. b ← nota.
Π2 = a ← notb. b ← notc,nota.

Do Π1 and Π2 have the same answer sets?

Do Π1∪{c.} and Π2∪{c.} have the same answer sets?
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Logic of here-and-there

One can also consider logic programs through the logic of
here-and-there.

A pair of sets of atoms (X ,Y ) such that X ⊆ Y is called an
SE-interpretation;
A SE-interpretation (X ,Y ) is called an SE-model iff Y |= Π
and X |= ΠY .

Example

a← notb. b← nota. c← a.
Y ΠY X
{a,c} a. c← a. {a,c}
{b} b. c← a. {b}
{b,c} b. c← a. {b},{b,c}
{a,b,c} c← a. { /0},{b},{a,c},{a,b,c}
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Answer set definition II

Proposition (Characterization of answer sets)
Y is an answer set of Π iff (Y ,Y ) is an SE-model of Π and there
is no (X ,Y ) within the SE-models of Π such that X ( Y.

Example

a→ notb. b← nota. c← a.
Y ΠY X
{a,c} a. c← a. {a,c}
{b} b. c← a. {b}
{b,c} b. c← a. {b},{b,c}
{a,b,c} c← a. { /0},{b},{a,c},{a,b,c}

Thus, there are two answer sets here : {b} and {a,c}

The set of SE-models of Π is denoted by SE(Π).
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Strong equivalence: properties

Proposition
The logic programs Π1 and Π2 are strongly equivalent iff they
have the same set of SE-models.

Lemma
1 Programs with the same SE-models are weakly equivalent.
2 The SE-models of Π1∪Π2 are exactly the SE-models

common to Π1 and Π2.

Proof.
⇐ Π1 and Π2 have the same SE-models. Consider Π. By lemma 2: Π1∪Π

and Π2∪Π have the same SE-models. By lemma 1: Π1∪Π and Π2∪Π are
weakly equivalent.

Proof.
⇒ Assume ∃(X ,Y) ∈ SE(Π1) and (X ,Y) 6∈ SE(Π2). Two cases:
Case Y 6|= Π2 Y 6|= Π2∪Y which means Y is not an answer set of Π2∪Y . On
contrary, Y |= Π1 thus Y |= Π1∪Y . Follows, Y |= (Π1∪Y)Y . No subset of Y
satisfies (Π1∪Y)Y and thus Y is a model of Π1∪Y .
Case Y |= Π2 Take Π = X ∪{L← L′ : L,L′ ∈ Y\X}. Y |= Π2∪Π, follows
Y |= (Π2∪Π)Y . Let Z be a subset of Y s.t. Z |= (Π2∪Π)Y (= ΠY

2 ∪Π). We
know that X ⊆ Z and by assumption X 6|= ΠY

2 so X 6= Z . There is some
L ∈ Y\X that belongs to Z . It follows that Y\X ⊆ Z . Thus, Z = Y , and so Y is
an answer set Π2∪Π. On contrary, X is proper subset of Y and satisfies
ΠY

1 ∪Π = (Π1∪Π)Y . Y is not an answer set of Π1∪Π.
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3 SAT translations of ASP

Positive-order consistent logic programs
Clark’s completion
CLASP solver
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Dependency graph

Definition (Dependency graph)
The dependency graph of a program Π is the directed graph G
such that the vertexes of G are the atoms in Π, and G has an
edge from a0 to a1, ...,am for each rule of the form
a0← a1, ...,am,notam+1, ...,notan in Π with a0 6=⊥.

Example

Π =

{
a ← b. b ← a. a ← notc.
c ← d. d ← c. c ← nota.

}

abcd
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Clark’s completion

For each p ∈ Atoms(Π), let p← B1, ...,p← Bn be all the
rules about p ∈ Π, then p≡ B1∨ ...∨Bn is in Comp(Π). In
particular, if n = 0 then the equivalence is p≡⊥, which is
equivalent to ¬p.
If← B is a constraint in Π, then ¬B is in Comp(Π).

Example

Π =

{
a ← b. b ← a. a ← notc.
c ← d. d ← c. c ← nota.

}
Comp(Π) =

{
a ≡ ¬c∨b b ≡ a
c ≡ ¬a∨d d ≡ c

}
Comp(Π) has 3 models: {a,b}, {c,d} and {a,b,c,d}.
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Tight programs

Definition (Tight program)
A logic program Π is said to be tight (or positive-order
consistent) if its dependency graph is cycle-free.

Example

Π =

{
d ← b. b ← a. a ← notc.
d ← b. b ← c. c ← nota.

}

a

c

b d
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Tightness and Clark’s completion

Proposition
If Π is a positive-order consistent logic program, then X is an
answer set of Π if and only if X is a model of Comp(Π).

Example

Π =

{
a ← b. b ← a. a ← notc.
c ← d. d ← c. c ← nota.

}
Comp(Π) =

{
a ≡ ¬c∨b b ≡ a
c ≡ ¬a∨d d ≡ c

}
Comp(Π) has 3 models: {a,b}, {c,d} and {a,b,c,d}.
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Tightness and Clark’s completion (proof)

Definition (Well-supported model)
M is a well-supported model of Π if there exists a grounding
sequence for M, i.e., there exists an order < between rules such
that for every rule r ∈ Π with a = head(r) and M |= body(r), then
∀b ∈ body+(r),b< a.

Theorem
If Π is a tight logic program then the model of Comp(Π) are
exactly the answer sets of Π.

November 28, 2012; December 5, 2012 Nebel, Wölfl, Hué – KRR 37 / 47

The Gelfond-
Lifschitz
reduct

Logic of here-
and-there

SAT
translations
of ASP
Positive-order
consistent logic
programs

Clark’s completion

CLASP solver

Tightness and Clark’s completion (proof)

Proof.
⇒ If X is an answer set of Π, then it is a well-supported model of Π,
then it is a minimal Herbrand model of Π, then it is a model of
Comp(Π).
⇐ Assume that M is model of Comp(Π) but not a well-supported
model of Π. ∃x ∈M that cannot be finitely justified. M being a
supported model of (Π), then ∃r ∈ Π with x = head(r) and
M |= body(r). Thus, there exists y ∈M which is upper in the
dependency graph that cannot be justified and thus, there exists a
z ∈M such that, etc... There is an infinite chain in the dependency
graph which is contradictory with the tightness hypothesis.
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Loops

Definition (Loop)
A loop of Π is a set L of atoms such that for each pair A,A′ of
atoms in L there is a path from A to A′ in the dependency graph
of Π whose intermediate nodes belong to L.

R+(L,Π) = {p← G | (p← G) ∈ Π,p ∈ L,(∃q) s.t. q ∈ G∧q ∈ L}
R−(L,Π) = {p← G | (p← G) ∈ Π,p ∈ L,¬(∃q) s.t. q ∈ G∧q ∈ L}

Example

Π =

{
a ← b. b ← a. a ← notc.
c ← d. d ← c. c ← nota.

}

R+(L1,Π) = {a← b. b← a.} R−(L1,Π) = {a← notc.}
R+(L2,Π) = {c← d. d← c.} R−(L2,Π) = {c← nota.}

November 28, 2012; December 5, 2012 Nebel, Wölfl, Hué – KRR 39 / 47

The Gelfond-
Lifschitz
reduct

Logic of here-
and-there

SAT
translations
of ASP
Positive-order
consistent logic
programs

Clark’s completion

CLASP solver

Loop formulas

Definition (Loop formulas)
Let R−(L,Π) be the following rules:

p1← B11 · · · p1← B1k1
...

pn← Bn1 · · · pn← Bnkn

The loop formula associated with L is the following implication:
¬[B11∨ ...∨B1k1 ∨ ...∨Bn1∨ ...∨Bnkn ]→

∧
p∈L
¬p

Example

R+(L1,Π) = {a← b. b← a.} R−(L1,Π) = {a← notc.}
R+(L2,Π) = {c← d. d← c.} R−(L2,Π) = {c← nota.}

LF(L1) : c→ (¬a∧¬b) LF(L2) : a→ (¬c∧¬d)
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Clark + loop formulae

Theorem
Let Π be a logic program, then the models of Comp(Π)∪LF(Π)
are exactly the answer sets of Π.

Example

Π =

{
a ← b. b ← a. a ← notc.
c ← d. d ← c. c ← nota.

}

Comp(Π)∪LF(Π) =


a ≡ ¬c∨b b ≡ a
c ≡ ¬a∨d d ≡ c
c → (¬a∧¬b) a → (¬c∧¬d)
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CLASP translation I

Definition (Body clauses)
Let β be a body of a rule β = {p1, ...,pm,notpm+1, ...,notpn},
then:

δ (β ) = {β ∨¬p1∨ ...∨pm∨¬pm+1∨ ...∨¬pn}
∆(β ) = {{¬β ∨p1}, ...,{¬β ∨pm},{¬β ∨¬pm+1}, ...,{¬β ∨¬pn}}

Example

Π =

{
a ← b. b ← a. a ← notc.
c ← d. d ← c. c ← nota.

}

Π =

{
β1∨¬b β2∨¬a β3∨ c β4∨¬d β5∨¬c β6∨a
¬β1∨b ¬β2∨a ¬β3∨¬c ¬β4∨d ¬β5∨ c ¬β6∨¬a

}
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CLASP translation II

Definition (Atoms clauses)
Let p be an atom appearing as head of rules whose body are
{β1, ...,βk}, then:

∆(p) = {{p∨¬β1}, ...,{p∨¬βk}}
δ (p) = {¬p∨β1∨ ...∨βk}

Example

Π =

{
a ← b. b ← a. a ← notc.
c ← d. d ← c. c ← nota.

}

Π =


a∨¬β1 b∨¬β2 a∨¬β3 c∨¬β4

d ∨¬β5 c∨¬β6
¬a∨β1∨β3 ¬b∨β2 ¬c∨β4∨β6 ¬d ∨β5
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CLASP translation III

Definition (External body)
For a program Π and some U ⊆ Atoms(Π), we define the
external bodies of U for Π, EBΠ(U) as

{body(r) | r ∈ Π,head(r) ∈ U,body(r)∩U = /0}

Definition (Loop clause)
For a set U ⊆ Atoms(Π) and an atom p ∈ U:

λ (p,U) = {β1∨ ...∨βk ∨¬p}

where EBΠ(U) = {β1, ...,βk}.

We define ΛΠ =
⋃

U⊆Atoms(Π),U 6= /0{λ (p,U) | p ∈ U}.
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CLASP translation IV

Proposition
X is an answer set of Π iff X ∩Atoms(Π) is a model of the
following CNF:

ΛΠ∪∆(p)∪δ (p)∪δ (β )∪∆(β )
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