Principles of Knowledge Representation and Reasoning Answer Set Programming

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel, Stefan Wölfl, and Julien Hué

November 28, 2012; December 5, 2012

- Answer set semantics: a formalization of negation-as-failure in logic programming (Prolog)
- Several formalizations: well-founded semantics, perfect-model semantics, inflationary semantics, ...
- Can be viewed as a simpler variant of default logic
- A better alternative to propositional logic in some applications

reduct

Logic of hereand-there

Nonmonotonic logic programs I

JNI

Let A be a set of propositional atoms.

Rules:

$$c \leftarrow b_1, \dots, b_m, \operatorname{not} d_1, \dots, \operatorname{not} d_k$$

where
$$\{c, b_1, \dots, b_m, d_1, \dots, d_k\} \subseteq A$$

- Meaning similar to default logic:
 If
 - we have derived b_1, \ldots, b_m and
 - 2 cannot derive any of d_1, \ldots, d_k ,

then derive c.

- Rules without right-hand side (facts): $c \leftarrow \top$
- Rules without left-hand side (constraints):

$$\perp \leftarrow b_1, \dots, b_m, \operatorname{not} d_1, \dots, \operatorname{not} d_k$$

The Gelfond-Lifschitz reduct

Logic of hereand-there

Let A be a set of propositions.

Rules:

$$c \leftarrow b_1, \dots, b_m, \operatorname{not} d_1, \dots, \operatorname{not} d_k$$

where
$$\{c, b_1, \ldots, b_m, d_1, \ldots, d_k\} \subseteq A$$

- \blacksquare c is called the head of the rule (denoted by head(r));
- $b_1,...,b_m$ is called the positive body of the rule (denoted by body⁺(r));
- not $d_1, \ldots, \text{not } d_k$ is called the negative body of the rule (denoted by body $^-(r)$);
- The body of the rule consists in its positive and negative part (body(r) = body $^+$ (r) \cup body $^-$ (r)).

The Gelfond-Lifschitz reduct

Logic of hereand-there

Nonmonotonic logic programs: examples

FREBU

Example

 $fly \leftarrow bird$, not abnormal. abnormal \leftarrow penguin. $bird \leftarrow$ penguin.

Example

```
\begin{split} 1\{sol(X,Y,A): num(A)\}1. \\ &\leftarrow sol(X,Y,Z), sol(X,Y1,Z), Y \neq Y1. \\ &\leftarrow sol(X,Y,Z), sol(X1,Y,Z), X \neq X1. \\ &\leftarrow sol(W*3+W2,W1*3+W3,Z), \\ &\qquad \qquad sol(W*3+W4,W1*3+W5,Z), W3 \neq W5. \\ &\leftarrow sol(W*3+W2,W1*3+W3,Z), \\ &\qquad \qquad sol(W*3+W4,W1*3+W5,Z), W2 \neq W4. \end{split}
```

The Gelfond-Lifschitz reduct

Logic of hereand-there

REIBU

The Gelfond-Lifschitz reduct

Logic of hereand-there

The Gelfond-

Definition (Deductive closure)

Let Π be a logic program without **not**, $X \subseteq \text{Atoms}(\Pi)$. The closure $\text{dcl}(\Pi) \subseteq \text{Atoms}(\Pi)$ of Π is defined by iterative application of the rules in the obvious way. X is an answer set of Π if $X = \text{dcl}(\Pi)$ and there is no constraint in Π violated by X.

Lifschitz reduct

Logic of hereand-there

translations of ASP

Example

$$\Pi = \left\{ \begin{array}{lll} a & \leftarrow & b. & d & \leftarrow & f. & b. \\ d & \leftarrow & b. & c & \leftarrow & b, d. & e & \leftarrow & f. \end{array} \right\}$$

$$\Gamma_0 = \Gamma(\emptyset) = \{b\}$$

$$\Gamma_1 = \Gamma(\Gamma_0) = \{b, d, a\}$$

$$\Gamma_2 = \Gamma(\Gamma_1) = \{b, d, a, c\}$$

$$\Gamma_3 = \Gamma(\Gamma_2) = \{b, d, a, c\} = \Gamma_2$$

1 The Gelfond-Lifschitz reduct

The Gelfond-

- Language and notations
- Formal properties of answer sets
- Computation

Lifschitz reduct

Language and

answer sets

Logic of hereand-there

Definition (Reduct)

The reduct of a program Π with respect to a set of atoms $X \subseteq Atoms(\Pi)$ is defined as:

$$\Pi^X := \{ c \leftarrow b_1, \dots, b_m \mid (c \leftarrow b_1, \dots, b_m, \mathsf{not} \, d_1, \dots, \mathsf{not} \, d_k) \in \Pi, \{ d_1, \dots, d_k \} \cap X = \emptyset \}$$

Definition (Answer set)

 $X \subseteq Atoms(\Pi)$ is an answer set of Π if X is an answer set of Π^X .

The Gelfond-Lifschitz reduct

Language and

Formal properties

answer sets Computation

Logic of hereand-there

SAT translation

Illustration of Gelfond-Lifschitz reduct

UNI FREIBU

Example

$$egin{array}{llll} a & \leftarrow & {\sf not}b. & b & \leftarrow & {\sf not}a. \ d & \leftarrow & a. & d. & \leftarrow & b. \end{array}$$

Example

$$a \leftarrow b$$
. $b \leftarrow a$

Example

$$woman \leftarrow not n_woman$$
.
 $\leftarrow woman, n_woman$.
 $mother \leftarrow parent, woman$.

$$n$$
_woman \leftarrow not woman.
father \leftarrow parent, n _woman.
parent.

We say that X satisfies a rule r iff $X \models \text{head}(r) \lor \neg \text{body}(r)$. $\Rightarrow X$ can satisfy all rules and not be an answer set.

The Gelfond-Lifschitz reduct

Language and

notations

answer sets

Computation

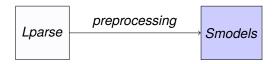
Logic of here

SAT translations

Lparse and smodels

FREIBU

Based on the Gelfond-Lifschitz reduction, Syrjanen created the ASP solver Smodels.



Allow for using variables and cardinality statements.

Example

```
b :- not a. a :- not b.
d :- a. d :- b.
```

The Gelfond-Lifschitz

Language and

notations

answer sets

Computation

Logic of here

translations

The lparse format I

Language and

answer sets

and-there

of ASP

- propositions are any combination of lowercase letters;
- variables are any combination of letters starting with an uppercase letter;
- integers can be used and so can arithmetic operations (+,-,*,/,%).
- negation as failure is denoted by not.
- implication is denoted by ":-".


```
1\{b1,...,bm\}u is true iff at least l and at most u atoms are true within the set \{b1,...,bm\};
```

#domain encodes the possible values in a given domain: #domain a(X). a(1..10). will replace occurrences of X by integers from 1 to 10. The Gelfond-Lifschitz reduct

Language and

answer sets

Logic of hereand-there

The lparse format III

FREIBU

- Domains can also be set within a cardinality rule:
 {clique(X) : num(X)}. num(1..3).
 will be understood as
 {clique(1), clique(2), clique(3)}.
- Domains can be restricted thanks to relations. The rule :- size(X,Y), X<Y.
 will be instantiated only for value of X and Y s.t. X<Y.
- A subset of answer sets can be selected according to some optimization criteria.
 #minimize{a,b,c,d}.
 will choose the answer sets with the less number of atoms from {a,b,c,d}. Attention: Does not change the SAT/UNSAT question. You can only optimize one criterion

The Gelfond-Lifschitz

Language and

notations

answer sets

and-there

SAT translations of ASP

at a time.

The lparse format IV

NI REIBURG

Example

```
#domain a(X). a(1...2).
c(X) := not d(X). d(X) := not c(X).
a(1). a(2).
c := not d(1). c := not d(2).
d := not c(1). d := not c(2).
1 2 1 1 3
1 4 1 1 5
 3 1 1
 6 0 0
1700
2 d(1)
       3 c(1) 4 d(2)
5 c(2)
       6 a(1) 7 a(2)
```

The Gelfond-Lifschitz reduct

Language and notations

Formal proportion

answer sets

Computation

Logic of here-

Guess - check - optimize

FREB

How to represent a problem in ASP?

- Firstly, define what is a "solution candidate";
- Secondly, verify it fits the constraints
- Finally, keep only the best answer sets

Example

```
#domain node(X). #domain node(Y).
node(1..5). edge(1,2). edge(3,4).
edge(4,5). edge(4,2). edge(1,4).

uedge(X,Y) :- edge(X,Y), X < Y.
uedge(Y,X) :- edge(X,Y), Y < X.

{ clique(X) : node(X) }.
:- clique(X), clique(Y), not uedge(X,Y), X < Y.</pre>
```

The Gelfond-Lifschitz reduct

Language and notations

Formal propertie

answer sets Computation

Logic of hereand-there

SAT translations

#maximize { clique(X) : node(X) }.

Complexity: existence of answer sets is NP-complete

- FREIBUR
- Membership in NP: Guess $X \subseteq \text{Atoms}(\Pi)$ (nondet. polytime), compute Π^X , compute its closure, compare to X (everything det. polytime).
- NP-hardness: Reduction from 3SAT: an answer set exists iff clauses are satisfiable:

$$p \leftarrow \mathsf{not} \hat{p}.$$
 $\hat{p} \leftarrow \mathsf{not} p.$

for every proposition *p* occurring in the clauses, and

$$\leftarrow \operatorname{not} I_1', \operatorname{not} I_2', \operatorname{not} I_3'$$

for every clause $l_1 \vee l_2 \vee l_3$, where $l_i' = p$ if $l_i = p$ and $l_i' = \hat{p}$ if $l_i = \neg p$.

The Gelfond-Lifschitz reduct

Language and notations

Formal properties of answer sets

Computation

Logic of here-

SAT translations

Some properties I

FREBE

Proposition

If an atom A belongs to an answer set of a logic program Π then A is the head of one of the rules of Π .

Proposition

Let F and G be sets of rules and let X be a set of atoms. Then the following holds:

$$(F \cup G)^X = \left\{ \begin{array}{ll} F^X \cup G^X, & \textit{if } X \models F \cup G \\ \bot, & \textit{otherwise} \end{array} \right\}$$

The Gelfond-Lifschitz reduct

Language and

Formal properties of answer sets

Computation

and-there

Some properties II

UNI FREIBU

Proposition

Let F be a set of (non-constraint) rules and G be a set of constraints. A set of atoms X is an answer set of $F \cup G$ iff it is an answer set of F which satisfies G.

Proof.

 \Rightarrow X satisfies $F \cup G$. Then X satisfies the constraints in G and $(F \cup G)^X$ is $F^X \cup \neg \bot$ which is equivalent to F^X . Consequently X is minimal among the sets satisfying F^X iff it is minimal among the sets satisfying $(F \cup G)^X$.

 \subseteq X does not satisfy $F \cup G$. Then there exists a rule in F or a rule in G which is not satisfied, then X cannot be a model of F that satisfies G.

The Gelfond-Lifschitz reduct

> Language and notations

Formal properties of answer sets

Computation

and-there

translations

Smodels: principles

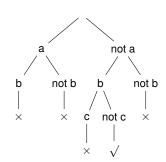
UNI

Smodels is:

- a Branch and Bound algorithm;
- based on the Gelfond-Lifschitz reduct;
- using reduct as a Forward-Checking procedure.

Example

a :- not b.
b :- not a.
c :- not c, a.



The Gelfond-Lifschitz reduct

Language and

Formal propertie

answer sets

Computation

Logic of here-

Smodels I

Algorithm 1 Smodels algorithm

- 1: A := expand(P,A)
- 2: A := lookahead(P, A)
- 3: if conflict(P,A) then
- 4: return false
- 5: else if A covers Atoms(P) then
- 6: return stable(P,A)
- 7: else
- 8: x := heuristic(P,A)
- 9: if $smodels(P, A \cup \{X\})$ then
- 10: **return** true
- 11: **else**
- 12: **return** $smodels(P, A \cup \{not X\})$
- 13: **end if**
- 14: end if

Language and

notations

answer sets

Computation

Logic of here

translations

Smodels example (I)

Example

(1)
$$a \leftarrow \text{not} b, \text{not} d$$
. (2) $d \leftarrow \text{not} a$.

(3)
$$b \leftarrow \text{not} c$$
. (4) $c \leftarrow \text{not} a$.

(5)
$$e \leftarrow \text{not} f, \text{not} a.$$
 (6) $f \leftarrow \text{not} e.$

Case 1: $a \subseteq X$

■ (4) cannot be fired,
$$\rightarrow c \not\subseteq X$$
;

(3) becomes
$$c$$
, $\rightarrow b \subseteq X$;

■ (1) cannot be fired,
$$\rightarrow a \not\subseteq X$$
;

$$\blacksquare$$
 $a \not\subseteq X$ and $a \subseteq X$,

$$a \subseteq X$$
 and $a \subseteq X$. \rightarrow contradiction.

Case 2: $a \not\subset X$

(2) becomes
$$d$$
, $\rightarrow d \subseteq X$;

(4) becomes
$$c$$
, $\rightarrow c \subseteq X$:

(3) cannot be fired,
$$\rightarrow b \not\subset X$$
;

■ (1) cannot be fired,
$$\rightarrow a \not\subseteq X$$
;

The Gelfond-

reduct

answer sets

Computation

and-there

SAT

Smodels example (II)

TREE

Example

- $(1) \quad a \quad \leftarrow \quad \mathsf{not} \, b, \mathsf{not} \, d. \quad (2) \quad d \quad \leftarrow \quad \mathsf{not} \, a.$
- $(3) \quad b \quad \leftarrow \qquad \text{not } c. \quad (4) \quad c \quad \leftarrow \quad \text{not } a.$
- (5) $e \leftarrow \text{not} f, \text{not} a.$ (6) $f \leftarrow \text{not} e.$

Case 2.1: $e \subseteq X$

After reduction:

$$e \leftarrow \mathsf{not} f$$
. $f \leftarrow \mathsf{not} e$.

- (6) cannot be fired,
 - $\rightarrow f \not\subseteq X$;
- \blacksquare (5) becomes e,
- \rightarrow $e \subseteq X$;
- **X** covers all atoms, there is no contradiction. Solution: $\{c, d, e\}$ is a stable model.

The Gelfond-Lifschitz reduct

Language and

notations

answer sets

Computation

.

and-there

The Gelfond-

reduct

Logic of here-

and-there

Equivalence between logic programs

The Gelfond-

Are the two following logic programs

$$\Pi_1 = a \leftarrow \operatorname{not} b. \quad b \leftarrow \operatorname{not} a.$$
and
$$\Pi_2 = a \leftarrow \operatorname{not} b. \quad b \leftarrow \operatorname{not} c, \operatorname{not} a.$$

reduct

Logic of here-

and-there

SAT translations of ASP

equivalent?

They are weakly equivalent but not strongly equivalent.

Weak equivalence/strong equivalence

FRE

Definition (Weak equivalence)

 Π_1 and Π_2 are weakly equivalent if they have the same answer sets.

Definition (Strong equivalence)

 Π_1 and Π_2 are strongly equivalent if for any Π , $\Pi_1 \cup \Pi$ and $\Pi_2 \cup \Pi$ have the same answer sets.

Example

- Do Π_1 and Π_2 have the same answer sets?
- Do $\Pi_1 \cup \{c.\}$ and $\Pi_2 \cup \{c.\}$ have the same answer sets?

The Gelfond-Lifschitz reduct

Logic of hereand-there

Logic of here-and-there

FREIBL

One can also consider logic programs through the logic of here-and-there.

- A pair of sets of atoms (X, Y) such that $X \subseteq Y$ is called an SE-interpretation;
- A SE-interpretation (X, Y) is called an SE-model iff $Y \models \Pi$ and $X \models \Pi^{Y}$.

The Gelfond-Lifschitz reduct

Logic of hereand-there

translations of ASP

Example

$$a \leftarrow \text{not} b$$
. $b \leftarrow \text{not} a$. $c \leftarrow a$.

,	Y		П	X
{a	,c} (а.	$c \leftarrow a$.	{ <i>a</i> , <i>c</i> }
{/	b} I	b.	$c \leftarrow a$.	{b}
{b	,c} I	b.	$c \leftarrow a$.	$\{b\}, \{b, c\}$
{ a ,l	b, c }	<i>c</i> ← <i>a</i> .		$\{\emptyset\}, \{b\}, \{a,c\}, \{a,b,c\}$

The Gelfond-

Logic of hereand-there

of ASP

Proposition (Characterization of answer sets)

Y is an answer set of Π iff (Y, Y) is an SE-model of Π and there is no (X,Y) within the SE-models of Π such that $X \subseteq Y$.

Example

 $a \rightarrow \text{not} b$, $b \leftarrow \text{not} a$, $c \leftarrow a$.

Y	П	X
{a,c}	a. c ← a.	{a,c}
{b}	b. $c \leftarrow a$.	{b}
{ <i>b</i> , <i>c</i> }	b. $c \leftarrow a$.	$\{b\}, \{b, c\}$
{ <i>a</i> , <i>b</i> , <i>c</i> }	$c \leftarrow a$.	$\{\emptyset\}, \{b\}, \{a,c\}, \{a,b,c\}$

Thus, there are two answer sets here : $\{b\}$ and $\{a,c\}$

The set of SE-models of Π is denoted by $SE(\Pi)$.

Strong equivalence: properties

The Gelfond-

reduct Logic of here-

and-there

Proposition

The logic programs Π_1 and Π_2 are strongly equivalent iff they have the same set of SE-models.

Lemma

- Programs with the same SE-models are weakly equivalent.
- The SE-models of $\Pi_1 \cup \Pi_2$ are exactly the SE-models common to Π_1 and Π_2 .

of ASP

Proof.

 $= \Pi_1$ and Π_2 have the same SE-models. Consider Π . By lemma 2: $\Pi_1 \cup \Pi$ and $\Pi_2 \cup \Pi$ have the same SE-models. By lemma 1: $\Pi_1 \cup \Pi$ and $\Pi_2 \cup \Pi$ are weakly equivalent.

Proof.

 \Rightarrow Assume $\exists (X,Y) \in SE(\Pi_1)$ and $(X,Y) \notin SE(\Pi_2)$. Two cases:

3 SAT translations of ASP

- Positive-order consistent logic programs
- Clark's completion
- CLASP solver

The Gelfondreduct

Logic of hereand-there

SAT

Dependency graph

Definition (Dependency graph)

The dependency graph of a program Π is the directed graph G such that the vertexes of G are the atoms in Π , and G has an edge from a_0 to $a_1, ..., a_m$ for each rule of the form $a_0 \leftarrow a_1, ..., a_m, \text{not } a_{m+1}, ..., \text{not } a_n \text{ in } \Pi \text{ with } a_0 \neq \bot.$

Example

$$\Pi = \left\{ \begin{array}{ccccc} a & \leftarrow & b. & b & \leftarrow & a. & a & \leftarrow & \mathsf{not} c. \\ c & \leftarrow & d. & d & \leftarrow & c. & c & \leftarrow & \mathsf{not} a. \end{array} \right\}$$

The Gelfondreduct

Logic of here-

Positive-order

consistent logic

Clark's completion

■ If $\leftarrow B$ is a constraint in Π , then $\neg B$ is in Comp(Π).

Example

$$\Pi = \left\{ \begin{array}{llll} a & \leftarrow & b. & b & \leftarrow & a. & a & \leftarrow & \mathsf{not} c. \\ c & \leftarrow & d. & d & \leftarrow & c. & c & \leftarrow & \mathsf{not} a. \end{array} \right\}$$

$$\mathsf{Comp}(\Pi) = \left\{ \begin{array}{llll} a & \equiv & \neg c \lor b & b & \equiv & a \\ c & \equiv & \neg a \lor d & d & \equiv & c \end{array} \right\}$$

Comp(Π) has 3 models: $\{a,b\}$, $\{c,d\}$ and $\{a,b,c,d\}$.

The Gelfondreduct

Logic of here-

of ASP

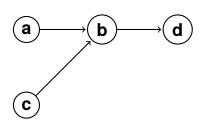
Clark's completion

Definition (Tight program)

A logic program Π is said to be tight (or positive-order consistent) if its dependency graph is cycle-free.

Example

$$\Pi = \left\{ \begin{array}{ccccc} d & \leftarrow & b. & b & \leftarrow & a. & a & \leftarrow & \mathsf{notc.} \\ d & \leftarrow & b. & b & \leftarrow & c. & c & \leftarrow & \mathsf{nota.} \end{array} \right\}$$



The Gelfond-Lifschitz reduct

Logic of hereand-there

SAT translations of ASP

of ASP
Positive-order

Clark's completion

Proposition

If Π is a positive-order consistent logic program, then X is an answer set of Π if and only if X is a model of Comp(Π).

Example

$$\Pi = \left\{ \begin{array}{lll} a & \leftarrow & b. & b & \leftarrow & a. & a & \leftarrow & \mathsf{not} c. \\ c & \leftarrow & d. & d & \leftarrow & c. & c & \leftarrow & \mathsf{not} a. \end{array} \right\}$$
$$\mathsf{Comp}(\Pi) = \left\{ \begin{array}{lll} a & \equiv & \neg c \lor b & b & \equiv & a \\ c & \equiv & \neg a \lor d & d & \equiv & c \end{array} \right\}$$

Comp(Π) has 3 models: {a,b}, {c,d} and {a,b,c,d}.

The Gelfondreduct

Logic of here-

of ASP

Clark's completion

Tightness and Clark's completion (proof)

Definition (Well-supported model)

M is a well-supported model of Π if there exists a grounding sequence for M, i.e., there exists an order < between rules such that for every rule $r \in \Pi$ with a = head(r) and $M \models \text{body}(r)$, then $\forall b \in \mathsf{body}^+(r), b < a.$

Theorem

If Π is a tight logic program then the model of Comp(Π) are exactly the answer sets of Π .

The Gelfondreduct

Logic of here-

Clark's completion

Tightness and Clark's completion (proof)

JNI

Proof.

 \implies If X is an answer set of Π , then it is a well-supported model of Π , then it is a minimal Herbrand model of Π , then it is a model of $Comp(\Pi)$.

The Gelfond-Lifschitz reduct

Logic of hereand-there

SAT translations

> Positive-order consistent log

> > Clark's completion

Definition (Loop)

A loop of Π is a set L of atoms such that for each pair A, A' of atoms in L there is a path from A to A' in the dependency graph of Π whose intermediate nodes belong to L.

$$\begin{array}{lcl} R^+(L,\Pi) & = & \{p \leftarrow G \mid (p \leftarrow G) \in \Pi, p \in L, (\exists q) \text{ s.t. } q \in G \land q \in L\} \\ R^-(L,\Pi) & = & \{p \leftarrow G \mid (p \leftarrow G) \in \Pi, p \in L, \neg(\exists q) \text{ s.t. } q \in G \land q \in L\} \end{array}$$

Example

$$\Pi = \left\{ \begin{array}{ccccc} a & \leftarrow & b. & b & \leftarrow & a. & a & \leftarrow & \mathsf{not} c. \\ c & \leftarrow & d. & d & \leftarrow & c. & c & \leftarrow & \mathsf{not} a. \end{array} \right\}$$

$$R^{+}(L_{1},\Pi) = \{a \leftarrow b. \ b \leftarrow a.\} \ R^{-}(L_{1},\Pi) = \{a \leftarrow \text{not } c.\}$$

 $R^{+}(L_{2},\Pi) = \{c \leftarrow d. \ d \leftarrow c.\} \ R^{-}(L_{2},\Pi) = \{c \leftarrow \text{not } a.\}$

Loop formulas

REIB

Definition (Loop formulas)

Let $R^-(L,\Pi)$ be the following rules:

$$p_1 \leftarrow B_{11} \quad \cdots \quad p_1 \leftarrow B_{1k_1}$$

$$\vdots$$

$$p_n \leftarrow B_{n1} \quad \cdots \quad p_n \leftarrow B_{nk_n}$$

The loop formula associated with L is the following implication:

$$\neg [B_{11} \lor ... \lor B_{1k_1} \lor ... \lor B_{n1} \lor ... \lor B_{nk_n}] \rightarrow \bigwedge_{p \in L} \neg p$$

The Gelfond-Lifschitz reduct

Logic of hereand-there

SAT translations of ASP

Positive-order consistent logic

programs

Clark's completion

ark's completion

Example

$$\begin{array}{llll} R^+(L_1,\Pi) & = & \{a \leftarrow b. & b \leftarrow a.\} & R^-(L_1,\Pi) & = & \{a \leftarrow \mathsf{not} c.\} \\ R^+(L_2,\Pi) & = & \{c \leftarrow d. & d \leftarrow c.\} & R^-(L_2,\Pi) & = & \{c \leftarrow \mathsf{not} a.\} \\ & & LF(L_1) : c \rightarrow (\neg a \land \neg b) & LF(L_2) : a \rightarrow (\neg c \land \neg d) \end{array}$$

Theorem

Let Π be a logic program, then the models of Comp $(\Pi) \cup LF(\Pi)$ are exactly the answer sets of Π .

Example

$$\Pi = \left\{ \begin{array}{cccccc} a & \leftarrow & b. & b & \leftarrow & a. & a & \leftarrow & \mathsf{not} c. \\ c & \leftarrow & d. & d & \leftarrow & c. & c & \leftarrow & \mathsf{not} a. \end{array} \right\}$$

$$\mathsf{Comp}(\Pi) \cup \mathit{LF}(\Pi) = \left\{ \begin{array}{cccc} a & \equiv & \neg c \lor b & b & \equiv & a \\ c & \equiv & \neg a \lor d & d & \equiv & c \\ c & \rightarrow & (\neg a \land \neg b) & a & \rightarrow & (\neg c \land \neg d) \end{array} \right\}$$

The Gelfondreduct

Logic of hereand-there

of ASP

Clark's completion

Let β be a body of a rule $\beta = \{p_1,...,p_m, \mathsf{not}p_{m+1},...,\mathsf{not}p_n\}$, then:

$$\delta(\beta) = \{\beta \vee \neg \rho_1 \vee ... \vee \rho_m \vee \neg \rho_{m+1} \vee ... \vee \neg \rho_n\}$$

$$\delta(\beta) = \{\{\neg \beta \vee \rho_1\}, ..., \{\neg \beta \vee \rho_m\}, \{\neg \beta \vee \neg \rho_{m+1}\}, ..., \{\neg \beta \vee \neg \rho_n\}\}$$

Example

$$\Pi = \left\{ \begin{array}{cccccc} a & \leftarrow & b. & b & \leftarrow & a. & a & \leftarrow & \mathsf{not} c. \\ c & \leftarrow & d. & d & \leftarrow & c. & c & \leftarrow & \mathsf{not} a. \end{array} \right\}$$

$$\Pi = \left\{ \begin{array}{cccc} \beta_1 \vee \neg b & \beta_2 \vee \neg a & \beta_3 \vee c & \beta_4 \vee \neg d & \beta_5 \vee \neg c & \beta_6 \vee a \\ \neg \beta_1 \vee b & \neg \beta_2 \vee a & \neg \beta_3 \vee \neg c & \neg \beta_4 \vee d & \neg \beta_5 \vee c & \neg \beta_6 \vee \neg a \end{array} \right\}$$

The Gelfond-Lifschitz reduct

Logic of hereand-there

translations of ASP

Positive-order consistent logic programs

Clark's completio

Definition (Atoms clauses)

Let p be an atom appearing as head of rules whose body are $\{\beta_1,...,\beta_k\}$, then:

$\delta(p) = \{ \neg p \lor \beta_1 \lor ... \lor \beta_k \}$

Example

$$\Pi = \left\{ \begin{array}{ccccc} a & \leftarrow & b. & b & \leftarrow & a. & a & \leftarrow & \text{not} c. \\ c & \leftarrow & d. & d & \leftarrow & c. & c & \leftarrow & \text{not} a. \end{array} \right\}$$

$$\Pi = \left\{ \begin{array}{cccc} a \lor \neg \beta_1 & b \lor \neg \beta_2 & a \lor \neg \beta_3 & c \lor \neg \beta_4 \\ & d \lor \neg \beta_5 & c \lor \neg \beta_6 & \\ \neg a \lor \beta_1 \lor \beta_3 & \neg b \lor \beta_2 & \neg c \lor \beta_4 \lor \beta_6 & \neg d \lor \beta_5 \end{array} \right\}$$

The Gelfond-Lifschitz reduct

Logic of hereand-there

SAT translations of ASP

of ASP Positive-order

programs

Clark's completion

CI ASP solver

Definition (External body)

For a program Π and some $U \subseteq Atoms(\Pi)$, we define the external bodies of U for Π , $EB_{\Pi}(U)$ as

$$\{\mathsf{body}(r) \mid r \in \Pi, \mathsf{head}(r) \in U, \mathsf{body}(r) \cap U = \emptyset\}$$

Definition (Loop clause)

For a set $U \subseteq Atoms(\Pi)$ and an atom $p \in U$:

$$\lambda(p,U) = \{\beta_1 \vee ... \vee \beta_k \vee \neg p\}$$

where
$$EB_{\Pi}(U) = \{\beta_1, ..., \beta_k\}.$$

We define
$$\Lambda_{\Pi} = \bigcup_{U \subset Atoms(\Pi), U \neq \emptyset} \{\lambda(p, U) \mid p \in U\}.$$

The Gelfondreduct

Logic of here-

CLASP translation IV

UNI FREIBU

> The Gelfond-Lifschitz reduct

Logic of hereand-there

SAT translations of ASP

Positive-order consistent logic

programs Clark's completio

CI ASP solver

Proposition

X is an answer set of Π iff $X \cap Atoms(\Pi)$ is a model of the following CNF:

 $\Lambda_{\Pi} \cup \Delta(p) \cup \delta(p) \cup \delta(\beta) \cup \Delta(\beta)$

Literature

The Gelfond-

reduct Logic of here-

SAT of ASP

CLASP solver

Michael Gelfond and Vladimir Lifschitz.

The stable models semantics for logic programming. ICLP/SLP, p.1070-1080, 1988.

Consistency of Clark's completion and existence of stable models.

Meth. of Logic in CS, p51-60, 1994.

Strong equivalence made easy: nested expressions and weight constraints.

TPLP, p609-622, 2003.

Literature

Martin Gebser and Benjamin Kaufmann and André Neumann and Torsten Schaub.

Conflict-Driven Answer Set Solving.

IJCAI, p.386-393, 2007.

Ilkka Niemelä and Patrik Simons

Efficient Implementation of the Well-founded and Stable Model Semantics.

JICSLP, p.289-303, 1996.

Lifschitz reduct Logic of here-

SAT

of ASP