Principles of Knowledge Representation and Reasoning
Answer Set Programming

Bernhard Nebel, Stefan Wölfl, and Julien Hué
November 28, 2012; December 5, 2012
Nonmonotonic logic programs: background

- **Answer set semantics**: a formalization of negation-as-failure in logic programming (Prolog)
- Several formalizations: well-founded semantics, perfect-model semantics, inflationary semantics, ...
- Can be viewed as a simpler variant of default logic
- A better alternative to propositional logic in some applications
Let \(A \) be a set of propositional atoms.

Rules:

\[
c \leftarrow b_1, \ldots, b_m, \neg d_1, \ldots, \neg d_k
\]

where \(\{c, b_1, \ldots, b_m, d_1, \ldots, d_k\} \subseteq A \)

- Meaning similar to default logic:
 - If
 1. we have derived \(b_1, \ldots, b_m \) and
 2. cannot derive any of \(d_1, \ldots, d_k \),
 - then derive \(c \).

- Rules without right-hand side (facts): \(c \leftarrow \top \)

- Rules without left-hand side (constraints):
 \[
 \bot \leftarrow b_1, \ldots, b_m, \neg d_1, \ldots, \neg d_k
 \]
Nonmonotonic logic programs II

Let \(A \) be a set of propositions.

Rules:

\[
c \leftarrow b_1, \ldots, b_m, \text{not } d_1, \ldots, \text{not } d_k
\]

where \(\{c, b_1, \ldots, b_m, d_1, \ldots, d_k\} \subseteq A \)

- \(c \) is called the head of the rule (denoted by \(\text{head}(r) \));
- \(b_1, \ldots, b_m \) is called the positive body of the rule (denoted by \(\text{body}^+(r) \));
- \(\text{not } d_1, \ldots, \text{not } d_k \) is called the negative body of the rule (denoted by \(\text{body}^-(r) \));
- The body of the rule consists in its positive and negative part \(\text{body}(r) = \text{body}^+(r) \cup \text{body}^-(r) \).
Nonmonotonic logic programs: examples

Example

\[\text{fly } \leftarrow \text{bird, not abnormal.}\]
\[\text{abnormal } \leftarrow \text{penguin.}\]
\[\text{bird } \leftarrow \text{penguin.}\]

Example

\[\{\text{sol}(X, Y, A) : \text{num}(A)\}_1.\]
\[\leftarrow \text{sol}(X, Y, Z), \text{sol}(X, Y1, Z), Y \neq Y1.\]
\[\leftarrow \text{sol}(X, Y, Z), \text{sol}(X1, Y, Z), X \neq X1.\]
\[\leftarrow \text{sol}(W * 3 + W2, W1 * 3 + W3, Z),\]
\[\text{sol}(W * 3 + W4, W1 * 3 + W5, Z), W3 \neq W5.\]
\[\leftarrow \text{sol}(W * 3 + W2, W1 * 3 + W3, Z),\]
\[\text{sol}(W * 3 + W4, W1 * 3 + W5, Z), W2 \neq W4.\]
The Gelfond-Lifschitz reduct
Logic of here-and-there
SAT translations of ASP
not-free logic programs

Definition (Deductive closure)

Let Π be a logic program without **not**, $X \subseteq \text{Atoms}(\Pi)$. The closure $\text{dcl}(\Pi) \subseteq \text{Atoms}(\Pi)$ of Π is defined by iterative application of the rules in the obvious way. X is an **answer set** of Π if $X = \text{dcl}(\Pi)$ and there is no constraint in Π violated by X.

Example

$$\Pi = \{ \begin{array}{c} a \leftarrow b. \\ d \leftarrow f. \\ d \leftarrow b. \\ c \leftarrow b, d. \\ e \leftarrow f. \end{array} \}$$

$$\begin{align*}
\Gamma_0 &= \Gamma(\emptyset) = \{b\} \\
\Gamma_1 &= \Gamma(\Gamma_0) = \{b, d, a\} \\
\Gamma_2 &= \Gamma(\Gamma_1) = \{b, d, a, c\} \\
\Gamma_3 &= \Gamma(\Gamma_2) = \{b, d, a, c\} = \Gamma_2
\end{align*}$$
1 The Gelfond-Lifschitz reduct

- Language and notations
- Formal properties of answer sets
- Computation
Definition 1: Gelfond-Lifschitz reduct

Definition (Reduct)
The reduct of a program Π with respect to a set of atoms $X \subseteq \text{Atoms}(\Pi)$ is defined as:

$$\Pi^X := \{c \leftarrow b_1, \ldots, b_m \mid (c \leftarrow b_1, \ldots, b_m, \text{not } d_1, \ldots, \text{not } d_k) \in \Pi, \{d_1, \ldots, d_k\} \cap X = \emptyset\}$$

Definition (Answer set)

$X \subseteq \text{Atoms}(\Pi)$ is an answer set of Π if X is an answer set of Π^X.
Illustration of Gelfond-Lifschitz reduct

Example

\[a \leftarrow \text{not}b. \quad b \leftarrow \text{not}a. \]
\[d \leftarrow a. \quad d. \leftarrow b. \]

Example

\[a \leftarrow b. \quad b \leftarrow a. \]

Example

\[\text{woman} \leftarrow \text{not} n_\text{woman}. \quad n_\text{woman} \leftarrow \text{not} \text{woman}. \]
\[\leftarrow \text{woman}, n_\text{woman}. \quad \text{father} \leftarrow \text{parent}, n_\text{woman}. \]
\[\text{mother} \leftarrow \text{parent}, \text{woman}. \quad \text{parent}. \]

We say that \(X \) satisfies a rule \(r \) iff \(X \models \text{head}(r) \lor \neg \text{body}(r) \).
\[\Rightarrow \text{X can satisfy all rules and not be an answer set.} \]
Based on the Gelfond-Lifschitz reduction, Syrjanen created the ASP solver Smodels.

Example

\begin{align*}
 b & :- \text{ not } a. \\
 a & :- \text{ not } b. \\
 d & :- a. \\
 d & :- b.
\end{align*}
propositions are any combination of lowercase letters;
variables are any combination of letters starting with an uppercase letter;
integers can be used and so can arithmetic operations (+, −, *, /, %).
negation as failure is denoted by not.
implication is denoted by ":-".
The literal
\[l\{b_1, \ldots, b_m\}u \]
is true iff at least \(l \) and at most \(u \) atoms are true within the set \(\{b_1, \ldots, b_m\} \);

- \#domain encodes the possible values in a given domain:
 \#domain \(a(X). \ a(1..10). \)
 will replace occurrences of \(X \) by integers from 1 to 10.
Domains can also be set within a cardinality rule:
\{\text{clique}(X) : \text{num}(X)\}. \text{num}(1..3).
will be understood as
\{\text{clique}(1), \text{clique}(2), \text{clique}(3)\}.

Domains can be restricted thanks to relations. The rule
:- \text{size}(X,Y), X<Y.
will be instantiated only for value of X and Y s.t. X<Y.

A subset of answer sets can be selected according to some optimization criteria.
#\text{minimize}\{a,b,c,d\}.
will choose the answer sets with the less number of atoms from \{a,b,c,d\}. Attention: Does not change the SAT/UNSAT question. You can only optimize one criterion at a time.
The lparse format IV

Example

```
#domain a(X). a(1..2).
c(X) :- not d(X). d(X) :- not c(X).

a(1). a(2).
c :- not d(1). c :- not d(2).
d :- not c(1). d :- not c(2).
```

```
1 2 1 1 3
1 4 1 1 5
1 3 1 1 2
1 5 1 1 4
1 6 0 0
1 7 0 0
0
2 d(1) 3 c(1) 4 d(2)
5 c(2) 6 a(1) 7 a(2)
```
How to represent a problem in ASP?

- Firstly, define what is a "solution candidate";
- Secondly, verify it fits the constraints
- Finally, keep only the best answer sets

Example

```prolog
#domain node(X). #domain node(Y).
node(1..5). edge(1,2). edge(3,4).
edge(4,5). edge(4,2). edge(1,4).

uedge(X,Y) :- edge(X,Y), X < Y.
uedge(Y,X) :- edge(X,Y), Y < X.

{ clique(X) : node(X) }.
:- clique(X), clique(Y), not uedge(X,Y), X < Y.

#maximize { clique(X) : node(X) }.
```
Complexity: existence of answer sets is NP-complete

1. **Membership in NP**: Guess $X \subseteq \text{Atoms}(\Pi)$ (nondet. polytime), compute Π^X, compute its closure, compare to X (everything det. polytime).

2. **NP-hardness**: Reduction from 3SAT: an answer set exists iff clauses are satisfiable:

 $$ p \leftarrow \neg \hat{p}.$$
 $$ \hat{p} \leftarrow \neg p.$$

 for every proposition p occurring in the clauses, and

 $$ \leftarrow \neg l'_1, \neg l'_2, \neg l'_3$$

 for every clause $l_1 \lor l_2 \lor l_3$, where $l'_i = p$ if $l_i = p$ and $l'_i = \hat{p}$ if $l_i = \neg p$.

November 28, 2012; December 5, 2012 Nebel, Wölfl, Hué – KRR
Some properties I

Proposition

If an atom A belongs to an answer set of a logic program Π then A is the head of one of the rules of Π.

Proposition

Let F and G be sets of rules and let X be a set of atoms. Then the following holds:

$$(F \cup G)^X = \begin{cases} F^X \cup G^X, & \text{if } X \models F \cup G \\ \bot, & \text{otherwise} \end{cases}$$
Some properties II

Proposition

Let F be a set of (non-constraint) rules and G be a set of constraints. A set of atoms X is an answer set of $F \cup G$ iff it is an answer set of F which satisfies G.

Proof.

\implies X satisfies $F \cup G$. Then X satisfies the constraints in G and $(F \cup G)^X$ is $F^X \cup \bot$ which is equivalent to F^X. Consequently X is minimal among the sets satisfying F^X iff it is minimal among the sets satisfying $(F \cup G)^X$.

\impliedby X does not satisfy $F \cup G$. Then there exists a rule in F or a rule in G which is not satisfied, then X cannot be a model of F that satisfies G.

\hspace{1cm} \Box
Smmodels: principles

Smmodels is:

- a Branch and Bound algorithm;
- based on the Gelfond-Lifschitz reduct;
- using reduct as a Forward-Checking procedure.

Example

\[
\begin{align*}
a & :- \neg b. \\
b & :- \neg a. \\
c & :- \neg c, a. \\
a & \\
b & \\
c & \\
\neg c & \\
\neg b & \\
\neg a & \\
\end{align*}
\]
Algorithm 1 Smodels algorithm

1: A := expand(P, A)
2: A := lookahead(P, A)
3: if conflict(P, A) then
4: return false
5: else if A covers Atoms(P) then
6: return stable(P, A)
7: else
8: x := heuristic(P,A)
9: if smodels(P, A ∪ \{X\}) then
10: return true
11: else
12: return smodels(P, A ∪ \{not X\})
13: end if
14: end if
Example

(1) \(a \leftarrow \text{not} b, \text{not} d. \)
(2) \(d \leftarrow \text{not} a. \)
(3) \(b \leftarrow \text{not} c. \)
(4) \(c \leftarrow \text{not} a. \)
(5) \(e \leftarrow \text{not} f, \text{not} a. \)
(6) \(f \leftarrow \text{not} e. \)

Case 1: \(a \subseteq X \)

- (4) cannot be fired,
 \[\rightarrow c \not\subseteq X; \]
- (3) becomes \(c \),
 \[\rightarrow b \subseteq X; \]
- (1) cannot be fired,
 \[\rightarrow a \not\subseteq X; \]
- \(a \not\subseteq X \) and \(a \subseteq X \),
 \[\rightarrow \text{contradiction.} \]

Case 2: \(a \not\subseteq X \)

- (2) becomes \(d \),
 \[\rightarrow d \subseteq X; \]
- (4) becomes \(c \),
 \[\rightarrow c \subseteq X; \]
- (3) cannot be fired,
 \[\rightarrow b \not\subseteq X; \]
- (1) cannot be fired,
 \[\rightarrow a \not\subseteq X; \]
- Nothing new to be expanded.
Smodels example (II)

Example

\[(1) \quad a \leftarrow \text{not}b, \text{not}d. \quad (2) \quad d \leftarrow \text{not}a. \]
\[(3) \quad b \leftarrow \text{not}c. \quad (4) \quad c \leftarrow \text{not}a. \]
\[(5) \quad e \leftarrow \text{not}f, \text{not}a. \quad (6) \quad f \leftarrow \text{not}e. \]

Case 2.1: \(e \subseteq X\)

After reduction:
\[e \leftarrow \text{not}f. \quad f \leftarrow \text{not}e.\]

- (6) cannot be fired,
 \[\rightarrow f \not\subseteq X;\]
- (5) becomes \(e\),
 \[\rightarrow e \subseteq X;\]
- \(X\) covers all atoms, there is no contradiction.
Solution: \(\{c, d, e\}\) is a stable model.
2 Logic of here-and-there
Are the two following logic programs

\[\Pi_1 = a \leftarrow \neg b. \quad b \leftarrow \neg a. \]

and

\[\Pi_2 = a \leftarrow \neg b. \quad b \leftarrow \neg c, \neg a. \]

equivalent?

They are weakly equivalent but not strongly equivalent.
Weak equivalence/strong equivalence

Definition (Weak equivalence)
\(\Pi_1 \) and \(\Pi_2 \) are **weakly equivalent** if they have the same answer sets.

Definition (Strong equivalence)
\(\Pi_1 \) and \(\Pi_2 \) are **strongly equivalent** if for any \(\Pi \), \(\Pi_1 \cup \Pi \) and \(\Pi_2 \cup \Pi \) have the same answer sets.

Example

\[
\begin{align*}
\Pi_1 &= a \leftarrow \lnot b. \quad b \leftarrow \lnot a. \\
\Pi_2 &= a \leftarrow \lnot b. \quad b \leftarrow \lnot c, \lnot a.
\end{align*}
\]

- Do \(\Pi_1 \) and \(\Pi_2 \) have the same answer sets?
- Do \(\Pi_1 \cup \{c.\} \) and \(\Pi_2 \cup \{c.\} \) have the same answer sets?
Logic of here-and-there

One can also consider logic programs through the logic of here-and-there.

- A pair of sets of atoms \((X, Y)\) such that \(X \subseteq Y\) is called an **SE-interpretation**;
- A SE-interpretation \((X, Y)\) is called an **SE-model** iff \(Y \models \Pi\) and \(X \models \Pi^Y\).

Example

\[
\begin{align*}
\text{a} & \leftarrow \text{not b}. & \text{b} & \leftarrow \text{not a}. & \text{c} & \leftarrow \text{a}.
\end{align*}
\]

<table>
<thead>
<tr>
<th>(Y)</th>
<th>(\Pi^Y)</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{a,c}</td>
<td>\text{a. c }\leftarrow\text{ a.}</td>
<td>{a,c}</td>
</tr>
<tr>
<td>{b}</td>
<td>\text{b. c }\leftarrow\text{ a.}</td>
<td>{b}</td>
</tr>
<tr>
<td>{b,c}</td>
<td>\text{b. c }\leftarrow\text{ a.}</td>
<td>{b}, {b,c}</td>
</tr>
<tr>
<td>{a,b,c}</td>
<td>\text{c }\leftarrow\text{ a.}</td>
<td>{\emptyset}, {b}, {a,c}, {a,b,c}</td>
</tr>
</tbody>
</table>

November 28, 2012; December 5, 2012 Nebel, Wölfl, Hué – KRR
Answer set definition II

Proposition (Characterization of answer sets)

\(Y \) is an answer set of \(\Pi \) iff \((Y, Y)\) is an SE-model of \(\Pi \) and there is no \((X, Y)\) within the SE-models of \(\Pi \) such that \(X \subset Y \).

Example

\[a \rightarrow \neg b. \quad b \leftarrow \neg a. \quad c \leftarrow a. \]

<table>
<thead>
<tr>
<th>(Y)</th>
<th>(\Pi^Y)</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{a, c}</td>
<td>a. c \leftarrow a.</td>
<td>{a, c}</td>
</tr>
<tr>
<td>{b}</td>
<td>b. c \leftarrow a.</td>
<td>{b}</td>
</tr>
<tr>
<td>{b, c}</td>
<td>b. c \leftarrow a.</td>
<td>{b}, {b, c}</td>
</tr>
<tr>
<td>{a, b, c}</td>
<td>c \leftarrow a.</td>
<td>{\emptyset}, {b}, {a, c}, {a, b, c}</td>
</tr>
</tbody>
</table>

Thus, there are two answer sets here: \{b\} and \{a, c\}

The set of SE-models of \(\Pi \) is denoted by \(SE(\Pi) \).
Strong equivalence: properties

Proposition

The logic programs Π_1 and Π_2 are strongly equivalent iff they have the same set of SE-models.

Lemma

1. Programs with the same SE-models are weakly equivalent.
2. The SE-models of $\Pi_1 \cup \Pi_2$ are exactly the SE-models common to Π_1 and Π_2.

Proof.

\iff Π_1 and Π_2 have the same SE-models. Consider Π. By lemma 2: $\Pi_1 \cup \Pi$ and $\Pi_2 \cup \Pi$ have the same SE-models. By lemma 1: $\Pi_1 \cup \Pi$ and $\Pi_2 \cup \Pi$ are weakly equivalent.

Proof.

\Rightarrow Assume $\exists (X, Y) \in SE(\Pi_1)$ and $(X, Y) \notin SE(\Pi_2)$. Two cases:
3 SAT translations of ASP

- Positive-order consistent logic programs
- Clark’s completion
- CLASP solver
Definition (Dependency graph)

The dependency graph of a program Π is the directed graph G such that the vertexes of G are the atoms in Π, and G has an edge from a_0 to a_1, \ldots, a_m for each rule of the form $a_0 \leftarrow a_1, \ldots, a_m, \neg a_{m+1}, \ldots, \neg a_n$ in Π with $a_0 \neq \bot$.

Example

\[\Pi = \left\{ \begin{array}{c}
 a \leftarrow b. \\
 b \leftarrow a. \\
 a \leftarrow \neg c. \\
 c \leftarrow d. \\
 d \leftarrow c. \\
 c \leftarrow \neg a.
\end{array} \right\} \]

\[\begin{array}{c}
 d \rightarrow c \\
 b \rightarrow a
\end{array} \]
Clark’s completion

- For each \(p \in \text{Atoms}(\Pi) \), let \(p \leftarrow B_1, \ldots, p \leftarrow B_n \) be all the rules about \(p \in \Pi \), then \(p \equiv B_1 \lor \ldots \lor B_n \) is in \(\text{Comp}(\Pi) \). In particular, if \(n = 0 \) then the equivalence is \(p \equiv \bot \), which is equivalent to \(\neg p \).

- If \(\leftarrow B \) is a constraint in \(\Pi \), then \(\neg B \) is in \(\text{Comp}(\Pi) \).

Example

\[
\Pi = \{ \begin{array}{c}
a \leftarrow b. \\
b \leftarrow a. \\
c \leftarrow d. \\
a \leftarrow \neg c. \\
d \leftarrow c. \\
c \leftarrow \neg a. \\
\end{array} \}
\]

\[
\text{Comp}(\Pi) = \{ \begin{array}{c}
a \equiv \neg c \lor b \\
b \equiv a \\
c \equiv \neg a \lor d \\
d \equiv c \\
\end{array} \}
\]

\(\text{Comp}(\Pi) \) has 3 models: \(\{a,b\} \), \(\{c,d\} \) and \(\{a,b,c,d\} \).
Tight programs

Definition (Tight program)

A logic program Π is said to be **tight** (or positive-order consistent) if its dependency graph is cycle-free.

Example

$\Pi = \{ \begin{align*}
 d & \leftarrow b. \quad b & \leftarrow a. \quad a & \leftarrow \text{not } c. \\
 d & \leftarrow b. \quad b & \leftarrow c. \quad c & \leftarrow \text{not } a.
\end{align*} \}$
Proposition

If Π *is a positive-order consistent logic program, then* X *is an answer set of* Π *if and only if* X *is a model of* $\text{Comp}(\Pi)$.

Example

\[
\Pi = \left\{ \begin{array}{c}
 a \leftarrow b. \quad b \leftarrow a. \quad a \leftarrow \neg c. \\
 c \leftarrow d. \quad d \leftarrow c. \quad c \leftarrow \neg a.
\end{array} \right\}
\]

\[
\text{Comp}(\Pi) = \left\{ \begin{array}{c}
 a \equiv \neg c \lor b. \quad b \equiv a. \\
 c \equiv \neg a \lor d. \quad d \equiv c.
\end{array} \right\}
\]

$\text{Comp}(\Pi)$ *has 3 models:* \{a, b\}, \{c, d\} *and* \{a, b, c, d\}.
Tightness and Clark’s completion (proof)

Definition (Well-supported model)

M is a well-supported model of Π if there exists a grounding sequence for M, i.e., there exists an order $<$ between rules such that for every rule $r \in \Pi$ with $a = \text{head}(r)$ and $M \models \text{body}(r)$, then $\forall b \in \text{body}^+(r), b < a$.

Theorem

If Π is a tight logic program then the model of $\text{Comp}(\Pi)$ are exactly the answer sets of Π.
Proof.

\(\Rightarrow \) If \(X \) is an answer set of \(\Pi \), then it is a well-supported model of \(\Pi \), then it is a minimal Herbrand model of \(\Pi \), then it is a model of \(\text{Comp}(\Pi) \).

\(\Leftarrow \) Assume that \(M \) is model of \(\text{Comp}(\Pi) \) but not a well-supported model of \(\Pi \). \(\exists x \in M \) that cannot be finitely justified. \(M \) being a supported model of \(\text{Comp}(\Pi) \), then \(\exists r \in \Pi \) with \(x = \text{head}(r) \) and \(M \models \text{body}(r) \). Thus, there exists \(y \in M \) which is upper in the dependency graph that cannot be justified and thus, there exists a \(z \in M \) such that, etc... There is an infinite chain in the dependency graph which is contradictory with the tightness hypothesis.
Loops

Definition (Loop)

A loop of Π is a set L of atoms such that for each pair A, A' of atoms in L there is a path from A to A' in the dependency graph of Π whose intermediate nodes belong to L.

$$R^+(L, \Pi) = \{ p \leftarrow G \mid (p \leftarrow G) \in \Pi, p \in L, (\exists q) \text{ s.t. } q \in G \land q \in L \}$$

$$R^-(L, \Pi) = \{ p \leftarrow G \mid (p \leftarrow G) \in \Pi, p \in L, \neg(\exists q) \text{ s.t. } q \in G \land q \in L \}$$

Example

$$\Pi = \{ \begin{array}{l}
a \leftarrow b. \\
b \leftarrow a. \\
c \leftarrow d. \\
d \leftarrow c. \\
a \leftarrow \text{not} \ c. \\
c \leftarrow \text{not} \ a.
\end{array} \}$$

$$R^+(L_1, \Pi) = \{ a \leftarrow b. \quad b \leftarrow a. \} \quad R^-(L_1, \Pi) = \{ a \leftarrow \text{not} \ c. \}$$

$$R^+(L_2, \Pi) = \{ c \leftarrow d. \quad d \leftarrow c. \} \quad R^-(L_2, \Pi) = \{ c \leftarrow \text{not} \ a. \}$$
Loop formulas

Definition (Loop formulas)

Let $R^-(L, \Pi)$ be the following rules:

\[
p_1 \leftarrow B_{11} \quad \cdots \quad p_1 \leftarrow B_{1k_1} \\
\vdots \\
p_n \leftarrow B_{n1} \quad \cdots \quad p_n \leftarrow B_{nk_n}
\]

The loop formula associated with L is the following implication:

\[
\neg \left[B_{11} \lor \cdots \lor B_{1k_1} \lor \cdots \lor B_{n1} \lor \cdots \lor B_{nk_n} \right] \rightarrow \bigwedge_{p \in L} \neg p
\]

Example

\[
R^+(L_1, \Pi) = \{ a \leftarrow b, \ b \leftarrow a \} \quad R^-(L_1, \Pi) = \{ a \leftarrow \text{not } c \} \\
R^+(L_2, \Pi) = \{ c \leftarrow d, \ d \leftarrow c \} \quad R^-(L_2, \Pi) = \{ c \leftarrow \text{not } a \}
\]

\[
LF(L_1) : c \rightarrow (\neg a \land \neg b) \quad LF(L_2) : a \rightarrow (\neg c \land \neg d)
\]
Clark + loop formulae

Theorem

Let \(\Pi \) be a logic program, then the models of \(\text{Comp}(\Pi) \cup \text{LF}(\Pi) \) are exactly the answer sets of \(\Pi \).

Example

\[
\Pi = \left\{ \begin{array}{ll}
a & \leftarrow b. \\
b & \leftarrow a. \\
c & \leftarrow d. \\
d & \leftarrow c. \\
a & \leftarrow \neg c. \\
c & \leftarrow \neg a. \\
\end{array} \right\}
\]

\[
\text{Comp}(\Pi) \cup \text{LF}(\Pi) = \left\{ \begin{array}{ll}
a & \equiv \neg c \lor b \\
b & \equiv a \\
c & \equiv \neg a \lor d \\
d & \equiv c \\
c & \rightarrow (\neg a \land \neg b) \\
a & \rightarrow (\neg c \land \neg d) \\
\end{array} \right\}
\]
Definition (Body clauses)

Let β be a body of a rule $\beta = \{p_1, \ldots, p_m, \neg p_{m+1}, \ldots, \neg p_n\}$, then:

- $\delta(\beta) = \{\beta \lor \neg p_1 \lor \ldots \lor p_m \lor \neg p_{m+1} \lor \ldots \lor \neg p_n\}$
- $\Delta(\beta) = \{\neg \beta \lor p_1\}, \ldots, \{\neg \beta \lor p_m\}, \{\neg \beta \lor \neg p_{m+1}\}, \ldots, \{\neg \beta \lor \neg p_n\}$

Example

$$\Pi = \left\{ \begin{array}{llllll}
 a & \leftarrow & b. & b & \leftarrow & a. & a & \leftarrow & \neg c. \\
 c & \leftarrow & d. & d & \leftarrow & c. & c & \leftarrow & \neg a.
 \end{array} \right\}$$

$$\Pi = \left\{ \begin{array}{llllllll}
 \beta_1 \lor \neg b & \beta_2 \lor \neg a & \beta_3 \lor c & \beta_4 \lor \neg d & \beta_5 \lor \neg c & \beta_6 \lor a \\
 \neg \beta_1 \lor b & \neg \beta_2 \lor a & \neg \beta_3 \lor \neg c & \neg \beta_4 \lor d & \neg \beta_5 \lor c & \neg \beta_6 \lor \neg a.
 \end{array} \right\}$$
CLASP translation II

Definition (Atoms clauses)

Let \(p \) be an atom appearing as head of rules whose body are \(\{ \beta_1, ..., \beta_k \} \), then:

\[
\Delta(p) = \{ \{ p \lor \neg \beta_1 \}, ..., \{ p \lor \neg \beta_k \} \}
\]

\[
\delta(p) = \{ \neg p \lor \beta_1 \lor ... \lor \beta_k \}
\]

Example

\[
\Pi = \{ \begin{array}{c}
a \leftarrow b. \quad b \leftarrow a. \quad a \leftarrow \text{not c.} \\
c \leftarrow d. \quad d \leftarrow c. \quad c \leftarrow \text{not a.}
\end{array} \}
\]

\[
\Pi = \{ \begin{array}{c}
a \lor \neg \beta_1 \\
b \lor \neg \beta_2 \\
a \lor \neg \beta_3 \\
c \lor \neg \beta_4 \\
d \lor \neg \beta_5 \\
c \lor \neg \beta_6 \\
\neg a \lor \beta_1 \lor \beta_3 \\
\neg b \lor \beta_2 \\
\neg c \lor \beta_4 \lor \beta_6 \\
\neg d \lor \beta_5
\end{array} \}
\]
CLASP translation III

Definition (External body)
For a program Π and some $U \subseteq \text{Atoms}(\Pi)$, we define the external bodies of U for Π, $EB_\Pi(U)$ as

$$\{\text{body}(r) \mid r \in \Pi, \text{head}(r) \in U, \text{body}(r) \cap U = \emptyset\}$$

Definition (Loop clause)
For a set $U \subseteq \text{Atoms}(\Pi)$ and an atom $p \in U$:

$$\lambda(p, U) = \{\beta_1 \lor \ldots \lor \beta_k \lor \neg p\}$$

where $EB_\Pi(U) = \{\beta_1, \ldots, \beta_k\}$.

We define $\Lambda_\Pi = \bigcup_{U \subseteq \text{Atoms}(\Pi), U \neq \emptyset} \{\lambda(p, U) \mid p \in U\}$.
Proposition

\(X \) is an answer set of \(\Pi \) iff \(X \cap \text{Atoms}(\Pi) \) is a model of the following CNF:

\[
\land_{\Pi} \cup \Delta(p) \cup \delta(p) \cup \delta(\beta) \cup \Delta(\beta)
\]
Literature

Michael Gelfond and Vladimir Lifschitz.
The stable models semantics for logic programming.

Francois Fages.
Consistency of Clark’s completion and existence of stable models.
Meth. of Logic in CS, p51-60, 1994.

Hudson Turner.
Strong equivalence made easy: nested expressions and weight constraints.
Literature

Martin Gebser and Benjamin Kaufmann and André Neumann and Torsten Schaub.
Conflict-Driven Answer Set Solving.

Ilkka Niemelä and Patrik Simons
Efficient Implementation of the Well-founded and Stable Model Semantics.