Principles of Knowledge Representation and Reasoning Nonmonotonic Reasoning

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel, Stefan Wölfl, and Julien Hué

November 21, 23 & 28, 2012

Introduction

Motivation

Different forms of reasoning

Different formalizations

Default Logic

Complexity

Special Kinds of Defaults

Literature

Introduction

UNI FREIBURG

Introduction

Motivation

Different forms of reasoning

Different formalizations

Default Logic

Complexity

Special Kinds of Defaults

- If Mary has an essay to write, she will study late in the library.
- She has an essay to write.

UNI FREIBURG

Introduction

Motivation

Different forms of reasoning

Different formalizations

Default Logic

Complexity

Special Kinds of Defaults

Literature

- If Mary has an essay to write, she will study late in the library.
- She has an essay to write.

What do you conclude?

A reasoning task

- If Mary has an essay to write, she will study late in the library.
- She has an essay to write.

In empirical studies 95% of all subjects conclude (modus ponens):

She will study late in the library.

Introduction

Motivation

Different forms of reasoning

Different formalizations

Default Logic

Complexity

Special Kinds of Defaults

UNI FREIBURG

Introduction

Motivation

Different forms of reasoning

Different formalizations

Default Logic

Complexity

Special Kinds of Defaults

Literature

- If Mary has an essay to write, she will study late in the library.
- If the library is open, she will study late in the library.
- She has an essay to write.

What do you conclude now?

- If Mary has an essay to write, she will study late in the library.
- If the library is open, she will study late in the library.
- She has an essay to write.

In cognitive studies now only 60% of the subjects conclude:

She will study late in the library.

Introduction

Motivation

DRG

2

Different forms of reasoning

Different formalizations

Default Logic

Complexity

Special Kinds of Defaults

- If Mary has an essay to write, she will study late in the library.
- She has an essay to write.
- Conclusion?
 - She will study late in the library.

Reasoning tasks like this (suppression task; Byrne, 1989) suggest that humans often do reason as suggested by classical logics

A reasoning task

DRG

Introductio

Motivation

Different forms of reasoning

Different formalizations

Default Logic

Complexity

Special Kinds of Defaults

All logics presented so far are monotonic.

- A logic is called monotonic if all (logical) conclusions from a knowledge base remain justified when new information is added to the knowledge base.
- Cognitive studies indicate that everyday reasoning is often nonmonotonic (Stenning & Lambalgen, 2008; Johnson-Laird, 2010, etc.).
- When humans reason they use:
 - rules that may have exceptions:
 - If Mary has an essay to write, she normally will study late in the library.
 - default assumptions:
 - The library is open.

Motivation

m

Different forms of reasoning

Different formalizations

Default Logic

Complexity

Special Kinds of Defaults

- All logics presented so far are monotonic.
- A logic is called monotonic if all (logical) conclusions from a knowledge base remain justified when new information is added to the knowledge base.
- Cognitive studies indicate that everyday reasoning is often nonmonotonic (Stenning & Lambalgen, 2008; Johnson-Laird, 2010, etc.).
- When humans reason they use:
 - rules that may have exceptions:
 - If Mary has an essay to write, she normally will study late in the library.
 - default assumptions:
 - The library is open.

Motivation

8

Different forms of reasoning

Different formalizations

Default Logic

Complexity

Special Kinds of Defaults

- All logics presented so far are monotonic.
- A logic is called monotonic if all (logical) conclusions from a knowledge base remain justified when new information is added to the knowledge base.
- Cognitive studies indicate that everyday reasoning is often nonmonotonic (Stenning & Lambalgen, 2008; Johnson-Laird, 2010, etc.).

When humans reason they use:

- rules that may have exceptions:
 - If Mary has an essay to write, she normally will study late in the library
- default assumptions:
 - The library is open.

Introduction

Motivation

8

Different forms of reasoning

Different formalizations

Default Logic

Complexity

Special Kinds of Defaults

- All logics presented so far are monotonic.
- A logic is called monotonic if all (logical) conclusions from a knowledge base remain justified when new information is added to the knowledge base.
- Cognitive studies indicate that everyday reasoning is often nonmonotonic (Stenning & Lambalgen, 2008; Johnson-Laird, 2010, etc.).
- When humans reason they use:

 rules that may have exceptions:
 If Mary has an essay to write, she normally will study late in the library.
 default assumptions:

The library is open.

Introduction

Motivation

8

Different forms of reasoning

Different formalizations

Default Logic

Complexity

Special Kinds of Defaults

- All logics presented so far are monotonic.
- A logic is called monotonic if all (logical) conclusions from a knowledge base remain justified when new information is added to the knowledge base.
- Cognitive studies indicate that everyday reasoning is often nonmonotonic (Stenning & Lambalgen, 2008; Johnson-Laird, 2010, etc.).
- When humans reason they use:
 - rules that may have exceptions:

If Mary has an essay to write, she normally will study late in the library.

default assumptions:

The library is open.

Introduction

Motivation

Ē

Different forms of reasoning

Different formalizations

Default Logic

Complexity

Special Kinds of Defaults

- All logics presented so far are monotonic.
- A logic is called monotonic if all (logical) conclusions from a knowledge base remain justified when new information is added to the knowledge base.
- Cognitive studies indicate that everyday reasoning is often nonmonotonic (Stenning & Lambalgen, 2008; Johnson-Laird, 2010, etc.).
- When humans reason they use:
 - rules that may have exceptions:

If Mary has an essay to write, she normally will study late in the library.

default assumptions:

The library is open.

Motivation

Ē

Different forms of reasoning

Different formalizations

Default Logic

Complexity

Special Kinds of Defaults

Defaults in knowledge bases

Often we use default assumptions when definite information is not available or when we want to fix a standard value:

- 1 employee(anne)
- 2 employee(bert)
- 3 employee(carla)
- 4 employee(detlef)
- 5 employee(thomas)
- onUnpaidMPaternityLeave(thomas)
- Z employee(X) ∧¬ onUnpaidMPaternityLeave(X) → gettingSalary(X)
- **Typically:** employee(X) $\rightarrow \neg$ onUnpaidMPaternityLeave(X)

listra du ati

M

Motivation

Different forms of reasoning

Different formalizations

Default Logic

Complexity

Special Kinds of Defaults

Defaults in knowledge bases

Often we use default assumptions when definite information is not available or when we want to fix a standard value:

- 1 employee(anne)
- 2 employee(bert)
- 3 employee(carla)
- 4 employee(detlef)
- 5 employee(thomas)
- onUnpaidMPaternityLeave(thomas)
- 7 employee(X) ∧¬ onUnpaidMPaternityLeave(X) → gettingSalary(X)
- **Typically:** employee(X) $\rightarrow \neg$ onUnpaidMPaternityLeave(X)

E C

M

Introductior

Motivation

Different forms of reasoning

Different formalizations

Default Logic

Complexity

Special Kinds of Defaults

Defaults in knowledge bases

Often we use default assumptions when definite information is not available or when we want to fix a standard value:

- 1 employee(anne)
- 2 employee(bert)
- 3 employee(carla)
- 4 employee(detlef)
- 5 employee(thomas)
- onUnpaidMPaternityLeave(thomas)
- 7 employee(X) ∧¬ onUnpaidMPaternityLeave(X) → gettingSalary(X)
- **B** Typically: employee(X) $\rightarrow \neg$ onUnpaidMPaternityLeave(X)

.

2

Introduction

Motivation

Different forms of reasoning

Different formalizations

Default Logic

Complexity

Special Kinds of Defaults

Defaults in common sense reasoning

- **1** Tweety is a bird like other birds.
- 2 During the summer he stays in Northern Europe, in the winter he stays in Africa.
- Would you expect Tweety to be able to fly?
- How does Tweety get from Northern Europe to Africa?

How would you formalize this in formal logic so that you get the expected answers?

Introduction

Motivation

Different forms of reasoning

Different formalizations

Default Logic

Complexity

Special Kinds of Defaults

Defaults in common sense reasoning

- 1 Tweety is a bird like other birds.
- 2 During the summer he stays in Northern Europe, in the winter he stays in Africa.
- Would you expect Tweety to be able to fly?
- How does Tweety get from Northern Europe to Africa?

How would you formalize this in formal logic so that you get the expected answers?

Introduction

Motivation

Different forms of reasoning

Different formalizations

Default Logic

Complexity

Special Kinds of Defaults

Defaults in common sense reasoning

- 1 Tweety is a bird like other birds.
- 2 During the summer he stays in Northern Europe, in the winter he stays in Africa.
- Would you expect Tweety to be able to fly?
- How does Tweety get from Northern Europe to Africa?

How would you formalize this in formal logic so that you get the expected answers?

Introduction

Motivation

DRD

Different forms of reasoning

Different formalizations

Default Logic

Complexity

Special Kinds of Defaults

A formalization ...

- 2 spend-summer(tweety, northern-europe) spend-winter(tweety, africa)
- $\exists \forall x(\mathsf{bird}(x) \to \mathsf{can-fly}(x))$
- 4 far-away(northern-europe, africa)
- **5** $\forall xyz(\text{can-fly}(x) \land \text{far-away}(y,z) \land \text{spend-summer}(x,y) \land \text{spend-winter}(x,z) → \text{flies}(x,y,z))$
- But: The implication (3) is just a reasonable assumption.
- What if Tweety is an emu?

Motivation

2

Different forms of reasoning

Different formalizations

Default Logic

Complexity

Special Kinds of Defaults

A formalization ...

- 2 spend-summer(tweety, northern-europe) spend-winter(tweety, africa)
- $\exists \forall x(\mathsf{bird}(x) \to \mathsf{can-fly}(x))$
- 4 far-away(northern-europe, africa)
- **5** $\forall xyz(\text{can-fly}(x) \land \text{far-away}(y,z) \land \text{spend-summer}(x,y) \land \text{spend-winter}(x,z) → \text{flies}(x,y,z))$
- But: The implication (3) is just a reasonable assumption.
- What if Tweety is an emu?

formalizations

Complexity

Special Kinds of Defaults

Examples of such reasoning patterns

Closed world assumption: Database of ground atoms. All ground atoms not present are assumed to be false. Negation as failure: In PROLOG, NOT(P) means "P is not

provable" instead of "P is provably false".

Non-strict inheritance: An attribute value is inherited only if there is no more specialized information contradicting the attribute value.

Reasoning about actions: When reasoning about actions, it is usually assumed that a property changes only if it has to change, i.e., properties by default do not change.

Introduction

Motivation

2

Different forms of reasoning

Different formalizations

Default Logic

Complexity

Special Kinds of Defaults

Default, defeasible, and nonmonotonic reasoning

 Default reasoning: Jump to a conclusion if there is no information that contradicts the conclusion.
 Defeasible reasoning: Reasoning based on assumptions that can turn out to be wrong: conclusions are defeasible. In particular, default reasoning is defeasible.

Nonmonotonic reasoning: In classical logic, the set of consequences grows monotonically with the set of premises. If reasoning is defeasible, then reasoning becomes nonmonotonic.

Introduction

Motivation

DRG

Different forms of reasoning

Different formalizations

Default Logic

Complexity

Special Kinds of Defaults

Approaches to nonmonotonic reasoning

- Consistency-based: Extend classical theory by rules that test whether an assumption is consistent with existing beliefs
- ⇒ Nonmonotonic logics such as DL (default logic), NMLP (nonmonotonic logic programming)
 - Entailment-based on normal models: Models are ordered by normality. Entailment is determined by considering the most normal models only.
- \Rightarrow Circumscription, preferential and cumulative logics

Introduction

Motivation

Different forms of reasoning

Different formalizations

Default Logic

Complexity

Special Kinds of Defaults

Approaches to nonmonotonic reasoning

- Consistency-based: Extend classical theory by rules that test whether an assumption is consistent with existing beliefs
- ⇒ Nonmonotonic logics such as DL (default logic), NMLP (nonmonotonic logic programming)
 - Entailment-based on normal models: Models are ordered by normality. Entailment is determined by considering the most normal models only.
- ⇒ Circumscription, preferential and cumulative logics

Introduction

Motivation

Different forms of reasoning

Different formalizations

Default Logic

Complexity

Special Kinds of Defaults

NM Logic - Consistency-based

If φ typically implies ψ , φ is given, and it is consistent to assume ψ , then conclude ψ .

- **1** Typically bird(x) implies can-fly(x)
- 2 $\forall x (\operatorname{emu}(x) \rightarrow \operatorname{bird}(x))$
- $\exists \forall x (\operatorname{emu}(x) \to \neg \operatorname{can-fly}(x))$
- 4 bird(tweety)

\Rightarrow can-fly(tweety)

5 ... + emu(tweety)

$\Rightarrow \neg$ can-fly(tweety)

Motivation

DRG

M

Different forms of reasoning

Different formalizations

Default Logic

Complexity

Special Kinds of Defaults

NM Logic - Consistency-based

If φ typically implies ψ , φ is given, and it is consistent to assume ψ , then conclude ψ .

- **Typically** bird(x) implies can-fly(x)
- 2 $\forall x (\operatorname{emu}(x) \rightarrow \operatorname{bird}(x))$
- $\exists \forall x (\operatorname{emu}(x) \to \neg \operatorname{can-fly}(x))$
- 4 bird(tweety)

\Rightarrow can-fly(tweety)

```
5 ... + emu(tweety)
```

Introduction

Motivation

DRG

M

Different forms of reasoning

Different formalizations

Default Logic

Complexity

Special Kinds of Defaults

NM Logic - Consistency-based

If φ typically implies ψ , φ is given, and it is consistent to assume ψ , then conclude ψ .

- **Typically** bird(x) implies can-fly(x)
- 2 $\forall x (\operatorname{emu}(x) \rightarrow \operatorname{bird}(x))$
- $\exists \forall x (\operatorname{emu}(x) \to \neg \operatorname{can-fly}(x))$
- 4 bird(tweety)
- \Rightarrow can-fly(tweety)
 - 5 ... + emu(tweety)
- $\Rightarrow \neg \text{ can-fly(tweety)}$

Motivation

M

Different forms of reasoning

Different formalizations

Default Logic

Complexity

Special Kinds of Defaults

NM Logic – Normal models

If φ typically implies ψ , then the models satisfying $\varphi \land \psi$ should be more normal than those satisfying $\varphi \land \neg \psi$.

Similar idea: try to minimize the interpretation of "Abnormality predicates.

- $\forall x(\operatorname{bird}(x) \land \neg \operatorname{Ab}(x) \to \operatorname{can-fly}(x))$
- 2 $\forall x (\operatorname{emu}(x) \rightarrow \operatorname{bird}(x))$
- $\forall x(\operatorname{emu}(x) \to \neg \operatorname{can-fly}(x))$
- 4 bird(tweety)

Minimize interpretation of Ab: \Rightarrow can-fly(tweety)

5 ... + emu(tweety)

\Rightarrow Now in all models (incl. the normal ones): \neg can-fly(tweety)

UNI FREIBURG

Introduction

Motivation

Different forms of reasoning

Different formalizations

Default Logic

Complexity

Special Kinds of Defaults

Similar idea: try to minimize the interpretation of "Abnormality" predicates.

- $\forall x(\mathsf{bird}(x) \land \neg \mathsf{Ab}(x) \to \mathsf{can-fly}(x))$
- $\forall x (\operatorname{emu}(x) \to \operatorname{bird}(x))$
- $\forall x(emu(x) \rightarrow \neg can-fly(x))$
- 4 bird(tweety)

Minimize interpretation of Ab: \Rightarrow can-fly(tweety)

```
5 ... + emu(tweety)
```

 \Rightarrow Now in all models (incl. the normal ones): \neg can-fly(tweety)

BURG

N N N

Different

formalizations

Complexity

Similar idea: try to minimize the interpretation of "Abnormality" predicates.

- $\forall x(\mathsf{bird}(x) \land \neg \mathsf{Ab}(x) \to \mathsf{can-fly}(x))$
- $\forall x(\operatorname{emu}(x) \to \operatorname{bird}(x))$
- $\exists \forall x (\operatorname{emu}(x) \to \neg \operatorname{can-fly}(x))$
- 4 bird(tweety)

$\begin{array}{l} \mbox{Minimize interpretation of Ab:} \\ \mbox{\Rightarrow can-fly(tweety)$} \end{array}$

5 ... + emu(tweety)

 \Rightarrow Now in all models (incl. the normal ones): \neg can-fly(tweety)

Introduction

Motivation

Different forms of reasoning

Different formalizations

Default Logic

Complexity

Special Kinds of Defaults

Similar idea: try to minimize the interpretation of "Abnormality" predicates.

- $\forall x(\mathsf{bird}(x) \land \neg \mathsf{Ab}(x) \to \mathsf{can-fly}(x))$
- $\forall x(\operatorname{emu}(x) \to \operatorname{bird}(x))$
- $\exists \forall x (\operatorname{emu}(x) \to \neg \operatorname{can-fly}(x))$
- 4 bird(tweety)

Minimize interpretation of Ab: \Rightarrow can-fly(tweety)

5 ... + emu(tweety)

 \Rightarrow Now in all models (incl. the normal ones): \neg can-fly(tweety)

Introduction

Motivation

Different forms of reasoning

Different formalizations

Default Logic

Complexity

Special Kinds of Defaults

Similar idea: try to minimize the interpretation of "Abnormality" predicates.

- $\forall x(\mathsf{bird}(x) \land \neg \mathsf{Ab}(x) \to \mathsf{can-fly}(x))$
- $\forall x(\operatorname{emu}(x) \to \operatorname{bird}(x))$
- $\exists \forall x (\operatorname{emu}(x) \to \neg \operatorname{can-fly}(x))$
- 4 bird(tweety)

Minimize interpretation of Ab: \Rightarrow can-fly(tweety)

5 ... + emu(tweety)

 \Rightarrow Now in all models (incl. the normal ones): \neg can-fly(tweety)

UNI FREIBURG

Introduction

Motivation

Different forms of reasoning

Different formalizations

Default Logic

Complexity

Special Kinds of Defaults

Introduction

Default Logic

Basics

Extension:

Properties of extensions

Normal defaults

Default proofs

Decidability

Complexity

Special Kinds of Defaults

Literature

Default Logic

Default Logic – Outline

Introduction

Default Logic

Basics Extensions Properties of extensions Normal defaults Default proofs Decidability

Complexity of Default Logic

Special Kinds of Defaults

November 21, 23 & 28, 2012

UNI FREIBURG

Introduction

Default Logic

Basics

Extensions

roperties or stonsions

Normal defaults

Default proofs

Decidability

Complexity

Special Kinds of Defaults

Reiter's default logic: motivation

We want to express something like "typically birds fly".

Add non-logical inference rule

 $\frac{\operatorname{bird}(x):\operatorname{can-fly}(x)}{\operatorname{can-fly}(x)}$

with the intended meaning: If x is a bird and if it is consistent to assume that x can fly, then conclude that x can fly.

Exceptions can be represented as formulae:

 $orall x(\operatorname{penguin}(x)
ightarrow \neg \operatorname{can-fly}(x)) \ orall x(\operatorname{emu}(x)
ightarrow \neg \operatorname{can-fly}(x)) \ orall x(\operatorname{kiwi}(x)
ightarrow \neg \operatorname{can-fly}(x))$

UNI FREIBURG

Introduction

Default Logic

Basics

Extensions

Properties of extensions Normal defaults Default proofs Decidability

Complexity

Special Kinds of Defaults

Reiter's default logic: motivation

We want to express something like "typically birds fly".

Add non-logical inference rule

 $\frac{\operatorname{bird}(x):\operatorname{can-fly}(x)}{\operatorname{can-fly}(x)}$

with the intended meaning: If x is a bird and if it is consistent to assume that x can fly, then conclude that x can fly.

Exceptions can be represented as formulae:

 $orall x(\operatorname{penguin}(x)
ightarrow \neg \operatorname{can-fly}(x))$ $orall x(\operatorname{emu}(x)
ightarrow \neg \operatorname{can-fly}(x))$ $orall x(\operatorname{kiwi}(x)
ightarrow \neg \operatorname{can-fly}(x))$

UNI FREIBURO

Introduction

Default Logic

Basics

Extensions

axtensions Normal defaults Default proofs

Complexity

Special Kinds of Defaults

Formal framework

■ FOL with classical provability relation \vdash and deductive closure: Th(Φ) := { $\phi | \Phi \vdash \phi$ }

- α: Prerequisite: must have been derived before rule can l applied.
 - β : Consistency condition: the negation may not be derivable.
 - γ : Consequence: will be concluded.
- A default rule is closed if it does not contain free variables.
- (Closed) default theory: A pair (D, W), where D is a countable set of (closed) default rules and W is a countable set of FOL formulae.

UNI FREIBURG

Introduction

Default Logic

Basics

Extensions

Properties of extensions Normal defaults

Default proofs

Complexity

Special Kinds of Defaults

Formal framework

■ FOL with classical provability relation \vdash and deductive closure: Th(Φ) := { $\phi | \Phi \vdash \phi$ }

- Default rules: $\frac{\alpha:\beta}{\gamma}$
 - Prerequisite: must have been derived before rule can be applied.
 - β : Consistency condition: the negation may not be derivable.
 - γ : Consequence: will be concluded.
- A default rule is closed if it does not contain free variables.
- (Closed) default theory: A pair (D, W), where D is a countable set of (closed) default rules and W is a countable set of FOL formulae.

Introduction

Default Logic

Basics

Extensions

Properties of extensions Normal defaults Default proofs

Complexity

Special Kinds of Defaults

Default theories extend the theory given by W using the default rules in D (\rightsquigarrow extensions). There may be zero, one, or many extensions.

Example

$$W = \{a, \neg b \lor \neg c\}$$
$$D = \left\{\frac{a:b}{b}, \frac{a:c}{c}\right\}$$

One extension contains *b*, the other contains *c*.

Intuitively, an extension is a set of beliefs resulting from *W* and *D*.

Introduction

DRG

2

Default Logic

Basics

Extensions

Properties of extensions Normal defaults Default proofs

Complexity

Special Kinds of Defaults

Default theories extend the theory given by W using the default rules in D (\rightsquigarrow extensions). There may be zero, one, or many extensions.

Example

$$W = \{a, \neg b \lor \neg c\}$$
$$D = \left\{\frac{a:b}{b}, \frac{a:c}{c}\right\}$$

One extension contains *b*, the other contains *c*.

Intuitively, an extension is a set of beliefs resulting from *W* and *D*.

Introduction

DRG

Default Logic

Basics

Extensions

Properties of extensions Normal defaults Default proofs

Complexity

Special Kinds of Defaults

Default theories extend the theory given by W using the default rules in D (\rightsquigarrow extensions). There may be zero, one, or many extensions.

Example

$$W = \{a, \neg b \lor \neg c\}$$
$$D = \left\{\frac{a:b}{b}, \frac{a:c}{c}\right\}$$

One extension contains *b*, the other contains *c*.

Intuitively, an extension is a set of beliefs resulting from W and D.

November 21, 23 & 28, 2012 N

Nebel, Wölfl, Hué - KRR

Introduction

Default Logic

Basics

DRG

Extensions

Properties of extensions Normal defaults Default proofs Decidability

Complexity

Special Kinds of Defaults

Decision problems about extensions in default logic

Existence of extensions: Does a default theory have an extension?

Credulous reasoning: If φ is in at least one extension, φ is a credulous default conclusion.

Skeptical reasoning: If φ is in all extensions, φ is a skeptical default conclusion.

Introduction

Default Logic

Basics

DRG

8

Extensions

Properties of extensions Normal defaults

Detault proofs

Complexity

Special Kinds of Defaults

Decision problems about extensions in default logic

Existence of extensions: Does a default theory have an extension?

Credulous reasoning: If φ is in at least one extension, φ is a credulous default conclusion.

Skeptical reasoning: If φ is in all extensions, φ is a skeptical default conclusion.

Introduction

Default Logic

Basics

DRD

Extensions

Properties of extensions Normal defaults Default proofs

Complexity

Special Kinds of Defaults

Extensions (informally)

Desirable properties of an extension *E* of $\langle D, W \rangle$:

- 1 Contains all facts: $W \subseteq E$.
- 2 Is deductively closed: E = Th(E).
- All applicable default rules have been applied:
 If

1
$$\left(\frac{\alpha:\beta}{\gamma}\right) \in D$$
,
2 $\alpha \in E$,

 $\exists \neg \beta \notin E$ then $\gamma \in E$.

Further requirement: Application of default rules must follow in sequence (groundedness).

Introduction

Default Logic

Basics

Extensions

Properties of extensions

Normal defaults

Default proofs

Decidability

Complexity

Special Kinds of Defaults

Extensions (informally)

Desirable properties of an extension *E* of $\langle D, W \rangle$:

- 1 Contains all facts: $W \subseteq E$.
- 2 Is deductively closed: E = Th(E).
- All applicable default rules have been applied:
 If

1
$$\left(\frac{\alpha:\beta}{\gamma}\right) \in D$$
,
2 $\alpha \in F$

 $\exists \neg \beta \not\in E$

then $\gamma \in E$.

Further requirement: Application of default rules must follow in sequence (groundedness).

Introduction

Default Logic

Basics

Extensions

Properties of extensions

Normal default

Default proofs

Decidability

Complexity

Special Kinds of Defaults

Groundedness

Example

$$W = \emptyset$$
$$D = \left\{\frac{a:b}{b}, \frac{b:a}{a}\right\}$$

Question: Should $Th(\{a, b\})$ be an extension?

Answer: No! a can only be derived if we already have derived b. b can only be derived if we already have derived a.

UNI FREIBURG

Introduction

Default Logic

Basics

Extensions

Properties of extensions Normal defaults Default proofs Decidability

Complexity

Special Kinds of Defaults

Groundedness

Example

$$W = \emptyset$$
$$D = \left\{\frac{a:b}{b}, \frac{b:a}{a}\right\}$$

Question: Should $Th(\{a, b\})$ be an extension?

Answer: No!

a can only be derived if we already have derived *b*. *b* can only be derived if we already have derived *a*.

UNI FREIBURG

Introduction

Default Logic

Basics

Extensions

Properties of extensions Normal defaults Default proofs Decidability

Complexity

Special Kinds of Defaults

Extensions (formally)

Definition

Let $\Delta = \langle D, W \rangle$ be a closed default theory. Let *E* be any set of closed formulae. Define:

$$E_{0} = W$$
$$E_{i} = \operatorname{Th}(E_{i-1}) \cup \left\{ \gamma \middle| \frac{\alpha \colon \beta}{\gamma} \in D, \alpha \in E_{i-1}, \neg \beta \notin E \right\}$$

E is called an **extension** of Δ if

Introduction

BURG

Default Logic

Basics

Extensions

Properties of extensions Normal defaults Default proofs Decidability

Complexity

Special Kinds of Defaults

Extensions (formally)

Definition

Let $\Delta = \langle D, W \rangle$ be a closed default theory. Let *E* be any set of closed formulae. Define:

$$E_{0} = W$$
$$E_{i} = \mathsf{Th}(E_{i-1}) \cup \left\{ \gamma \middle| \frac{\alpha \colon \beta}{\gamma} \in D, \alpha \in E_{i-1}, \neg \beta \notin E \right\}$$

E is called an extension of Δ if

$$E = \bigcup_{i=0}^{\infty} E_i$$

BURG

Basics

Extensions

Normal defaults

Special Kinds of Defaults

How to use this definition?

- The definition does not tell us how to construct an extension.
- However, it tells us how to check whether a set is an extension:
 - 1 Guess a set E.
 - 2 Then construct sets E_i by starting with W.
 - If $E = \bigcup_{i=0}^{\infty} E_i$, then *E* is an extension of $\langle D, W \rangle$.

Introduction

Default Logic

Basics

DRG

Extensions

Properties of extensions

Normal defaults

Default proofs

Decidability

Complexity

Special Kinds of Defaults

Examples

$$D = \left\{ \frac{a:b}{b}, \frac{b:a}{a} \right\} \qquad W = \{a \lor b\}$$

$$D = \left\{ \frac{a:b}{\neg b} \right\} \qquad W = \emptyset$$

$$D = \left\{ \frac{a:b}{\neg b} \right\} \qquad W = \{a\}$$

$$D = \left\{ \frac{a:b}{\neg b}, \frac{c}{c} \right\} \qquad W = \{b \to \neg a \land \neg c\}$$

$$D = \left\{ \frac{c}{\neg d}, \frac{c}{\neg e}, \frac{c}{\neg f} \right\} \qquad W = \emptyset$$

$$D = \left\{ \frac{c}{\neg d}, \frac{c}{\neg c} \right\} \qquad W = \emptyset$$

$$D = \left\{ \frac{c}{\neg d}, \frac{c}{\neg c} \right\} \qquad W = \emptyset$$

$$D = \left\{ \frac{a:b}{c}, \frac{a:d}{e} \right\} \qquad W = \{a, \neg b \lor \neg d\}$$

November 21, 23 & 28, 2012

Nebel, Wölfl, Hué - KRR

Default Logic Basics Extensions Properties of extensions Normal defaults Default proofs Decidability

Special Kinds of Defaults Literature

Questions, questions, questions ...

- What can we say about the existence of extensions?
- How are the different extensions related to each other?
 - Can one extension be a subset of another one?
 - Are extensions pairwise incompatible (i.e. jointly inconsistent)?
- Can an extension be inconsistent?

Introduction

Default Logic

Basics

JRG

2

Extensions

Properties of extensions

Normal defaults

Default proofs

Decidability

Complexity

Special Kinds of Defaults

Properties of extensions: existence

Theorem

- **1** If W is inconsistent, there is only one extension.
- A closed default theory (D,W) has an inconsistent extensions E if and only if W is inconsistent.

Proof idea.

- If *W* is inconsistent, no default rule is applicable and Th(*W*) is the only extension (which is inconsistent as well).
- 2 Claim 1 \implies the if-part.

For **only if**: Let W be consistent and assume that there exists an inconsistent extension E.

Then there exists a consistent E_i such that E_{i+1} is inconsistent. That is, there is at least one applied default $\alpha_i : \beta_i / \gamma_i$ with $\gamma_i \in E_{i+1} \setminus \text{Th}(E_i), \alpha_i \in E_i$, and $\neg \beta_i \notin E$. But this contradicts the inconsistency of E_i .

Introduction

Default Logic

Basics

2

Extensions

Properties of extensions

Normal defaults

Detault proof:

Complexity

Special Kinds of Defaults

Properties of extensions: existence

Theorem

- **1** If W is inconsistent, there is only one extension.
- A closed default theory (D,W) has an inconsistent extensions E if and only if W is inconsistent.

Proof idea.

- If W is inconsistent, no default rule is applicable and Th(W) is the only extension (which is inconsistent as well).
- 2 Claim 1 \implies the **if**-part.

For **only if**: Let W be consistent and assume that there exists an inconsistent extension E.

Then there exists a consistent E_i such that E_{i+1} is inconsistent. That is, there is at least one applied default $\alpha_i : \beta_i / \gamma_i$ with $\gamma_i \in E_{i+1} \setminus \text{Th}(E_i), \alpha_i \in E_i$, and $\neg \beta_i \notin E$. But this contradicts the inconsistency of *E*.

Introduction

Default Logic

Basics

2

Extensions

Properties of extensions

Normal defaults

Decidability

Complexity

Special Kinds of Defaults

Properties of extensions

Theorem

If E and F are extensions of $\langle D, W \rangle$ such that $E \subseteq F$, then E = F.

Proof sketch

 $E = \bigcup_{i=0}^{\infty} E_i$ and $F = \bigcup_{i=0}^{\infty} F_i$. Use induction to show $F_i \subseteq E_i$ Base case i = 0: Trivially $E_0 = F_0 = W$. Inductive case $i \ge 1$: Assume $\gamma \in F_{i+1}$. Two cases:

1 $\gamma \in \text{Th}(F_i)$ implies $\gamma \in \text{Th}(E_i)$ (because $F_i \subseteq E_i$ by IH), and therefore $\gamma \in E_{i+1}$.

2 Otherwise $\frac{\alpha:\beta}{\gamma} \in D$, $\alpha \in F_i$, $\neg \beta \notin F$. However, then we have $\alpha \in E_i$ (because $F_i \subseteq E_i$) and $\neg \beta \notin E$ (because of $E \subseteq F$), i.e., $\gamma \in E_{i+1}$.

Introduction

Default Logic

Basics

Extensions

Properties of extensions

Normal defaults

Docidability

Complexity

Special Kinds of Defaults

Properties of extensions

Theorem

If E and F are extensions of $\langle D, W \rangle$ such that $E \subseteq F$, then E = F.

Proof sketch.

$$E = \bigcup_{i=0}^{\infty} E_i \text{ and } F = \bigcup_{i=0}^{\infty} F_i. \text{ Use induction to show } F_i \subseteq E_i.$$

Base case $i = 0$: Trivially $E_0 = F_0 = W$.
Inductive case $i \ge 1$: Assume $\gamma \in F_{i+1}$. Two cases:

1 γ ∈ Th(F_i) implies γ ∈ Th(E_i) (because $F_i ⊆ E_i$ by IH), and therefore $\gamma ∈ E_{i+1}$.

2 Otherwise $\frac{\alpha:\beta}{\gamma} \in D$, $\alpha \in F_i$, $\neg \beta \notin F$. However, then we have $\alpha \in E_i$ (because $F_i \subseteq E_i$) and $\neg \beta \notin E$ (because of $E \subseteq F$), i.e., $\gamma \in E_{i+1}$.

Introduction

Default Logic

Basics

Extensions

Properties of extensions

Normal defaults

Desident proofe

Complexity

Special Kinds of Defaults

Normal default theories

All defaults in a normal default theory are normal:

 $\frac{\alpha:\beta}{\beta}$

Theorem

Normal default theories have at least one extension.

Proof sketch

If W inconsistent, trivial. Otherwise construct

 $E_0 = W$ $E_{i+1} = \operatorname{Th}(E_i) \cup T_i \qquad E = \bigcup_{i=0}^{\infty} E_i$

where T_i is a maximal set s.t. (1) $E_i \cup T_i$ is consistent and (2) if $\beta \in T_i$ then there is $\frac{\alpha: \beta}{\beta} \in D$ and $\alpha \in E_i$.

Show: $T_i = \left\{ \beta \mid \frac{\alpha : \beta}{\beta} \in D, \alpha \in E_i, \neg \beta \notin E \right\}$ for all $i \ge 0$.

November 21, 23 & 28, 2012

Nebel, Wölfl, Hué - KRR

UNI FREIBUR

Introduction

Default Logic

Basics

Extension

Properties or extensions

Normal defaults

Default proofs

Complexity

Special Kinds of Defaults

Normal default theories

All defaults in a normal default theory are normal:

 $\frac{\alpha:\beta}{\beta}$

Theorem

Normal default theories have at least one extension.

Proof sketch

If W inconsistent, trivial. Otherwise construct

 $E_0 = W$ $E_{i+1} = \operatorname{Th}(E_i) \cup T_i \qquad E = \bigcup_{i=0}^{\infty} E_i$

where T_i is a maximal set s.t. (1) $E_i \cup T_i$ is consistent and (2) if $\beta \in T_i$ then there is $\frac{\alpha: \beta}{\beta} \in D$ and $\alpha \in E_i$.

Show: $T_i = \left\{ \beta \mid \frac{\alpha:\beta}{\beta} \in D, \alpha \in E_i, \neg \beta \notin E \right\}$ for all $i \ge 0$.

November 21, 23 & 28, 2012

Nebel, Wölfl, Hué - KRR

Normal defaults

Normal default theories

All defaults in a normal default theory are normal:

 $\frac{\alpha:\beta}{\beta}$

Theorem

Normal default theories have at least one extension.

Proof sketch.

If W inconsistent, trivial. Otherwise construct

 $\begin{array}{rcl} E_0 &= & W \\ E_{i+1} &= & \operatorname{Th}(E_i) \cup T_i \end{array} \qquad E &= & \bigcup_{i=0}^{\infty} E_i \end{array}$

where T_i is a maximal set s.t. (1) $E_i \cup T_i$ is consistent and (2) if $\beta \in T_i$ then there is $\frac{\alpha:\beta}{\beta} \in D$ and $\alpha \in E_i$. Show: $T_i = \left\{\beta \mid \frac{\alpha:\beta}{\beta} \in D, \alpha \in E_i, \neg \beta \notin E\right\}$ for all $i \ge 0$.

UNI FREIBURG

Introduction

Default Logic

Basics

Extension

Properties or extensions

Normal defaults

Default proofs

Complexity

Special Kinds of Defaults

Theorem (Orthogonality)

Let E and F be distinct extensions of a normal default theory. Then $E \cup F$ is inconsistent.

Proof.

Let $E = \bigcup E_i$ and $F = \bigcup F_i$ with

$$E_{i+1} = \mathsf{Th}(E_i) \cup \left\{ \beta \mid \frac{\alpha \colon \beta}{\beta} \in D, \alpha \in E_i, \neg \beta \notin E \right\}$$

and the same for *F*. Since $E \neq F$, there exists a smallest *i* such that $E_{i+1} \neq F_{i+1}$. This means there exists $\frac{\alpha:\beta}{\beta} \in D$ with $\alpha \in E_i = F_i$, but with, say, $\beta \in E_{i+1}$ and $\beta \notin F_{i+1}$. This is only possible if $\neg \beta \in F$. This means, $\beta \in E$ and $\neg \beta \in F$, i.e., $E \cup F$ is inconsistent.

Introduction

Default Logic

Basics

Extension

Properties or extensions

Normal defaults

Default proofs

Complexity

Special Kinds of Defaults

Theorem (Orthogonality)

Let E and F be distinct extensions of a normal default theory. Then $E \cup F$ is inconsistent.

Proof.

Let $E = \bigcup E_i$ and $F = \bigcup F_i$ with

$$E_{i+1} = \mathsf{Th}(E_i) \cup \left\{ \beta \mid \frac{\alpha \colon \beta}{\beta} \in D, \alpha \in E_i, \neg \beta \not\in E \right\}$$

and the same for *F*. Since $E \neq F$, there exists a smallest *i* such that $E_{i+1} \neq F_{i+1}$. This means there exists $\frac{\alpha:\beta}{\beta} \in D$ with $\alpha \in E_i = F_i$, but with, say, $\beta \in E_{i+1}$ and $\beta \notin F_{i+1}$. This is only possible if $\neg \beta \in F$. This means, $\beta \in E$ and $\neg \beta \in F$, i.e., $E \cup F$ is inconsistent.

Introduction

Default Logic

Basics

Ž

Extension

Properties o extensions

Normal defaults

Default proofs

Complexity

Special Kinds of Defaults

Theorem (Orthogonality)

Let E and F be distinct extensions of a normal default theory. Then $E \cup F$ is inconsistent.

Proof.

Let $E = \bigcup E_i$ and $F = \bigcup F_i$ with

$$E_{i+1} = \mathsf{Th}(E_i) \cup \left\{ \beta \mid \frac{\alpha \colon \beta}{\beta} \in D, \alpha \in E_i, \neg \beta \not\in E \right\}$$

and the same for *F*. Since $E \neq F$, there exists a smallest *i* such that $E_{i+1} \neq F_{i+1}$. This means there exists $\frac{\alpha:\beta}{\beta} \in D$ with $\alpha \in E_i = F_i$, but with, say, $\beta \in E_{i+1}$ and $\beta \notin F_{i+1}$. This is only possible if $\neg \beta \in F$. This means, $\beta \in E$ and $\neg \beta \in F$, i.e., $E \cup F$ is inconsistent.

Introduction

Default Logic

Basics

Ž

Extension

Properties o extensions

Normal defaults

Default proofs

Complexity

Special Kinds of Defaults

Theorem (Orthogonality)

Let E and F be distinct extensions of a normal default theory. Then $E \cup F$ is inconsistent.

Proof.

Let $E = \bigcup E_i$ and $F = \bigcup F_i$ with

$$E_{i+1} = \mathsf{Th}(E_i) \cup \left\{ \beta \mid \frac{\alpha \colon \beta}{\beta} \in D, \alpha \in E_i, \neg \beta \notin E \right\}$$

and the same for *F*. Since $E \neq F$, there exists a smallest *i* such that $E_{i+1} \neq F_{i+1}$. This means there exists $\frac{\alpha:\beta}{\beta} \in D$ with $\alpha \in E_i = F_i$, but with, say, $\beta \in E_{i+1}$ and $\beta \notin F_{i+1}$. This is only possible if $\neg \beta \in F$. This means, $\beta \in E$ and $\neg \beta \in F$, i.e., $E \cup F$ is inconsistent.

Ž

Default Logic

Basics

Extension

Properties or extensions

Normal defaults

Default proofs

Complexity

Special Kinds of Defaults

Theorem (Orthogonality)

Let E and F be distinct extensions of a normal default theory. Then $E \cup F$ is inconsistent.

Proof.

Let $E = \bigcup E_i$ and $F = \bigcup F_i$ with

$$E_{i+1} = \mathsf{Th}(E_i) \cup \left\{ \beta \mid \frac{\alpha \colon \beta}{\beta} \in D, \alpha \in E_i, \neg \beta \notin E \right\}$$

and the same for *F*. Since $E \neq F$, there exists a smallest *i* such that $E_{i+1} \neq F_{i+1}$. This means there exists $\frac{\alpha:\beta}{\beta} \in D$ with $\alpha \in E_i = F_i$, but with, say, $\beta \in E_{i+1}$ and $\beta \notin F_{i+1}$. This is only possible if $\neg \beta \in F$. This means, $\beta \in E$ and $\neg \beta \in F$, i.e., $E \cup F$ is inconsistent.

FREIBU

Introduction

Default Logic

Basics

Extension

Properties or extensions

Normal defaults

Default proofs

Complexity

Special Kinds of Defaults

Default proofs in normal default theories

Definition

A default proof of γ in a normal default theory $\langle D, W \rangle$ is a finite sequence of defaults $(\delta_i = \frac{\alpha_i : \beta_i}{\beta_i})_{i=1,...,n}$ in *D* such that

$$W \cup \{\beta_1, \ldots, \beta_n\} \vdash \gamma,$$

- 2 $W \cup \{\beta_1, \ldots, \beta_n\}$ is consistent, and

Theorem

Let $\Delta = \langle D, W \rangle$ be a normal default theory so that W is consistent. Then γ has a default proof in Δ if and only if there exists an extension E of Δ such that $\gamma \in E$.

Test 2 (consistency) in the proof procedure suggests that default provability is not even semi-decidable.

November 21, 23 & 28, 2012

Introduction

Default Logic

Basics

DRG

M

Extensions

Properties of extensions

Normal defaults

Default proofs

Complexity

Special Kinds of Defaults

Default proofs in normal default theories

Definition

A default proof of γ in a normal default theory $\langle D, W \rangle$ is a finite sequence of defaults $(\delta_i = \frac{\alpha_i : \beta_i}{\beta_i})_{i=1,...,n}$ in *D* such that

$$W \cup \{\beta_1, \ldots, \beta_n\} \vdash \gamma,$$

- 2 $W \cup \{\beta_1, \ldots, \beta_n\}$ is consistent, and

Theorem

Let $\Delta = \langle D, W \rangle$ be a normal default theory so that W is consistent. Then γ has a default proof in Δ if and only if there exists an extension E of Δ such that $\gamma \in E$.

Test 2 (consistency) in the proof procedure suggests that default provability is not even semi-decidable.

November 21, 23 & 28, 2012

Nebel, Wölfl, Hué - KRR

Introduction

Default Logic

Basics

URG

8

Extensions

Properties of extensions

Normal defaults

Default proofs

Complexity

Special Kinds of Defaults

Decidability

Theorem

It is not semi-decidable to test whether a formula follows (skeptically or credulously) from a default theory.

Proof.

Let $\langle D, W \rangle$ be a default theory with $W = \emptyset$ and $D = \left\{ \frac{:\beta}{\beta} \right\}$ with β an arbitrary closed FOL formula. Clearly, β is in some/all extensions of $\langle D, W \rangle$ if and only if β is satisfiable.

The existence of a semi-decision procedure for default proofs implies that there is a semi-decision procedure for satisfiability in FOL. But this is not possible because FOL validity is semi-decidable and this together with semi-decidability of FOL satisfiability would imply decidability of FOL, which is not the case.

Introduction

Default Logic

Basics

Extensions

Properties of

Normal defaults

Defeultereefe

Decidability

Complexity

Special Kinds of Defaults

Introduction

Default Logic

Complexity

Propositional D

Complexity of D

Special Kinds of Defaults

Literature

Complexity of Default Logic

Propositional default logic

- Propositional DL is decidable.
- How difficult is reasoning in propositional DL?
- The skeptical default reasoning problem (does φ follow from Δ skeptically: Δ |~ φ?) is called PDS, credulous reasoning is called LPDS.
- PDS is coNP-hard: consider $D = \emptyset$, $W = \emptyset$

LPDS is NP-hard:
consider
$$D = \left\{\frac{:\beta}{\beta}\right\}, W = \emptyset.$$

2

Default Logic

Complexity

Propositional DL

Complexity of DI

Special Kinds of Defaults

Propositional default logic

- Propositional DL is decidable.
- How difficult is reasoning in propositional DL?
- The skeptical default reasoning problem (does φ follow from Δ skeptically: $\Delta \mid \sim \varphi$?) is called PDS, credulous reasoning is called LPDS.
- PDS is coNP-hard: consider $D = \emptyset$, $W = \emptyset$
- LPDS is NP-hard: consider $D = \left\{\frac{:\beta}{\beta}\right\}, W = \emptyset.$

Default Logic

Complexity

Propositional DL

Special Kinds

of Defaults

Propositional default logic

- Propositional DL is decidable.
- How difficult is reasoning in propositional DL?
- The skeptical default reasoning problem (does φ follow from Δ skeptically: $\Delta \mid \sim \varphi$?) is called PDS, credulous reasoning is called LPDS.
- PDS is coNP-hard: consider $D = \emptyset$, $W = \emptyset$

■ LPDS is NP-hard:
consider
$$D = \left\{\frac{:\beta}{\beta}\right\}, W = \emptyset.$$

Introduction

Default Logic

Complexity

Propositional DL

Complexity of DL

Special Kinds of Defaults

Lemma

 $PDS \in \Pi_2^p$.

Proof sketch

We show that the complementary problem UNPDS (is there an extension *E* such that $\varphi \notin E$) is in Σ_2^{ρ} . The algorithm:

Guess set $T \subseteq D$ of defaults, those that are applied.

Verify that defaults in \mathcal{T} lead to \mathcal{E} , using a SAT oracle and the guessed $\mathcal{E} := \operatorname{Th}\left(\left\{\gamma: \frac{\alpha:\beta}{\gamma} \in \mathcal{T}\right\} \cup W\right)$.

Werify that $\left\{ \gamma\colon rac{lpha:eta}{\gamma}\in T
ight\}\cup W
ot\models arphi$ (SAT oracle).

 $\rightsquigarrow \mathsf{UNPDS} \in \Sigma_2^p$.

November 21, 23 & 28, 2012

Introduction

BURG

Default Logic

Complexity Propositional DL

Complexity of DL

Special Kinds of Defaults

Lemma

 $PDS \in \Pi_2^p$.

Proof sketch.

We show that the complementary problem UNPDS (is there an extension *E* such that $\varphi \notin E$) is in Σ_2^{ρ} . The algorithm:

1 Guess set $T \subseteq D$ of defaults, those that are applied.

2 Verify that defaults in *T* lead to *E*, using a SAT oracle and the guessed $E := \text{Th}\left(\left\{\gamma: \frac{\alpha:\beta}{\gamma} \in T\right\} \cup W\right)$.

3 Verify that $\left\{\gamma: \frac{\alpha:\beta}{\gamma} \in T\right\} \cup W \not\vdash \phi$ (SAT oracle).

\rightsquigarrow UNPDS $\in \Sigma_2^p$.

Similar: LPDS
$$\in \Sigma_2^p$$
.

November 21, 23 & 28, 2012

Introduction

BURG

Delaut Logic

Propositional DL Complexity of DL

Special Kinds

Lemma

 $PDS \in \Pi_2^p$.

Proof sketch.

We show that the complementary problem UNPDS (is there an extension *E* such that $\varphi \notin E$) is in Σ_2^{ρ} . The algorithm:

- **1** Guess set $T \subseteq D$ of defaults, those that are applied.
- 2 Verify that defaults in *T* lead to *E*, using a SAT oracle and the guessed $E := \text{Th}\left(\left\{\gamma: \frac{\alpha:\beta}{\gamma} \in T\right\} \cup W\right)$.
- 3 Verify that $\left\{\gamma\colon rac{lpha:eta}{\gamma}\in T
 ight\}\cup W
 ot\models arphi$ (SAT oracle).

 $\rightsquigarrow \mathsf{UNPDS} \in \Sigma_2^p.$

Introduction

BURG

Complexity

Propositional DL Complexity of DL

----, ----

Special Kinds of Defaults

Lemma

 $PDS \in \Pi_2^p$.

Proof sketch.

We show that the complementary problem UNPDS (is there an extension *E* such that $\varphi \notin E$) is in Σ_2^{ρ} . The algorithm:

- **1** Guess set $T \subseteq D$ of defaults, those that are applied.
- 2 Verify that defaults in *T* lead to *E*, using a SAT oracle and the guessed $E := \text{Th}\left(\left\{\gamma: \frac{\alpha:\beta}{\gamma} \in T\right\} \cup W\right)$.

3 Verify that
$$\left\{\gamma: \frac{\alpha:\beta}{\gamma} \in T\right\} \cup W \not\vdash \phi$$
 (SAT oracle).

 $\rightsquigarrow \mathsf{UNPDS} \in \Sigma_2^p$.

Similar: LPDS $\in \Sigma_2^p$.

Introduction

DRG

2

Default Logic

Complexity Propositional DL Complexity of DL

Special Kinds

PDS is Π_2^p -hard.

Proof sketch.

Reduction from 2QBF to UNPDS: For $\exists \vec{a} \forall \vec{b} \varphi(\vec{a}, \vec{b})$ with $\vec{a} = a_1, \dots, a_n$ and $\vec{b} = b_1, \dots, b_m$ construct $\Delta = \langle D, W \rangle$ with

$$D = \left\{ rac{:a_i}{a_i}, rac{:\neg a_i}{\neg a_i}, rac{:\varphi(ec{a},ec{b})}{\varphi(ec{a},ec{b})}
ight\}, \ W = \emptyset$$

No extension contains both a_i and $\neg a_i$. Then: $\Delta \mid \not\sim \neg \varphi(\vec{a}, \vec{b}) \quad \text{iff there is an extension } E \text{ s.t. } \neg \varphi(\vec{a}, \vec{b}) \notin E$ $\text{iff there is } E \text{ s.t. } \varphi(\vec{a}, \vec{b}) \in E \text{ (by } \frac{\varphi(\vec{a}, \vec{b})}{\varphi(\vec{a}, \vec{b})} \in D)$ $\text{iff there is } A \subseteq \{a_1, \neg a_1, \ldots, a_n, \neg a_n\} \text{ s.t. } A \models \varphi(\vec{a}, \vec{b}) \text{ is true.}$ FREIBURG

Introduction Default Logic

Complexity Propositional DL Complexity of DL

Special Kinds of Defaults

Literature

November 21, 23 & 28, 2012

Nebel, Wölfl, Hué - KRR

PDS is Π_2^p -hard.

Proof sketch.

Reduction from 2QBF to UNPDS: For $\exists \vec{a} \forall \vec{b} \phi(\vec{a}, \vec{b})$ with $\vec{a} = a_1, \dots, a_n$ and $\vec{b} = b_1, \dots, b_m$ construct $\Delta = \langle D, W \rangle$ with

$$D = \left\{ \frac{:a_i}{a_i}, \frac{:\neg a_i}{\neg a_i}, \frac{:\varphi(\vec{a}, \vec{b})}{\varphi(\vec{a}, \vec{b})} \right\}, \ W = \emptyset$$

No extension contains both a_i and $\neg a_i$. Then:

UNI FREIBURG

Introduction

Propositional DL Complexity of DL

Special Kinds of Defaults

Literature

November 21, 23 & 28, 2012

Nebel, Wölfl, Hué - KRR

PDS is Π_2^p -hard.

Proof sketch.

Reduction from 2QBF to UNPDS: For $\exists \vec{a} \forall \vec{b} \varphi(\vec{a}, \vec{b})$ with $\vec{a} = a_1, \dots, a_n$ and $\vec{b} = b_1, \dots, b_m$ construct $\Delta = \langle D, W \rangle$ with

$$D = \left\{ \frac{:a_i}{a_i}, \frac{:\neg a_i}{\neg a_i}, \frac{:\varphi(\vec{a},\vec{b})}{\varphi(\vec{a},\vec{b})} \right\}, \ W = \emptyset$$

No extension contains both a_i and $\neg a_i$. Then: $\Delta \mid \not\sim \neg \varphi(\vec{a}, \vec{b})$ iff there is an extension E s.t. $\neg \varphi(\vec{a}, \vec{b}) \notin E$ iff there is E s.t. $\varphi(\vec{a}, \vec{b}) \in E$ (by $\frac{\varphi(\vec{a}, \vec{b})}{\varphi(\vec{a}, \vec{b})} \in D$) iff there is $A \subseteq \{a_1, \neg a_1, \dots, a_n, \neg a_n\}$ s.t. $A \models \varphi(\vec{a}, \vec{b})$ iff $\exists \vec{a} \forall \vec{b} \varphi(\vec{a}, \vec{b})$ is true.

BURG

Complexity of DL

PDS is Π_2^p -hard.

Proof sketch.

Reduction from 2QBF to UNPDS: For $\exists \vec{a} \forall \vec{b} \varphi(\vec{a}, \vec{b})$ with $\vec{a} = a_1, \dots, a_n$ and $\vec{b} = b_1, \dots, b_m$ construct $\Delta = \langle D, W \rangle$ with

$$D = \left\{ \frac{:a_i}{a_i}, \frac{:\neg a_i}{\neg a_i}, \frac{:\varphi(\vec{a},\vec{b})}{\varphi(\vec{a},\vec{b})} \right\}, \ W = \emptyset$$

No extension contains both a_i and $\neg a_i$. Then: $\Delta \mid \not\sim \neg \varphi(\vec{a}, \vec{b})$ iff there is an extension E s.t. $\neg \varphi(\vec{a}, \vec{b}) \notin E$ iff there is E s.t. $\varphi(\vec{a}, \vec{b}) \in E$ (by $\frac{\varphi(\vec{a}, \vec{b})}{\varphi(\vec{a}, \vec{b})} \in D$) iff there is $A \subseteq \{a_1, \neg a_1, \dots, a_n, \neg a_n\}$ s.t. $A \models \varphi(\vec{a}, \vec{b})$ iff $\exists \vec{a} \forall \vec{b} \varphi(\vec{a}, \vec{b})$ is true.

November 21, 23 & 28, 2012

BURG

PDS is Π_2^p -hard.

Proof sketch.

Reduction from 2QBF to UNPDS: For $\exists \vec{a} \forall \vec{b} \varphi(\vec{a}, \vec{b})$ with $\vec{a} = a_1, \dots, a_n$ and $\vec{b} = b_1, \dots, b_m$ construct $\Delta = \langle D, W \rangle$ with

$$D = \left\{ \frac{:a_i}{a_i}, \frac{:\neg a_i}{\neg a_i}, \frac{:\varphi(\vec{a},\vec{b})}{\varphi(\vec{a},\vec{b})} \right\}, \ W = \emptyset$$

No extension contains both a_i and $\neg a_i$. Then: $\triangle | \not\sim \neg \varphi(\vec{a}, \vec{b}) \quad \text{iff there is an extension } E \text{ s.t. } \neg \varphi(\vec{a}, \vec{b}) \notin E$ $\text{iff there is } E \text{ s.t. } \varphi(\vec{a}, \vec{b}) \in E \text{ (by } \frac{:\varphi(\vec{a}, \vec{b})}{\varphi(\vec{a}, \vec{b})} \in D)$ $\text{iff there is } A \subseteq \{a_1, \neg a_1, \dots, a_n, \neg a_n\} \text{ s.t. } A \models \varphi(\vec{a}, \vec{b})$ $\text{iff } \exists \vec{a} \lor \vec{b} \varphi(\vec{a}, \vec{b}) \text{ is true.}$

November 21, 23 & 28, 2012

BURG

PDS is Π_2^p -hard.

Proof sketch.

Reduction from 2QBF to UNPDS: For $\exists \vec{a} \forall \vec{b} \varphi(\vec{a}, \vec{b})$ with $\vec{a} = a_1, \dots, a_n$ and $\vec{b} = b_1, \dots, b_m$ construct $\Delta = \langle D, W \rangle$ with

$$D = \left\{ \frac{:a_i}{a_i}, \frac{:\neg a_i}{\neg a_i}, \frac{:\varphi(\vec{a},\vec{b})}{\varphi(\vec{a},\vec{b})} \right\}, \ W = \emptyset$$

No extension contains both a_i and $\neg a_i$. Then: $\triangle \not\sim \neg \varphi(\vec{a}, \vec{b})$ iff there is an extension E s.t. $\neg \varphi(\vec{a}, \vec{b}) \notin E$ iff there is E s.t. $\varphi(\vec{a}, \vec{b}) \in E$ (by $\frac{:\varphi(\vec{a}, \vec{b})}{\varphi(\vec{a}, \vec{b})} \in D$) iff there is $A \subseteq \{a_1, \neg a_1, \dots, a_n, \neg a_n\}$ s.t. $A \models \varphi(\vec{a}, \vec{b})$ iff $\exists \vec{a} \lor \vec{b} \varphi(\vec{a}, \vec{b})$ is true.

November 21, 23 & 28, 2012

BURG

PDS is Π_2^p -hard.

Proof sketch.

Reduction from 2QBF to UNPDS: For $\exists \vec{a} \forall \vec{b} \varphi(\vec{a}, \vec{b})$ with $\vec{a} = a_1, \dots, a_n$ and $\vec{b} = b_1, \dots, b_m$ construct $\Delta = \langle D, W \rangle$ with

$$D = \left\{ \frac{:a_i}{a_i}, \frac{:\neg a_i}{\neg a_i}, \frac{:\varphi(\vec{a},\vec{b})}{\varphi(\vec{a},\vec{b})} \right\}, \ W = \emptyset$$

No extension contains both a_i and $\neg a_i$. Then: $\triangle \not\models \neg \varphi(\vec{a}, \vec{b})$ iff there is an extension E s.t. $\neg \varphi(\vec{a}, \vec{b}) \notin E$ iff there is E s.t. $\varphi(\vec{a}, \vec{b}) \in E$ (by $\frac{\varphi(\vec{a}, \vec{b})}{\varphi(\vec{a}, \vec{b})} \in D$) iff there is $A \subseteq \{a_1, \neg a_1, \dots, a_n, \neg a_n\}$ s.t. $A \models \varphi(\vec{a}, \vec{b})$ iff $\exists \vec{a} \forall \vec{b} \varphi(\vec{a}, \vec{b})$ is true.

November 21, 23 & 28, 2012

BURG

PDS is Π_2^p -hard.

Proof sketch.

Reduction from 2QBF to UNPDS: For $\exists \vec{a} \forall \vec{b} \varphi(\vec{a}, \vec{b})$ with $\vec{a} = a_1, \dots, a_n$ and $\vec{b} = b_1, \dots, b_m$ construct $\Delta = \langle D, W \rangle$ with

$$D = \left\{ \frac{:a_i}{a_i}, \frac{:\neg a_i}{\neg a_i}, \frac{:\varphi(\vec{a},\vec{b})}{\varphi(\vec{a},\vec{b})} \right\}, \ W = \emptyset$$

No extension contains both a_i and $\neg a_i$. Then: $\Delta \mid \not\sim \neg \varphi(\vec{a}, \vec{b})$ iff there is an extension E s.t. $\neg \varphi(\vec{a}, \vec{b}) \notin E$ iff there is E s.t. $\varphi(\vec{a}, \vec{b}) \in E$ (by $\frac{:\varphi(\vec{a}, \vec{b})}{\varphi(\vec{a}, \vec{b})} \in D$) iff there is $A \subseteq \{a_1, \neg a_1, \dots, a_n, \neg a_n\}$ s.t. $A \models \varphi(\vec{a}, \vec{b})$ iff $\exists \vec{a} \forall \vec{b} \varphi(\vec{a}, \vec{b})$ is true.

November 21, 23 & 28, 2012

BURG

Conclusions & remarks

Theorem

PDS is Π_2^p -complete, even for defaults of the form $\frac{:\alpha}{\alpha}$.

Theorem

LPDS is Σ_2^p -complete, even for defaults of the form $\frac{\alpha}{\alpha}$.

- PDS is "easier" than reasoning in most modal logics.
- General and normal defaults have the same complexity.
- Polynomial special cases cannot be achieved by restricting for example, to Horn clauses (satisfiability testing in polynomial time).
- It is necessary to restrict the underlying monotonic reasoning problem and the number of extensions.
- Similar results hold for other nonmonotonic logics.

Introduction

Default Logic

Complexity Propositional DL Complexity of DL

complexity of DE

Special Kinds of Defaults

Conclusions & remarks

Theorem

PDS is Π_2^p -complete, even for defaults of the form $\frac{:\alpha}{\alpha}$.

Theorem

LPDS is Σ_2^p -complete, even for defaults of the form $\frac{\alpha}{\alpha}$.

- PDS is "easier" than reasoning in most modal logics.
- General and normal defaults have the same complexity.
- Polynomial special cases cannot be achieved by restricting, for example, to Horn clauses (satisfiability testing in polynomial time).
- It is necessary to restrict the underlying monotonic reasoning problem and the number of extensions.
- Similar results hold for other nonmonotonic logics.

Introductio

DRD

Complexity

Complexity of DL

Special Kinds of Defaults

Introduction

Default Logic

Complexity

Special Kinds of Defaults

Semi-norma defaults

Open defaults Outlook

Literature

Special Kinds of Defaults

Semi-normal defaults are sometimes useful:

 $\frac{\alpha:\beta\wedge\gamma}{\beta}$

Important when one has interacting defaults:

Adult(x): Employed(x)
Employed(x)

Student(x): Adult(x)

Adult(x)Student(x): \neg Employed(x)

 \neg Employed(x)

For Student(TOM) we get two extensions: one with Employed(TOM) and the other one with ¬Employed(Tom) Since the third rule is "more specific", we may prefer it.

November 21, 23 & 28, 2012

Nebel, Wölfl, Hué - KRR

UNI FREIBURG

> Default Logic Complexity

OT Defaults Semi-normal

Open defaults Outlook

Semi-normal defaults are sometimes useful:

 $\frac{\alpha:\beta\wedge\gamma}{\beta}$

Important when one has interacting defaults:

Adult(x): Employed(x) Employed(x)

Student(x): Adult(x)

Adult(x) Student(x): \neg Employed(x)

 \neg Employed(x)

For Student (TOM) we get two extensions: one with Employed (TOM) and the other one with ¬Employed (Tom). Since the third rule is "more specific", we may prefer it.

November 21, 23 & 28, 2012

Nebel, Wölfl, Hué - KRR

UNI FREIBURG

> Default Logic Complexity

Special Kinds of Defaults

Semi-normal defaults

Open defaults Outlook

Semi-normal defaults are sometimes useful:

$$\frac{\alpha:\beta\wedge\gamma}{\beta}$$

Important when one has interacting defaults:

 $\frac{\text{Adult}(x): \text{Employed}(x)}{\text{Employed}(x)}$

Student(x): Adult(x)

Adult(x) Student(x): \neg Employed(x)

 \neg Employed(x)

For Student(TOM) we get two extensions: one with Employed(TOM) and the other one with ¬Employed(Tom). Since the third rule is "more specific", we may prefer it.

November 21, 23 & 28, 2012

Nebel, Wölfl, Hué - KRR

UNI FREIBURG

> Default Logic Complexity

Special Kinds of Defaults

Semi-normal defaults

Open defaults Outlook

Semi-normal defaults are sometimes useful:

$$\frac{\alpha:\beta\wedge\gamma}{\beta}$$

Important when one has interacting defaults:

 $\frac{\text{Adult}(x): \text{Employed}(x)}{\text{Employed}(x)}$

Student(x): Adult(x)

Adult(x) Student(x): \neg Employed(x)

 \neg Employed(x)

For Student(TOM) we get two extensions: one with Employed(TOM) and the other one with ¬Employed(Tom). Since the third rule is "more specific", we may prefer it.

November 21, 23 & 28, 2012

BURG

Semi-normal

defaults Open defaults

Semi-normal defaults are sometimes useful:

$$\frac{\alpha:\beta\wedge\gamma}{\beta}$$

Important when one has interacting defaults:

 $\frac{\text{Adult}(x): \text{Employed}(x)}{\text{Employed}(x)}$ $\frac{\text{Student}(x): \text{Adult}(x)}{\text{Adult}(x)}$ $\text{Student}(x): \neg \text{Employed}(x)$

 \neg Employed(x)

For Student(TOM) we get two extensions: one with Employed(TOM) and the other one with \neg Employed(Tom). Since the third rule is "more specific", we may prefer it.

November 21, 23 & 28, 2012

Nebel, Wölfl, Hué - KRR

Default Logic Complexity Special Kinds

OT Detaults Semi-normal

Open defaults Outlook

Since being a student is an exception, we could use a semi-normal default to exclude students from employed adults:

M

Semi-normal dofaulte

Onen defaults

Since being a student is an exception, we could use a semi-normal default to exclude students from employed adults:

 $\frac{\texttt{Student}(x): \neg\texttt{Employed}(x)}{\neg\texttt{Employed}(x)}$

Adult(x): Employed(x) $\land \neg$ Student(x)

Employed(x)

Student(x): Adult(x)

Adult(x)

- Representing conflict-resolution by semi-normal defaults becomes clumsy when the number of default rules becomes high.
- A scheme for assigning priorities would be more elegant (there are indeed such schemes).

Default Logic

Complexity

Special Kinds of Defaults

Semi-normal defaults

Open defaults Outlook

Since being a student is an exception, we could use a semi-normal default to exclude students from employed adults:

 $\frac{\texttt{Student}(x): \neg\texttt{Employed}(x)}{\neg\texttt{Employed}(x)}$

Adult(x): Employed(x) $\land \neg$ Student(x)

Employed(x)

Student(x): Adult(x)

Adult(x)

- Representing conflict-resolution by semi-normal defaults becomes clumsy when the number of default rules becomes high.
- A scheme for assigning priorities would be more elegant (there are indeed such schemes).

DRD

2

Semi-normal

Onen defaults

Since being a student is an exception, we could use a semi-normal default to exclude students from employed adults:

 $\frac{\texttt{Student}(x): \neg\texttt{Employed}(x)}{\neg\texttt{Employed}(x)}$ $\frac{\texttt{Adult}(x): \texttt{Employed}(x) \land \neg\texttt{Student}(x)}{\texttt{Employed}(x)}$ Student(x): Adult(x)

Adult(x)

- Representing conflict-resolution by semi-normal defaults becomes clumsy when the number of default rules becomes high.
- A scheme for assigning priorities would be more elegant (there are indeed such schemes).

2

Semi-normal

Onen defaults

- Our examples included open defaults, but the theory covers only closed defaults.
- If we have ^{α(x̄):β(x̄)}/_{γ(x̄)}, then the variables should stand for all nameable objects.
- Problem: What about objects that have been introduced implicitly, e.g., via formulae such a ∃xP(x).
- Solution by Reiter: Skolemization of all formulae in W and D.
- Interpretation: An open default stands for all the closed defaults resulting from substituting ground terms for the variables.

Nebel, Wölfl, Hué - KRR

ntroductio

Default Logic

Complexity

Special Kinds of Defaults

Semi-normal defaults

Open defaults Outlook

Skolemization can create problems because it preserves satisfiability, but it is not an equivalence transformation.

Example

```
 \begin{array}{l} \forall x (\operatorname{Man}(x) \leftrightarrow \neg \operatorname{Woman}(x)) \\ \forall x (\operatorname{Man}(x) \rightarrow (\exists y (\operatorname{Spouse}(x, y) \wedge \operatorname{Woman}(y)) \vee \operatorname{Bachelor}(x)) \\ \operatorname{Man}(\operatorname{TOM}) \\ \operatorname{Spouse}(\operatorname{TOM}, \operatorname{MARY}) \\ \operatorname{Woman}(\operatorname{MARY}) \\ \vdots \\ \frac{: \operatorname{Man}(x)}{\operatorname{Man}(x)} \end{array}
```

Skolemization of $\exists y : \dots$ enables concluding **Bachelor**(TOM)! The reason is that for g(TOM) we get Man(g(TOM)) by default (where g is the Skolem function).

Introduction

Default Logic

Complexity

Special Kinds of Defaults

Semi-norma defaults

Open defaults Outlook

Skolemization can create problems because it preserves satisfiability, but it is not an equivalence transformation.

Example

```
 \begin{array}{l} \forall x(\operatorname{Man}(x) \leftrightarrow \neg \operatorname{Woman}(x)) \\ \forall x(\operatorname{Man}(x) \rightarrow (\exists y(\operatorname{Spouse}(x,y) \wedge \operatorname{Woman}(y)) \lor \operatorname{Bachelor}(x))) \\ \operatorname{Man}(\operatorname{TOM}) \\ \operatorname{Spouse}(\operatorname{TOM}, \operatorname{MARY}) \\ \operatorname{Woman}(\operatorname{MARY}) \\ \vdots \\ \frac{: \operatorname{Man}(x)}{\operatorname{Man}(x)} \end{array}
```

Skolemization of $\exists y : \dots$ enables concluding Bachelor(TOM)!The reason is that for g(TOM) we get Man(g(TOM)) by default (where g is the Skolem function). Default Logic

Complexity

Special Kinds of Defaults

Semi-norma defaults

Open defaults Outlook

It is even worse: Logically equivalent theories can have different extensions:

 $W_1 = \{\exists x (P(c,x) \lor Q(c,x))\}$ $W_2 = \{\exists x P(c,x) \lor \exists x Q(c,x)\}$ $D = \left\{\frac{P(x,y) \lor Q(x,y) \colon R}{R}\right\}$

UNI FREIBUR

Default Leafe

Complexity

Special Kinds of Defaults

Semi-normal defaults

Open defaults Outlook

Literature

 W_1 and W_2 are logically equivalent. However, the Skolemization of W_1 , symbolically $s(W_1)$, is not equivalent with $s(W_2)$. The only extension of $\langle D, W_1 \rangle$ is Th $(s(W_1) \cup R)$. The only extension of $\langle D, W_2 \rangle$ is Th $(s(W_2))$.

It is even worse: Logically equivalent theories can have different extensions:

 $W_1 = \{ \exists x (P(c,x) \lor Q(c,x)) \}$ $W_2 = \{ \exists x P(c,x) \lor \exists x Q(c,x) \}$ $D = \left\{ \frac{P(x,y) \lor Q(x,y) \colon R}{R} \right\}$

UNI FREIBURG

Introduction

0

Complexity

Special Kinds of Defaults

Semi-normal defaults

Open defaults Outlook

Literature

 W_1 and W_2 are logically equivalent. However, the Skolemization of W_1 , symbolically $s(W_1)$, is not equivalent with $s(W_2)$. The only extension of $\langle D, W_1 \rangle$ is Th $(s(W_1) \cup R)$. The only extension of $\langle D, W_2 \rangle$ is Th $(s(W_2))$.

It is even worse: Logically equivalent theories can have different extensions:

$$W_1 = \{ \exists x (P(c,x) \lor Q(c,x)) \}$$
$$W_2 = \{ \exists x P(c,x) \lor \exists x Q(c,x) \}$$
$$D = \left\{ \frac{P(x,y) \lor Q(x,y) \colon R}{R} \right\}$$

UNI FREIBURG

Default Logic

Complexity

Special Kinds of Defaults

Semi-normal defaults

Open defaults Outlook

Literature

 W_1 and W_2 are logically equivalent. However, the Skolemization of W_1 , symbolically $s(W_1)$, is not equivalent with $s(W_2)$. The only extension of $\langle D, W_1 \rangle$ is Th $(s(W_1) \cup R)$. The only extension of $\langle D, W_2 \rangle$ is Th $(s(W_2))$.

It is even worse: Logically equivalent theories can have different extensions:

$$W_1 = \{ \exists x (P(c,x) \lor Q(c,x)) \}$$
$$W_2 = \{ \exists x P(c,x) \lor \exists x Q(c,x) \}$$
$$D = \left\{ \frac{P(x,y) \lor Q(x,y) \colon R}{R} \right\}$$

Introducti

Default Logic

Complexity

Special Kinds of Defaults

Semi-normal defaults

Open defaults Outlook

Literature

 W_1 and W_2 are logically equivalent. However, the Skolemization of W_1 , symbolically $s(W_1)$, is not equivalent with $s(W_2)$. The only extension of $\langle D, W_1 \rangle$ is Th $(s(W_1) \cup R)$. The only extension of $\langle D, W_2 \rangle$ is Th $(s(W_2))$.

Outlook

46/47

Although Reiter's definition of DL makes sense, one can come up with a number of variations and extend the investigation ...

- Extensions can be defined differently (e.g., by remembering consistency conditions).
- ... or by removing the groundedness condition.
- Open defaults can be handled differently (more model-theoretically).
- General proof methods for the finite, decidable case
- Applications of default logic:
 - Diagnosis
 - Reasoning about actions

Default Logic

DRD

Complexity

Special Kinds of Defaults

Semi-normal defaults

Open defaults

Outlook

Literature

Raymond Reiter.

A logic for default reasoning. Artificial Intelligence, 13(1):81–132, April 1980.

Georg Gottlob.

Complexity results for nonmonotonic logics. Journal for Logic and Computation, 2(3), 1992.

Marco Cadoli and Marco Schaerf.

A survey of complexity results for non-monotonic logics. The Journal of Logic Programming 17: 127–160, 1993.

Gerhard Brewka. Nonmonotonic Reasoning: Logical Foundations of Commonsense. Cambridge University Press, Cambridge, UK, 1991.

Introduction

Delault Logic

Complexity

Special Kinds of Defaults