Principles of
 Knowledge Representation and Reasoning

Nonmonotonic Reasoning

Bernhard Nebel, Stefan Wölfl, and Julien Hué
November 21, 23 \& 28, 2012

Introduction
Motivation
Different forms of
reasoning
Different
formalizations

Introduction

A reasoning task

- If Mary has an essay to write, she will study late in the library.
- She has an essay to write.

Introduction

A reasoning task

- If Mary has an essay to write, she will study late in the library.
- She has an essay to write.

What do you conclude?

Introduction

Different forms of
reasoning
Different
formalizations
Default Logic
Complexity
Special Kinds of Defaults

Literature

A reasoning task

- If Mary has an essay to write, she will study late in the library.
- She has an essay to write.

In empirical studies 95% of all subjects conclude (modus ponens):

Introduction
Motivation
Different forms of
reasoning
Different
formalizations
Default Logic
Complexity
Special Kinds of Defaults

- She will study late in the library.

A reasoning task

- If Mary has an essay to write, she will study late in the library.
- If the library is open, she will study late in the library.
- She has an essay to write.

Introduction

What do you conclude now?

A reasoning task

- If Mary has an essay to write, she will study late in the library.
- If the library is open, she will study late in the library.
- She has an essay to write.

Introduction
Motivation
Different forms of
reasoning
Different
formalizations
Default Logic
Complexity
Special Kinds
of Defaults
Literature

In cognitive studies now only 60% of the subjects conclude:

- She will study late in the library.

A reasoning task

- If Mary has an essay to write, she will study late in the library.
- She has an essay to write.

Introduction
Motivation
Different forms of
reasoning
Different
formalizations
Default Logic
Conclusion?

- She will study late in the library.

Reasoning tasks like this (suppression task; Byrne, 1989) suggest that humans often do reason as suggested by classical logics

All logics presented so far are monotonic.

A logic is called monotonic if all (logical) conclusions from a knowledge base remain justified when new information is added to the knowledge base.

Cognitive studies indicate that everyday reasoning is often nonmonotonic (Stenning \& Lambalgen, 2008; Johnson-Laird, 2010, etc.).

Introduction

Nonmonotonic reasoning

- All logics presented so far are monotonic.
- A logic is called monotonic if all (logical) conclusions from a knowledge base remain justified when new information is added to the knowledge base.

Nonmonotonic reasoning

- All logics presented so far are monotonic.
- A logic is called monotonic if all (logical) conclusions from a knowledge base remain justified when new information is added to the knowledge base.
- Cognitive studies indicate that everyday reasoning is often nonmonotonic (Stenning \& Lambalgen, 2008; Johnson-Laird, 2010, etc.).

When humans reason they use:

Nonmonotonic reasoning

- All logics presented so far are monotonic.
- A logic is called monotonic if all (logical) conclusions from a knowledge base remain justified when new information is added to the knowledge base.
- Cognitive studies indicate that everyday reasoning is often nonmonotonic (Stenning \& Lambalgen, 2008; Johnson-Laird, 2010, etc.).
- When humans reason they use:
rules that may have exceptions:
If Mary has an essay to write, she normally will study
late in the library.
default assumptions
The library is open

Nonmonotonic reasoning

- All logics presented so far are monotonic.
- A logic is called monotonic if all (logical) conclusions from a knowledge base remain justified when new information is added to the knowledge base.
- Cognitive studies indicate that everyday reasoning is often nonmonotonic (Stenning \& Lambalgen, 2008; Johnson-Laird, 2010, etc.).

Introduction
Motivation
Different forms of

Different
formalizations

Default Logic
Complexity
Special Kinds
of Defaults
Literature

- When humans reason they use:
- rules that may have exceptions:

If Mary has an essay to write, she normally will study late in the library.
default assumptions:
The library is open.

Nonmonotonic reasoning

- All logics presented so far are monotonic.
- A logic is called monotonic if all (logical) conclusions from a knowledge base remain justified when new information is added to the knowledge base.
- Cognitive studies indicate that everyday reasoning is often nonmonotonic (Stenning \& Lambalgen, 2008; Johnson-Laird, 2010, etc.).

Introduction
Motivation
Different forms of
reasoning
Different
formalizations

Default Logic
Complexity
Special Kinds
of Defaults
Literature

- When humans reason they use:
- rules that may have exceptions:

If Mary has an essay to write, she normally will study late in the library.

- default assumptions:

The library is open.

Defaults in knowledge bases

Often we use default assumptions when definite information is not available or when we want to fix a standard value:

1 employee(anne)
2 employee(bert)
3 employee(carla)
4 employee(detlef)
5 employee(thomas)
6 onUnpaidMPaternityLeave(thomas)
employee(X)
onUnpaidMPaternityLeave $(\mathrm{X}) \rightarrow$ gettingSalary (X) Typically: emplovee $(X) \rightarrow \neg$ onUnpaidMPaternityLeave (X)

Defaults in knowledge bases

Often we use default assumptions when definite information is not available or when we want to fix a standard value:

1 employee(anne)
2 employee(bert)
3 employee(carla)
4 employee(detlef)
5 employee(thomas)
6 onUnpaidMPaternityLeave(thomas)
7 employee $(\mathrm{X}) \wedge \neg$ onUnpaidMPaternityLeave $(\mathrm{X}) \rightarrow$ gettingSalary (X)

$$
\text { Typically: employee }(X) \rightarrow \neg \text { onUnpaidMPaternityLeave }(X)
$$

Defaults in knowledge bases

Often we use default assumptions when definite information is not available or when we want to fix a standard value:

1 employee(anne)
2 employee(bert)
3 employee(carla)
4 employee(detlef)
5 employee(thomas)
6 onUnpaidMPaternityLeave(thomas)
7 employee $(\mathrm{X}) \wedge \neg$ onUnpaidMPaternityLeave $(\mathrm{X}) \rightarrow$ gettingSalary (X)
8 Typically: employee $(X) \rightarrow \neg$ onUnpaidMPaternityLeave (X)

Defaults in common sense reasoning

1 Tweety is a bird like other birds.
2 During the summer he stays in Northern Europe, in the winter he stays in Africa.

Would you expect Tweety to be able to fly? How does Tweety get from Northern Europe to Africa?

Introduction

Defaults in common sense reasoning

1 Tweety is a bird like other birds.
2 During the summer he stays in Northern Europe, in the winter he stays in Africa.

- Would you expect Tweety to be able to fly?
- How does Tweety get from Northern Europe to Africa?

Introduction

How would you formalize this in formal logic so that you get the expected answers?

Defaults in common sense reasoning

1 Tweety is a bird like other birds.
2 During the summer he stays in Northern Europe, in the winter he stays in Africa.

- Would you expect Tweety to be able to fly?
- How does Tweety get from Northern Europe to Africa?

How would you formalize this in formal logic so that you get the expected answers?

A formalization ...

1 bird(tweety)
2 spend-summer(tweety, northern-europe) \wedge spend-winter(tweety, africa)
$3 \forall x(\operatorname{bird}(x) \rightarrow$ can-fly $(x))$
4 far-away(northern-europe, africa)
$5 \forall x y z$ (can-fly $(x) \wedge$ far-away $(y, z) \wedge$ spend-summer $(x, y) \wedge$

Introduction
Motivation
Different forms of
reasoning
Different
formalizations
Default Logic
Complexity
Special Kinds of Defaults

Literature spend-winter $(x, z) \rightarrow$ flies $(x, y, z))$

But: The implication (3) is just a reasonable assumption. What if Tweety is an emu?

A formalization ...

1 bird(tweety)
2 spend-summer(tweety, northern-europe) \wedge spend-winter(tweety, africa)
$3 \forall x(\operatorname{bird}(x) \rightarrow \operatorname{can}-f l y(x))$
4 far-away(northern-europe, africa)
$5 \forall x y z$ (can-fly $(x) \wedge$ far-away $(y, z) \wedge$ spend-summer $(x, y) \wedge$

Introduction
Motivation
Different forms of
reasoning
Different
formalizations
Default Logic
Complexity
Special Kinds
of Defaults
Literature spend-winter $(x, z) \rightarrow$ flies $(x, y, z))$

- But: The implication (3) is just a reasonable assumption.
- What if Tweety is an emu?

Examples of such reasoning patterns

Closed world assumption: Database of ground atoms. All ground atoms not present are assumed to be false.
Negation as failure: In PROLOG, NOT(P) means " P is not provable" instead of " P is provably false".
Non-strict inheritance: An attribute value is inherited only if there is no more specialized information contradicting the attribute value.

Introduction
Motivation
Different forms of reasoning
Different
formalizations
Default Logic
Complexity
Special Kinds
of Defaults
Literature

Reasoning about actions: When reasoning about actions, it is usually assumed that a property changes only if it has to change, i.e., properties by default do not change.

Default, defeasible, and nonmonotonic reasoning

Introduction
Default reasoning: Jump to a conclusion if there is no information that contradicts the conclusion.

Defeasible reasoning: Reasoning based on assumptions that can turn out to be wrong: conclusions are defeasible. In particular, default reasoning is defeasible.

Nonmonotonic reasoning: In classical logic, the set of consequences grows monotonically with the set of premises. If reasoning is defeasible, then reasoning becomes nonmonotonic.

Approaches to nonmonotonic reasoning

- Consistency-based: Extend classical theory by rules that test whether an assumption is consistent with existing beliefs
\Rightarrow Nonmonotonic logics such as DL (default logic), NMLP (nonmonotonic logic programming)

Entailment-based on normal models: Models are ordered
Different forms of

Approaches to nonmonotonic reasoning

- Consistency-based: Extend classical theory by rules that test whether an assumption is consistent with existing beliefs
\Rightarrow Nonmonotonic logics such as DL (default logic), NMLP (nonmonotonic logic programming)

■ Entailment-based on normal models: Models are ordered by normality. Entailment is determined by considering the most normal models only.
\Rightarrow Circumscription, preferential and cumulative logics

NM Logic - Consistency-based

If φ typically implies ψ, φ is given, and it is consistent to assume ψ, then conclude ψ.

Introduction
Motivation
Different forms of reasoning
Different formalizations
\Rightarrow can-fly(tweety)

5 ... + emu(tweety)
\Rightarrow can-fly(tweety)

NM Logic - Consistency-based

If φ typically implies ψ, φ is given, and it is consistent to assume ψ, then conclude ψ.

1 Typically $\operatorname{bird}(x)$ implies can-fly (x)
$2 \forall x(\mathrm{emu}(x) \rightarrow \operatorname{bird}(x))$
$3 \forall x(\mathrm{emu}(x) \rightarrow \neg \operatorname{can}-\mathrm{fly}(x))$
4 bird(tweety)

Introduction
Motivation
Different forms of
reasoning
Different formalizations

Default Logic
Complexity
Special Kinds
of Defaults
Literature
\Rightarrow can-fly(tweety)

+ emu(tweety)
\Rightarrow - can-fly(tweety)

NM Logic - Consistency-based

If φ typically implies ψ, φ is given, and it is consistent to assume ψ, then conclude ψ.

1 Typically $\operatorname{bird}(x)$ implies can-fly (x)
$2 \forall x(\mathrm{emu}(x) \rightarrow \operatorname{bird}(x))$
$3 \forall x(\mathrm{emu}(x) \rightarrow \neg \operatorname{can}-\mathrm{fly}(x))$
4 bird(tweety)

Introduction
Motivation
Different forms of
reasoning
Different formalizations

Default Logic
Complexity
Special Kinds
of Defaults
Literature
\Rightarrow can-fly(tweety)
5 ... + emu(tweety)
$\Rightarrow \neg$ can-fly(tweety)

NM Logic - Normal models

If φ typically implies ψ, then the models satisfying $\varphi \wedge \psi$ should be more normal than those satisfying $\varphi \wedge \neg \psi$.

Similar idea: try to minimize the interpretation of "Abnormality" predicates.

Introduction
Motivation
Different forms of reasoning
Different formalizations

Minimize interpretation of Ab :
\Rightarrow can-fly(tweety)

+ emu(tweety)
\Rightarrow Now in all models (incl. the normal ones): \square can-fly(tweety)

NM Logic - Normal models

If φ typically implies ψ, then the models satisfying $\varphi \wedge \psi$ should be more normal than those satisfying $\varphi \wedge \neg \psi$.

Similar idea: try to minimize the interpretation of "Abnormality" predicates.
$1 \forall x(\operatorname{bird}(x) \wedge \neg \operatorname{Ab}(x) \rightarrow$ can-fly $(x))$
$2 \forall x(\mathrm{emu}(x) \rightarrow \operatorname{bird}(x))$
3 $\forall x(\mathrm{emu}(x) \rightarrow \neg \mathrm{can}-\mathrm{fly}(x))$
4 bird(tweety)
Minimize interpretation of Ab :
\Rightarrow can-fly(tweety)

+ emu("weety)
\Rightarrow Now in all models (incl. the normal ones): \neg can-fly(tweety)

NM Logic - Normal models

If φ typically implies ψ, then the models satisfying $\varphi \wedge \psi$ should be more normal than those satisfying $\varphi \wedge \neg \psi$.

Similar idea: try to minimize the interpretation of "Abnormality" predicates.
$1 \forall x(\operatorname{bird}(x) \wedge \neg \operatorname{Ab}(x) \rightarrow$ can-fly $(x))$
$2 \forall x(\mathrm{emu}(x) \rightarrow \operatorname{bird}(x))$
B $\forall x(\mathrm{emu}(x) \rightarrow \neg$ can-fly $(x))$
4 bird(tweety)
Minimize interpretation of Ab :
\Rightarrow can-fly(tweety)

+ emu(tweety)
\Rightarrow Now in all models (incl. the normal ones): \neg can-fly(tweety)

NM Logic - Normal models

If φ typically implies ψ, then the models satisfying $\varphi \wedge \psi$ should be more normal than those satisfying $\varphi \wedge \neg \psi$.

Similar idea: try to minimize the interpretation of "Abnormality" predicates.
$1 \forall x(\operatorname{bird}(x) \wedge \neg \operatorname{Ab}(x) \rightarrow$ can-fly $(x))$
$2 \forall x(\mathrm{emu}(x) \rightarrow \operatorname{bird}(x))$
B $\forall x(\mathrm{emu}(x) \rightarrow \neg$ can-fly $(x))$
4 bird(tweety)
Minimize interpretation of Ab :
\Rightarrow can-fly(tweety)
5 ... + emu(tweety)
\Rightarrow Now in all models (incl. the normal ones): \neg can-fly(tweety)

NM Logic - Normal models

If φ typically implies ψ, then the models satisfying $\varphi \wedge \psi$ should be more normal than those satisfying $\varphi \wedge \neg \psi$.

Similar idea: try to minimize the interpretation of "Abnormality" predicates.
$1 \forall x(\operatorname{bird}(x) \wedge \neg \operatorname{Ab}(x) \rightarrow$ can-fly $(x))$
$2 \forall x(\mathrm{emu}(x) \rightarrow \operatorname{bird}(x))$
B $\forall x(\mathrm{emu}(x) \rightarrow \neg$ can-fly $(x))$
4 bird(tweety)
Minimize interpretation of Ab :
\Rightarrow can-fly(tweety)
5 . . . + emu(tweety)
\Rightarrow Now in all models (incl. the normal ones): \neg can-fly(tweety)

Introduction
Default Logic
Basics
Extensions
Properties of
extensions

Default Logic

Normal defaults
Default proofs
Decidability
Complexity
Special Kinds of Defaults

Literature

Default Logic - Outline

Introduction

Introduction
Default Logic
Default Logic
Basics
Extensions
Properties of extensions
Normal defaults
Default proofs
Decidability

Basics
Extensions
Properties of
extensions
Normal defaults
Default proofs
Decidability
Complexity
Special Kinds
of Defaults

Special Kinds of Defaults

Reiter's default logic: motivation

- We want to express something like "typically birds fly".
- Add non-logical inference rule

$$
\frac{\operatorname{bird}(x): \operatorname{can}-f l y(x)}{\operatorname{can}-\operatorname{fly}(x)}
$$

Introduction

Default Logic

Basics
Extensions
Properties of
extensions
Normal defaults
Default proofs
Decidability
Complexity
Special Kinds
of Defaults

$$
\begin{aligned}
& \forall x(\text { penguin }(x) \rightarrow \neg \text { can-fly }(x)) \\
& \forall x(\text { emu }(x) \rightarrow \neg \text { can-fly }(x)) \\
& \forall x(\operatorname{kiwi}(x) \rightarrow \neg \text { can-fly }(x))
\end{aligned}
$$

Reiter's default logic: motivation

- We want to express something like "typically birds fly".
- Add non-logical inference rule

$$
\frac{\operatorname{bird}(x): \text { can-fly }(x)}{\operatorname{can}-\operatorname{fly}(x)}
$$

with the intended meaning:
If x is a bird and if it is consistent to assume that x can fly, then conclude that x can fly.

- Exceptions can be represented as formulae:

Introduction
Default Logic Basics
Extensions
Properties of
extensions
Normal defaults
Default proofs
Decidability

$$
\begin{aligned}
& \forall x(\text { penguin }(x) \rightarrow \neg \text { can-fly }(x)) \\
& \forall x(\text { emu }(x) \rightarrow \neg \text { can-fly }(x)) \\
& \forall x(\text { kiwi }(x) \rightarrow \neg \text { can-fly }(x))
\end{aligned}
$$

Formal framework

- FOL with classical provability relation \vdash and deductive closure: $\operatorname{Th}(\Phi):=\{\varphi \mid \Phi \vdash \varphi\}$

Default Logic
Basics

Prerequisite: must have been derived before rule can be applied.
Consistency condition: the negation may not be derivable. Consequence: will be concluded.

A default rule is closed if it does not contain free variables.
(Closed) default theory: A pair $\langle D, W\rangle$, where D is a
countable set of (closed) default rules and W is a countable set of FOL formulae.

Formal framework

■ FOL with classical provability relation \vdash and deductive closure: $\operatorname{Th}(\Phi):=\{\varphi \mid \Phi \vdash \varphi\}$

- Default rules: $\frac{\alpha: \beta}{\gamma}$
α : Prerequisite: must have been derived before rule can be applied.
β : Consistency condition: the negation may not be derivable.
γ : Consequence: will be concluded.

Introduction
Default Logic Basics

Extensions
Properties of
extensions
Normal defaults
Default proofs
Decidability
Complexity
Special Kinds
of Defaults

Literature

- A default rule is closed if it does not contain free variables.
- (Closed) default theory: A pair $\langle D, W\rangle$, where D is a countable set of (closed) default rules and W is a countable set of FOL formulae.

Extensions of default theories

Default theories extend the theory given by W using the default rules in $D(\rightsquigarrow$ extensions). There may be zero, one, or many extensions.

Introduction

Default Logic
Basics
Extensions
Properties of
extensions
Normal defaults
Default proofs
Decidability
Complexity
Special Kinds
of Defaults

One extension contains b, the other contains c.
Intuitively, an extension is a set of beliefs resulting from W and D.

Extensions of default theories

Default theories extend the theory given by W using the default rules in $D(\rightsquigarrow$ extensions). There may be zero, one, or many extensions.

Example

$$
\begin{aligned}
W & =\{a, \neg b \vee \neg c\} \\
D & =\left\{\frac{a: b}{b}, \frac{a: c}{c}\right\}
\end{aligned}
$$

Introduction
Default Logic

One extension contains b, the other contains c.
Intuitively, an extension is a set of beliefs resulting from W and D

Extensions of default theories

Default theories extend the theory given by W using the default rules in $D(\rightsquigarrow$ extensions). There may be zero, one, or many extensions.

Example

$$
\begin{aligned}
W & =\{a, \neg b \vee \neg c\} \\
D & =\left\{\frac{a: b}{b}, \frac{a: c}{c}\right\}
\end{aligned}
$$

Introduction
Default Logic

One extension contains b, the other contains c.
Intuitively, an extension is a set of beliefs resulting from W and D.

Decision problems about extensions in default logic

Existence of extensions: Does a default theory have an extension?
Introduction

Default Logic

Basics

Extensions
Properties of extensions
Normal defaults
Default proofs
Decidability
Credulous reasoning: If φ is in at least one extension, φ is a credulous default conclusion.
Skeptical reasoning: If φ is in all extensions, φ is a skeptical default conclusion.

Complexity
Special Kinds
of Defaults

Literature

Decision problems about extensions in default logic

Existence of extensions: Does a default theory have an extension?

Credulous reasoning: If φ is in at least one extension, φ is a credulous default conclusion.

Skeptical reasoning: If φ is in all extensions, φ is a skeptical default conclusion.

Complexity
Special Kinds
of Defaults

Literature

Extensions (informally)

Desirable properties of an extension E of $\langle D, W\rangle$:

Introduction

Default Logic

Further requirement: Application of default rules must follow in sequence (aroundedness).

Extensions (informally)

Desirable properties of an extension E of $\langle D, W\rangle$:

Introduction
Default Logic
then $\gamma \in E$.

- Further requirement: Application of default rules must follow in sequence (groundedness).

Groundedness

Example

$$
\begin{aligned}
W & =\emptyset \\
D & =\left\{\frac{a: b}{b}, \frac{b: a}{a}\right\}
\end{aligned}
$$

Question: Should $\operatorname{Th}(\{a, b\})$ be an extension?

Introduction
Default Logic
Basics
Extensions
Properties of
extensions
Normal defaults
Default proofs
Decidability
Complexity
Special Kinds
of Defaults
Literature

Answer: No!
a can only be derived if we already have derived b.
b can only be derived if we already have derived a.

Groundedness

Example

$$
\begin{aligned}
W & =\emptyset \\
D & =\left\{\frac{a: b}{b}, \frac{b: a}{a}\right\}
\end{aligned}
$$

Introduction
Default Logic
Basics
Extensions
Properties of
extensions
Normal defaults
Default proofs
Decidability
Complexity
Special Kinds
of Defaults
Literature

Answer: No!
a can only be derived if we already have derived b. b can only be derived if we already have derived a.

Extensions (formally)

Definition

Let $\Delta=\langle D, W\rangle$ be a closed default theory.
Let E be any set of closed formulae.
Define:

$$
\begin{aligned}
E_{0} & =W \\
E_{i} & =\operatorname{Th}\left(E_{i-1}\right) \cup\left\{\gamma \left\lvert\, \frac{\alpha: \beta}{\gamma} \in D\right., \alpha \in E_{i-1}, \neg \beta \notin E\right\}
\end{aligned}
$$

Introduction
Default Logic
Basics
Extensions
Properties of
extensions
Normal defaults
Default proofs
Decidability
Complexity
Special Kinds
of Defaults
Literature

Extensions (formally)

Definition

Let $\Delta=\langle D, W\rangle$ be a closed default theory.
Let E be any set of closed formulae.
Define:

$$
\begin{aligned}
E_{0} & =W \\
E_{i} & =\operatorname{Th}\left(E_{i-1}\right) \cup\left\{\gamma \left\lvert\, \frac{\alpha: \beta}{\gamma} \in D\right., \alpha \in E_{i-1}, \neg \beta \notin E\right\}
\end{aligned}
$$

Introduction
Default Logic
Basics
Extensions
Properties of
extensions
Normal defaults
Default proots
Decidability
Complexity
Special Kinds
of Defaults
Literature
E is called an extension of Δ if

$$
E=\bigcup_{i=0}^{\infty} E_{i}
$$

How to use this definition?

- The definition does not tell us how to construct an extension.
- However, it tells us how to check whether a set is an extension:
1 Guess a set E.
2 Then construct sets E_{i} by starting with W.
3 If $E=\bigcup_{i=0}^{\infty} E_{i}$, then E is an extension of $\langle D, W\rangle$.

$$
\begin{array}{ll}
D=\left\{\frac{a: b}{b}, \frac{b: a}{a}\right\} & W=\{a \vee b\} \\
D=\left\{\frac{a: b}{\neg b}\right\} & W=\emptyset \\
D=\left\{\frac{a: b}{\neg b}\right\} & W=\{a\} \\
D=\left\{\frac{: a}{a}, \frac{: b}{b}, \frac{: c}{c}\right\} & W=\{b \rightarrow \neg a \wedge \neg c\} \\
D=\left\{\frac{: c}{\neg d}, \frac{: d}{\neg e}, \frac{e}{\neg f}\right\} & W=\emptyset \\
D=\left\{\frac{: c}{\neg d}, \frac{: d}{\neg c}\right\} & W=\emptyset \\
D=\left\{\frac{a: b}{c}, \frac{a: d}{e}\right\} & W=\{a, \neg b \vee \neg d\}
\end{array}
$$

Introduction
Default Logic
Basics
Extensions
Properties of
extensions
Normal defaults
Default proofs
Decidability
Complexity
Special Kinds
of Defaults
Literature

Questions, questions, questions ...

Introduction

- What can we say about the existence of extensions?
- How are the different extensions related to each other?
- Can one extension be a subset of another one?
- Are extensions pairwise incompatible (i.e. jointly inconsistent)?
- Can an extension be inconsistent?

Properties of extensions: existence

Theorem

11 If W is inconsistent, there is only one extension.
2 A closed default theory $\langle D, W\rangle$ has an inconsistent extensions E if and only if W is inconsistent.

Proof idea.

If IW' is "inconsistent, no default rule is applicable and $T h(W)$ is the only extension (which is inconsistent as well)

Claim $1 \Longrightarrow$ the if-part.
For only if: Let W be consistent and assume that there exists an
inconsistent extension E
Then there exists a consistent E_{i} such that E_{i+1} is inconsistent.
That is, there is at least one applied default $\alpha_{i}: \beta_{i} / \gamma_{i}$ with

But this contradicts the inconsistency of E

Properties of extensions: existence

Theorem

11 If W is inconsistent, there is only one extension.
2 A closed default theory $\langle D, W\rangle$ has an inconsistent extensions E if and only if W is inconsistent.

Proof idea.

1 If W is inconsistent, no default rule is applicable and $\operatorname{Th}(W)$ is the only extension (which is inconsistent as well).

2 Claim $1 \Longrightarrow$ the if-part.
For only if: Let W be consistent and assume that there exists an inconsistent extension E.
Then there exists a consistent E_{i} such that E_{i+1} is inconsistent.
That is, there is at least one applied default $\alpha_{i}: \beta_{i} / \gamma_{i}$ with $\gamma_{i} \in E_{i+1} \backslash \operatorname{Th}\left(E_{i}\right), \alpha_{i} \in E_{i}$, and $\neg \beta_{i} \notin E$.
But this contradicts the inconsistency of E.

Properties of extensions

Theorem
 If E and F are extensions of $\langle D, W\rangle$ such that $E \subseteq F$, then $E=F$.

Proof sketch.

$E=\bigcup E_{i}$ and $F=\bigcup F_{i}$. Use induction to show $F_{i} \subseteq E_{i}$
Base case $i=0$: Trivially $E_{0}=F_{0}=W$.
Inductive case $i \geq 1$: Assume $\gamma \in F_{i+1}$. Two cases:
$\gamma \in \operatorname{Th}\left(F_{i}\right)$ implies $\gamma \in \operatorname{Th}\left(E_{i}\right)$ (because $F_{i} \subseteq E_{i}$ by $\| H$), and therefore $\gamma \in E_{i+1}$.

Otherwise $\frac{\alpha: \beta}{\gamma} \in D, \alpha \in F_{i}, \neg \beta \notin F$. However, then we have
$\alpha \in E_{i}$ (because $F_{i} \subseteq E_{i}$) and $\neg \beta \notin E$ (because of $E \subseteq F$), i.e.

Properties of extensions

Theorem

If E and F are extensions of $\langle D, W\rangle$ such that $E \subseteq F$, then $E=F$.

Proof sketch.

$E=\bigcup_{i=0}^{\infty} E_{i}$ and $F=\bigcup_{i=0}^{\infty} F_{i}$. Use induction to show $F_{i} \subseteq E_{i}$.
Base case $i=0$: Trivially $E_{0}=F_{0}=W$.
Inductive case $i \geq 1$: Assume $\gamma \in F_{i+1}$. Two cases:
$1 \gamma \in \operatorname{Th}\left(F_{i}\right)$ implies $\gamma \in \operatorname{Th}\left(E_{i}\right)$ (because $F_{i} \subseteq E_{i}$ by IH), and therefore $\gamma \in E_{i+1}$.

2 Otherwise $\frac{\alpha: \beta}{\gamma} \in D, \alpha \in F_{i}, \neg \beta \notin F$. However, then we have $\alpha \in E_{i}$ (because $F_{i} \subseteq E_{i}$) and $\neg \beta \notin E$ (because of $E \subseteq F$), i.e., $\gamma \in E_{i+1}$.

Normal default theories

All defaults in a normal default theory are normal:

$$
\frac{\alpha: \beta}{\beta} .
$$

Theorem

Normal default theories have at least one extension.
Default proois
Decidability
Complexity
Special Kinds
of Defaults

Literature
where T_{i} is a maximal set s.t. (1) $E_{i} \cup T_{i}$ is consistent and (2) if $\beta \in T_{i}$
then there is $\frac{\alpha: \beta}{\rho} \in D$ and $\alpha \in E_{i}$

Normal default theories

All defaults in a normal default theory are normal:

$$
\frac{\alpha: \beta}{\beta} .
$$

Theorem

Normal default theories have at least one extension.

Proof sketch.

If $1 / /$ inconsistent, trivial. Otherwise construct

Introduction

Default Logic
Basics
Extensions
Properties of extensions

Normal defaults
Default proofs
Decidability
Complexity
Special Kinds
of Defaults
where T_{i} is a maximal set s.t. (1) $E_{i} \cup T_{i}$ is consistent and (2) if $\beta \in T_{i}$
\square
Show: $T_{i}=\left\{\beta \frac{\alpha: \beta}{\beta} \in D, \alpha \in E_{i}, \neg \beta \notin E\right\}$ for all $i \geq 0$.

All defaults in a normal default theory are normal:

$$
\frac{\alpha: \beta}{\beta}
$$

Introduction
Default Logic
Basics
Extensions
Properties of
Theorem
Normal default theories have at least one extension.
Proof sketch.
If W inconsistent, trivial. Otherwise construct

$$
\begin{aligned}
E_{0} & =W \\
E_{i+1} & =\operatorname{Th}\left(E_{i}\right) \cup T_{i} \quad E=\bigcup_{i=0}^{\infty} E_{i}
\end{aligned}
$$

where T_{i} is a maximal set s.t. (1) $E_{i} \cup T_{i}$ is consistent and (2) if $\beta \in T_{i}$ then there is $\frac{\alpha: \beta}{\beta} \in D$ and $\alpha \in E_{i}$.
Show: $T_{i}=\left\{\beta \left\lvert\, \frac{\alpha: \beta}{\beta} \in D\right., \alpha \in E_{i}, \neg \beta \notin E\right\}$ for all $i \geq 0$.

Normal default theories: extensions are orthogonal

Introduction
Default Logic
Basics
Extensions
Properties of
extensions
Normal defaults
Default proofs
Decidability
Complexity
Special Kinds
of Defaults

Normal default theories: extensions are orthogonal

3世

Proof.
Let $E=\bigcup E_{i}$ and $F=\bigcup F_{i}$ with

$$
E_{i+1}=\operatorname{Th}\left(E_{i}\right) \cup\left\{\beta \left\lvert\, \frac{\alpha: \beta}{\beta} \in D\right., \alpha \in E_{i}, \neg \beta \notin E\right\}
$$

and the same for F. Since $E \neq F$, there exists a smallest i such that $E_{i+1} \neq F_{i+1}$.

Normal default theories: extensions are orthogonal

3世

Proof.
Let $E=\bigcup E_{i}$ and $F=\bigcup F_{i}$ with

$$
E_{i+1}=\operatorname{Th}\left(E_{i}\right) \cup\left\{\beta \left\lvert\, \frac{\alpha: \beta}{\beta} \in D\right., \alpha \in E_{i}, \neg \beta \notin E\right\}
$$

and the same for F. Since $E \neq F$, there exists a smallest i such that $E_{i+1} \neq F_{i+1}$.

Normal default theories: extensions are orthogonal

Theorem (Orthogonality)

Introduction
Default Logic
Basics
Extensions
Properties of
extensions
Normal defaults
Default proofs
Decidability
Complexity
Special Kinds
of Defaults
Literature
and the same for F. Since $E \neq F$, there exists a smallest i such that $E_{i+1} \neq F_{i+1}$. This means there exists $\frac{\alpha: \beta}{\beta} \in D$ with $\alpha \in E_{i}=F_{i}$, but with, say, $\beta \in E_{i+1}$ and $\beta \notin F_{i+1}$.

Normal default theories: extensions are orthogonal

Theorem (Orthogonality)

Introduction
Default Logic
Basics
Extensions
Properties of
extensions
Normal defaults
Default proofs
Decidability
Complexity
Special Kinds
of Defaults
Literature
and the same for F. Since $E \neq F$, there exists a smallest i such that $E_{i+1} \neq F_{i+1}$. This means there exists $\frac{\alpha: \beta}{\beta} \in D$ with $\alpha \in E_{i}=F_{i}$, but with, say, $\beta \in E_{i+1}$ and $\beta \notin F_{i+1}$. This is only possible if $\neg \beta \in F$. This means, $\beta \in E$ and $\neg \beta \in F$, i.e., $E \cup F$ is inconsistent.

Default proofs in normal default theories

Definition

A default proof of γ in a normal default theory $\langle D, W\rangle$ is a finite sequence of defaults $\left(\delta_{i}=\frac{\alpha_{i}: \beta_{i}}{\beta_{i}}\right)_{i=1, \ldots, n}$ in D such that
$1 W \cup\left\{\beta_{1}, \ldots, \beta_{n}\right\} \vdash \gamma$,
$2 W \cup\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ is consistent, and
3 $W \cup\left\{\beta_{1}, \ldots, \beta_{k}\right\} \vdash \alpha_{k+1}$, for $0 \leq k \leq n-1$.

Theorem

Introduction
Default Logic
Basics
Extensions
Properties of
extensions
Normal defaults
Default proofs
Decidability
Complexity
Special Kinds
of Defaults

Let $\Delta=\langle D . W\rangle$ be a normal default theory so that W is consistent. Then γ has a default proof in Δ if and only if there exists an extension E of Δ such that $\gamma \in E$.

Test 2 (consistency) in the proof procedure suggests that default provability is not even semi-decidable.

Default proofs in normal default theories

Definition

A default proof of γ in a normal default theory $\langle D, W\rangle$ is a finite sequence of defaults $\left(\delta_{i}=\frac{\alpha_{i}: \beta_{i}}{\beta_{i}}\right)_{i=1, \ldots, n}$ in D such that
$1 W \cup\left\{\beta_{1}, \ldots, \beta_{n}\right\} \vdash \gamma$,
$2 W \cup\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ is consistent, and
3 $W \cup\left\{\beta_{1}, \ldots, \beta_{k}\right\} \vdash \alpha_{k+1}$, for $0 \leq k \leq n-1$.

Theorem

Let $\Delta=\langle D, W\rangle$ be a normal default theory so that W is consistent. Then γ has a default proof in Δ if and only if there exists an extension E of Δ such that $\gamma \in E$.

Test 2 (consistency) in the proof procedure suggests that default provability is not even semi-decidable.

Decidability

Theorem

Let $\langle D, W\rangle$ be a default theory with $W=\emptyset$ and $D=\left\{\frac{: \beta}{\beta}\right\}$ with β an arbitrary closed FOL formula. Clearly, β is in some/all extensions of $\langle D, W\rangle$ if and only if β is satisfiable.
The existence of a semi-decision procedure for default proofs implies that there is a semi-decision procedure for satisfiability in FOL.
But this is not possible because FOL validity is semi-decidable and this together with semi-decidability of FOL satisfiability would imply decidability of FOL, which is not the case.

Introduction
Default Logic
Complexity

Complexity of Default Logic

Propositional DL

Complexity of DL
Special Kinds
of Defaults
Literature

Propositional default logic

- Propositional DL is decidable.
- How difficult is reasoning in propositional DL?

The skeptical default reasoning problem
(does φ follow from Δ skeptically: $\Delta \mid \sim \varphi$?) is called PDS, credulous reasoning is called LPDS.

Introduction
Default Logic
Complexity
Propositional DL
Complexity of DL
Special Kinds
of Defaults

PDS is coNP-hard:
consider $D=\emptyset, W=\emptyset$
IPDS is NP-hard:
consider $D=\left\{\frac{: \beta}{\beta}\right\}, W=\emptyset$.

Propositional default logic

- Propositional DL is decidable.
- How difficult is reasoning in propositional DL?
- The skeptical default reasoning problem (does φ follow from Δ skeptically: $\Delta \mid \sim \varphi$?) is called PDS, credulous reasoning is called LPDS.

PDS is coNP-hard:
consider $D=\emptyset, W=\emptyset$
IPDS is NP-hard:
consider $D=\left\{\frac{: \beta}{\beta}\right\}, W=\emptyset$

Propositional default logic

- Propositional DL is decidable.
- How difficult is reasoning in propositional DL?
- The skeptical default reasoning problem (does φ follow from Δ skeptically: $\Delta \mid \sim \varphi$?) is called PDS, credulous reasoning is called LPDS.
- PDS is coNP-hard:
consider $D=\emptyset, W=\emptyset$
- LPDS is NP-hard:
consider $D=\left\{\frac{\beta}{\beta}\right\}, W=\emptyset$.

Skeptical reasoning in propositional DL

Lemma
$P D S \in \Pi_{2}^{p}$.
Proof sketch.
M/a show that the complementary problem UNPDS (is there anextension E such that $\varphi \notin E)$ is in Σ_{2}^{P}. The algorithm:

Introduction

Default Logic
Complexity
Propositional DL
Complexity of DL
Special Kinds of Defaults
> \rightsquigarrow UNPDS $\in \Sigma_{2}^{p}$.

Skeptical reasoning in propositional DL

Lemma

$P D S \in \Pi_{2}^{p}$.

Proof sketch.

We show that the complementary problem UNPDS (is there an extension E such that $\varphi \notin E$) is in Σ_{2}^{p}. The algorithm:

1 Guess set $T \subseteq D$ of defaults, those that are applied.
Verify that defaults in T lead to E, using a SAT oracle and the
guessed $E:=\operatorname{Th}\left(\left\{\gamma: \frac{\alpha: \beta}{\gamma} \in T\right\} \cup W\right)$
Verify that $\left\{\gamma \cdot \frac{\alpha: \beta}{\gamma} \in T\right\} \| W H \in$ (SAT oracle)
\rightsquigarrow UNPDS $\in \Sigma_{2}^{p}$.

Similar: LPDS $\in \Sigma_{2}^{p}$.

Skeptical reasoning in propositional DL

Lemma

$P D S \in \Pi_{2}^{p}$.

Proof sketch.

We show that the complementary problem UNPDS (is there an extension E such that $\varphi \notin E$) is in Σ_{2}^{p}. The algorithm:

1 Guess set $T \subseteq D$ of defaults, those that are applied.
2 Verify that defaults in T lead to E, using a SAT oracle and the guessed $E:=\operatorname{Th}\left(\left\{\gamma: \frac{\alpha: \beta}{\gamma} \in T\right\} \cup W\right)$.
Verify that $\left\{\gamma: \frac{\alpha: \beta}{\gamma} \in T\right\} \cup W H \varphi$ (SAT oracle)
\rightsquigarrow UNPDS $\in \Sigma_{2}^{p}$.

Similar: LPDS $\in \Sigma_{2}^{p}$.

Skeptical reasoning in propositional DL

Lemma

$P D S \in \Pi_{2}^{p}$.

Proof sketch.

We show that the complementary problem UNPDS (is there an extension E such that $\varphi \notin E$) is in Σ_{2}^{p}. The algorithm:

1 Guess set $T \subseteq D$ of defaults, those that are applied.
2 Verify that defaults in T lead to E, using a SAT oracle and the guessed $E:=\operatorname{Th}\left(\left\{\gamma: \frac{\alpha: \beta}{\gamma} \in T\right\} \cup W\right)$.
${ }^{3}$ Verify that $\left\{\gamma: \frac{\alpha: \beta}{\gamma} \in T\right\} \cup W \nvdash \varphi$ (SAT oracle).
\rightsquigarrow UNPDS $\in \Sigma_{2}^{p}$.

Similar: LPDS $\in \Sigma_{2}^{p}$.

Lemma

Default Logic
Proof sketch.
Reduction from 2QBF to UNPDS:

and $\vec{b}=b_{1}, \ldots, b_{m}$ construct $\Delta=\langle D, W\rangle$ with

No extension contains both a_{j} and $\neg a_{j}$. Then:

Lemma

Default Logic
Complexity
Propositional DL
Complexity of DL
Special Kinds of Defaults

Literature

No extension contains both a_{i} and $\neg a_{i}$.

Lemma

Default Logic
Complexity
Propositional DL
Complexity of DL
Special Kinds of Defaults

Literature

No extension contains both a_{i} and $\neg a_{i}$. Then:

iff there is E s.t. $\varphi(\vec{a}, \vec{b}) \in E$ (by

iff there is $\Delta \subset\{a, \neg a, \ldots, ~ a \rightarrow a\}$ s.t. $A=\varphi(\vec{a}, \vec{b})$ iff $\exists \vec{a} \forall \vec{b} \varphi(\vec{a}, \vec{b})$ is true.

Lemma

Default Logic
Complexity
Propositional DL
Complexity of DL
Special Kinds of Defaults

Literature

No extension contains both a_{i} and $\neg a_{i}$. Then:
$\Delta \mid \nsim \neg \varphi(\vec{a}, \vec{b})$ iff there is an extension E s.t. $\neg \varphi(\vec{a}, \vec{b}) \notin E$

Lemma

PDS is Π_{2}^{p}-hard.

Introduction
Default Logic
Complexity
Propositional DL
Complexity of DL
Special Kinds

No extension contains both a_{i} and $\neg a_{i}$. Then:
iff there is an extension E s.t. $\neg \varphi(\vec{a}, \vec{b}) \notin E$ iff there is E s.t. $\varphi(\vec{a}, \vec{b}) \in E\left(\right.$ by $\left.\frac{: \varphi(\vec{a}, \vec{b})}{\varphi(\vec{a}, \vec{b})} \in D\right)$

Lemma

PDS is Π_{2}^{p}-hard.

No extension contains both a_{i} and $\neg a_{i}$. Then:
iff there is E s.t. $\varphi(\vec{a}, \vec{b}) \in E\left(\right.$ by $\left.\frac{: \varphi(\vec{a}, \vec{b})}{\varphi(\vec{a}, \vec{b})} \in D\right)$ iff there is $A \subseteq\left\{a_{1}, \neg a_{1}, \ldots, a_{n}, \neg a_{n}\right\}$ s.t. $A \models \varphi(\vec{a}, \vec{b})$

Lemma

PDS is Π_{2}^{p}-hard.

No extension contains both a_{i} and $\neg a_{i}$. Then:

iff there is $A \subseteq\left\{a_{1}, \neg a_{1}, \ldots, a_{n}, \neg a_{n}\right\}$ s.t. $A \models \varphi(\vec{a}, \vec{b})$ iff $\exists \vec{a} \forall \vec{b} \varphi(\vec{a}, \vec{b})$ is true.

Lemma

PDS is Π_{2}^{p}-hard.
Introduction
Default Logic

Proof sketch.

Reduction from 2QBF to UNPDS: For $\exists \vec{a} \forall \vec{b} \varphi(\vec{a}, \vec{b})$ with $\vec{a}=a_{1}, \ldots, a_{n}$ and $\vec{b}=b_{1}, \ldots, b_{m}$ construct $\Delta=\langle D, W\rangle$ with

$$
D=\left\{\frac{: a_{i}}{a_{i}}, \frac{: \neg a_{i}}{\neg a_{i}}, \frac{: \varphi(\vec{a}, \vec{b})}{\varphi(\vec{a}, \vec{b})}\right\}, W=\emptyset
$$

No extension contains both a_{i} and $\neg a_{i}$. Then:
$\Delta \mid \nsim \neg \varphi(\vec{a}, \vec{b})$ iff there is an extension E s.t. $\neg \varphi(\vec{a}, \vec{b}) \notin E$
iff there is E s.t. $\varphi(\vec{a}, \vec{b}) \in E\left(\right.$ by $\left.\frac{: \varphi(\vec{a}, \vec{b})}{\varphi(\vec{a}, \vec{b})} \in D\right)$
iff there is $A \subseteq\left\{a_{1}, \neg a_{1}, \ldots, a_{n}, \neg a_{n}\right\}$ s.t. $A \models \varphi(\vec{a}, \vec{b})$
iff $\exists \vec{a} \forall \vec{b} \varphi(\vec{a}, \vec{b})$ is true.

Conclusions \& remarks

Theorem

PDS is Π_{2}^{p}-complete, even for defaults of the form $\frac{: \alpha}{\alpha}$.

Theorem
LPDS is \sum_{2}^{p}-complete, even for defaults of the form $\frac{\alpha}{\alpha}$.

> PDS is "easier" than reasoning in most modal logics
> General and normal defaults have the same complexity.
> Polynomial special cases cannot be achieved by restricting
> for example, to Horn clauses (satisfiability testing in
> polynomial time)
> It is necessary to restrict the underlying monotonic reasoning problem and the number of extensions

> Similar results hold for other nonmonotonic logics.

Conclusions \& remarks

Theorem

PDS is Π_{2}^{p}-complete, even for defaults of the form $\frac{: \alpha}{\alpha}$.

Theorem

- PDS is "easier" than reasoning in most modal logics.
- General and normal defaults have the same complexity.
- Polynomial special cases cannot be achieved by restricting, for example, to Horn clauses (satisfiability testing in polynomial time).
- It is necessary to restrict the underlying monotonic reasoning problem and the number of extensions.
- Similar results hold for other nonmonotonic logics.

Introduction
Default Logic
Complexity
Special Kinds

Special Kinds of Defaults

of Defaults
Semi-normal
defaults
Open defaults
Outlook
Literature

Semi-normal defaults (1)

Semi-normal defaults are sometimes useful:

Introduction
Default Logic
Complexity
Important when one has interacting defaults:
Special Kinds of Defaults
Semi-normal defaults

For Student (TOM) we get two extensions: one with
Employed (TOM) and the other one with \neg Employed (Tom).
Since the third rule is "more specific", we may prefer it.

Semi-normal defaults (1)

Semi-normal defaults are sometimes useful:

$$
\frac{\alpha: \beta \wedge \gamma}{\beta}
$$

Important when one has interacting defaults:
$\frac{\text { Adult }(x) \text { : Employed }(x)}{\text { Employed }(x)}$
$\frac{\text { Student }(x): \text { Adult }(x)}{\text { Adult }(x)}$
$\frac{\text { Student }(x): \neg \text { Employed }(x)}{\neg \operatorname{Employed}(x)}$

For Student (TOM) we get two extensions: one with Employed (TOM) and the other one with \neg Employed (Tom) Since the third rule is "more specific", we may prefer it.

Semi-normal defaults (1)

Semi-normal defaults are sometimes useful:

$$
\frac{\alpha: \beta \wedge \gamma}{\beta}
$$

Introduction
Default Logic
Complexity
Special Kinds of Defaults

Semi-normal defaults
Open defaults
Outlook
Literature

For Student (TOM) we get two extensions: one with
Employed (TOM) and the other one with \neg Employed (Tom)
Since the third rule is "more specific", we may prefer it.

Semi-normal defaults (1)

Semi-normal defaults are sometimes useful:

$$
\frac{\alpha: \beta \wedge \gamma}{\beta}
$$

Introduction
Default Logic
Complexity
Special Kinds of Defaults

$$
\begin{gathered}
\frac{\text { Adult }(x): \text { Employed }(x)}{\text { Employed }(x)} \\
\frac{\text { Student }(x): \operatorname{Adult}(x)}{\text { Adult }(x)} \\
\frac{\text { Student }(x): \neg \operatorname{Employed}(x)}{\neg \operatorname{Employed}(x)}
\end{gathered}
$$

For Student (TOM) we get two extensions: one with Employed (TOM) and the other one with \neg Employed(Tom).
Since the third rule is "more specific", we may prefer it.

Semi-normal defaults (1)

Semi-normal defaults are sometimes useful:

$$
\frac{\alpha: \beta \wedge \gamma}{\beta}
$$

Introduction
Default Logic
Complexity
Special Kinds of Defaults

$$
\begin{aligned}
& \frac{\text { Adult }(x): \text { Employed }(x)}{\text { Employed }(x)} \\
& \frac{\text { Student }(x): \operatorname{Adult}(x)}{\text { Adult }(x)} \\
& \frac{\text { Student }(x): \neg \operatorname{Employed}(x)}{\neg \operatorname{Employed}(x)}
\end{aligned}
$$

For Student (TOM) we get two extensions: one with Employed (TOM) and the other one with \neg Employed(Tom). Since the third rule is "more specific", we may prefer it.

Semi-normal defaults (2)

- Since being a student is an exception, we could use a semi-normal default to exclude students from employed adults:

Employed (x)
Student (x) : Adult (x)
Introduction
Default Logic
Complexity
Special Kinds of Defaults
Semi-normal defaults
Open defaults
Outlook

> Representing conflict-resolution by semi-normal defaults becomes clumsy when the number of default rules
> becomes high.
> A scheme for assigning priorities would be more elegant (there are indeed such schemes).

Semi-normal defaults (2)

- Since being a student is an exception, we could use a semi-normal default to exclude students from employed adults:

$$
\begin{gathered}
\frac{\text { Student }(x): \neg \operatorname{Employed}(x)}{\neg \operatorname{Employed}(x)} \\
\frac{\operatorname{Adult}(x): \operatorname{Employed}(x) \wedge \neg \operatorname{Student}(x)}{\operatorname{Employed}(x)} \\
\frac{\operatorname{Student}(x): \operatorname{Adult}(x)}{\operatorname{Adult}(x)}
\end{gathered}
$$

Representing conflict-resolution by semi-normal defaults becomes clumsy when the number of default rules
becomes high.
A scheme for assigning priorities would be more elegant (there are indeed such schemes)

Semi-normal defaults (2)

- Since being a student is an exception, we could use a semi-normal default to exclude students from employed

Introduction
Default Logic
Complexity
Special Kinds of Defaults

Semi-normal defaults

- Representing conflict-resolution by semi-normal defaults becomes clumsy when the number of default rules becomes high.
A scheme for assigning priorities would be more elegant (there are indeed such schemes)

Semi-normal defaults (2)

- Since being a student is an exception, we could use a semi-normal default to exclude students from employed adults:

$$
\begin{gathered}
\frac{\operatorname{Student}(x): \neg \operatorname{Employed}(x)}{\neg \operatorname{Employed}(x)} \\
\frac{\operatorname{Adult}(x): \operatorname{Employed}(x) \wedge \neg \operatorname{Student}(x)}{\operatorname{Employed}(x)} \\
\frac{\operatorname{Student}(x): \operatorname{Adult}(x)}{\operatorname{Adult}(x)}
\end{gathered}
$$

- Representing conflict-resolution by semi-normal defaults becomes clumsy when the number of default rules becomes high.
- A scheme for assigning priorities would be more elegant (there are indeed such schemes).

Open defaults (1)

- Our examples included open defaults, but the theory covers only closed defaults.
- If we have $\frac{\alpha(\vec{x}): \beta(\vec{x})}{\gamma(\vec{x})}$, then the variables should stand for all nameable objects.
- Problem: What about objects that have been introduced implicitly, e.g., via formulae such a $\exists x P(x)$.
- Solution by Reiter: Skolemization of all formulae in W and D.
- Interpretation: An open default stands for all the closed defaults resulting from substituting ground terms for the variables.

Open defaults (2)

Skolemization can create problems because it preserves satisfiability, but it is not an equivalence transformation

Default Logic
Complexity
Special Kinds of Defaults

Semi-normal
defaults
Open defaults
Outlook
Literature

Skolemization of $\exists y$: ... enables concluding Bachelor(TOM)! The reason is that for $a(T O M)$ we det $\operatorname{Man}(a(T O M))$ bv default (where g is the Skolem function).

Open defaults (2)

Skolemization can create problems because it preserves satisfiability, but it is not an equivalence transformation.

Introduction
Default Logic
Complexity
Special Kinds

```
\forallx(\operatorname{Man}(x)\leftrightarrow\negWoman}(x)
\forall(Man(x) ->(\existsy(Spouse(x,y)^Woman}(y))\vee\operatorname{Bachelor}(x))
Man(TOM)
Spouse(TOM, MARY)
Woman(MARY)
\[
\frac{: \operatorname{Man}(x)}{\operatorname{Man}(x)}
\]
```

Skolemization of $\exists y$: ... enables concluding Bachelor(TOM)! The reason is that for $g(T O M)$ we get $\operatorname{Man}(g(T O M))$ by default (where g is the Skolem function).

Open defaults (3)

It is even worse: Logically equivalent theories can have different extensions:

Default Logic

Complexity
Special Kinds of Defaults
Semi-normal
defaults
Open defaults
Outlook
Literature
W_{1} and W_{2} are logically equivalent. However, the Skolemization of W_{1}, symbolically $s\left(W_{1}\right)$, is not equivalent with $s\left(W_{2}\right)$. The only extension of $\left\langle D, W_{1}\right\rangle$ is $\operatorname{Th}\left(s\left(W_{1}\right) \cup R\right)$. The only extension of $\left\langle D, W_{2}\right\rangle$ is $\operatorname{Th}\left(s\left(W_{2}\right)\right)$.
Note: Skolemization is not the right method to deal with open defaults in the general case.

Open defaults (3)

It is even worse: Logically equivalent theories can have different extensions:

$$
\begin{aligned}
W_{1} & =\{\exists x(P(c, x) \vee Q(c, x))\} \\
W_{2} & =\{\exists x P(c, x) \vee \exists x Q(c, x)\} \\
D & =\left\{\frac{P(x, y) \vee Q(x, y): R}{R}\right\}
\end{aligned}
$$

Introduction
Default Logic
Complexity
Special Kinds of Defaults

Semi-normal
defaults
Open defaults
Outlook
W_{1} and W_{2} are logically equivalent. However, the Skolemization of W_{1}, symbolically $s\left(W_{1}\right)$, is not equivalent with $s\left(W_{2}\right)$. The only extension of $\left\langle D, W_{1}\right\rangle$ is $\operatorname{Th}\left(s\left(W_{1}\right) \cup R\right)$. The only extension of $\left\langle D, W_{2}\right\rangle$ is $\operatorname{Th}\left(s\left(W_{2}\right)\right)$.
Note: Skolemization is not the right method to deal with open defaults in the general case.

Open defaults (3)

It is even worse: Logically equivalent theories can have different extensions:

$$
\begin{aligned}
W_{1} & =\{\exists x(P(c, x) \vee Q(c, x))\} \\
W_{2} & =\{\exists x P(c, x) \vee \exists x Q(c, x)\} \\
D & =\left\{\frac{P(x, y) \vee Q(x, y): R}{R}\right\}
\end{aligned}
$$

Introduction
Default Logic
Complexity
Special Kinds
of Defaults
Semi-normal
defaults
Open defaults
Outlook
W_{1} and W_{2} are logically equivalent. However, the Skolemization of W_{1}, symbolically $s\left(W_{1}\right)$, is not equivalent with $s\left(W_{2}\right)$. The only extension of $\left\langle D, W_{1}\right\rangle$ is $\operatorname{Th}\left(s\left(W_{1}\right) \cup R\right)$. The only extension of $\left\langle D, W_{2}\right\rangle$ is $\operatorname{Th}\left(s\left(W_{2}\right)\right)$.

Note: Skolemization is not the right method to deal with open defaults in the general case

It is even worse: Logically equivalent theories can have different extensions:

$$
\begin{aligned}
W_{1} & =\{\exists x(P(c, x) \vee Q(c, x))\} \\
W_{2} & =\{\exists x P(c, x) \vee \exists x Q(c, x)\} \\
D & =\left\{\frac{P(x, y) \vee Q(x, y): R}{R}\right\}
\end{aligned}
$$

Introduction
Default Logic
Complexity
Special Kinds
of Defaults
Semi-normal
defaults
Open defaults
Outlook
Literature
W_{1} and W_{2} are logically equivalent. However, the Skolemization of W_{1}, symbolically $s\left(W_{1}\right)$, is not equivalent with $s\left(W_{2}\right)$. The only extension of $\left\langle D, W_{1}\right\rangle$ is $\operatorname{Th}\left(s\left(W_{1}\right) \cup R\right)$. The only extension of $\left\langle D, W_{2}\right\rangle$ is $\operatorname{Th}\left(s\left(W_{2}\right)\right)$.
Note: Skolemization is not the right method to deal with open defaults in the general case.

Outlook

Although Reiter's definition of DL makes sense, one can come model-theoretically).

- General proof methods for the finite, decidable case
- Applications of default logic:
- Diagnosis
- Reasoning about actions

Literature

Raymond Reiter.
A logic for default reasoning.
Artificial Intelligence, 13(1):81-132, April 1980.

Default Logic
Complexity
Special Kinds
of Defaults
Literature

Complexity results for nonmonotonic logics.
Journal for Logic and Computation, 2(3), 1992.
國 Marco Cadoli and Marco Schaerf.
A survey of complexity results for non-monotonic logics.
The Journal of Logic Programming 17: 127-160, 1993.
Gerhard Brewka.
Nonmonotonic Reasoning: Logical Foundations of Commonsense.
Cambridge University Press, Cambridge, UK, 1991.

