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A reasoning task

If Mary has an essay to write, she will study late in the
library.
If the library is open, she will study late in the library.
She has an essay to write.

Conclusion?
She will study late in the library.

Reasoning tasks like this (suppression task; Byrne, 1989)
suggest that humans often do reason as suggested by classical
logics
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Nonmonotonic reasoning

All logics presented so far are monotonic.
A logic is called monotonic if all (logical) conclusions from a
knowledge base remain justified when new information is
added to the knowledge base.
Cognitive studies indicate that everyday reasoning is often
nonmonotonic (Stenning & Lambalgen, 2008;
Johnson-Laird, 2010, etc.).
When humans reason they use:

rules that may have exceptions:
If Mary has an essay to write, she normally will study
late in the library.

default assumptions:
The library is open.
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Defaults in knowledge bases

Often we use default assumptions when definite information is
not available or when we want to fix a standard value:

1 employee(anne)
2 employee(bert)
3 employee(carla)
4 employee(detlef)
5 employee(thomas)
6 onUnpaidMPaternityLeave(thomas)
7 employee(X) ∧¬ onUnpaidMPaternityLeave(X)→

gettingSalary(X)
8 Typically: employee(X)→¬ onUnpaidMPaternityLeave(X)
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Defaults in common sense reasoning

1 Tweety is a bird like other birds.
2 During the summer he stays in Northern Europe, in the

winter he stays in Africa.

Would you expect Tweety to be able to fly?
How does Tweety get from Northern Europe to Africa?

How would you formalize this in formal logic so that you get the
expected answers?
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A formalization . . .

1 bird(tweety)
2 spend-summer(tweety, northern-europe) ∧

spend-winter(tweety, africa)
3 ∀x(bird(x)→ can-fly(x))

4 far-away(northern-europe, africa)
5 ∀xyz(can-fly(x)∧ far-away(y,z)∧ spend-summer(x,y)∧

spend-winter(x,z)→ flies(x,y,z))

But: The implication (3) is just a reasonable assumption.
What if Tweety is an emu?
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Examples of such reasoning patterns

Closed world assumption: Database of ground atoms. All
ground atoms not present are assumed to be false.

Negation as failure: In PROLOG, NOT(P) means “P is not
provable” instead of “P is provably false”.

Non-strict inheritance: An attribute value is inherited only if there
is no more specialized information contradicting
the attribute value.

Reasoning about actions: When reasoning about actions, it is
usually assumed that a property changes only if it
has to change, i.e., properties by default do not
change.
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Default, defeasible, and nonmonotonic
reasoning

Default reasoning: Jump to a conclusion if there is no
information that contradicts the conclusion.

Defeasible reasoning: Reasoning based on assumptions that
can turn out to be wrong: conclusions are
defeasible. In particular, default reasoning is
defeasible.

Nonmonotonic reasoning: In classical logic, the set of
consequences grows monotonically with the set of
premises. If reasoning is defeasible, then
reasoning becomes nonmonotonic.
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Approaches to nonmonotonic reasoning

Consistency-based: Extend classical theory by rules that
test whether an assumption is consistent with existing
beliefs

⇒ Nonmonotonic logics such as DL (default logic),
NMLP (nonmonotonic logic programming)

Entailment-based on normal models: Models are ordered
by normality. Entailment is determined by considering the
most normal models only.

⇒ Circumscription, preferential and cumulative logics
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NM Logic – Consistency-based

If ϕ typically implies ψ , ϕ is given, and it is consistent to assume
ψ , then conclude ψ .

1 Typically bird(x) implies can-fly(x)

2 ∀x(emu(x)→ bird(x))

3 ∀x(emu(x)→¬can-fly(x))

4 bird(tweety)

⇒ can-fly(tweety)

5 . . . + emu(tweety)

⇒ ¬ can-fly(tweety)
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NM Logic – Normal models

If ϕ typically implies ψ , then the models satisfying ϕ ∧ψ should
be more normal than those satisfying ϕ ∧¬ψ .

Similar idea: try to minimize the interpretation of “Abnormality”
predicates.

1 ∀x(bird(x)∧¬Ab(x)→ can-fly(x))

2 ∀x(emu(x)→ bird(x))

3 ∀x(emu(x)→¬can-fly(x))

4 bird(tweety)

Minimize interpretation of Ab:
⇒ can-fly(tweety)

5 . . . + emu(tweety)

⇒ Now in all models (incl. the normal ones): ¬ can-fly(tweety)
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Default Logic – Outline

1 Introduction

2 Default Logic
Basics
Extensions
Properties of extensions
Normal defaults
Default proofs
Decidability

3 Complexity of
Default Logic

4 Special Kinds of Defaults
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Reiter’s default logic: motivation

We want to express something like “typically birds fly”.
Add non-logical inference rule

bird(x) : can-fly(x)

can-fly(x)

with the intended meaning:
If x is a bird and if it is consistent to assume that x can fly,
then conclude that x can fly.
Exceptions can be represented as formulae:

∀x(penguin(x)→¬can-fly(x))

∀x(emu(x)→¬can-fly(x))

∀x(kiwi(x)→¬can-fly(x))
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Formal framework

FOL with classical provability relation ` and deductive
closure: Th(Φ) := {ϕ|Φ ` ϕ}

Default rules:
α : β

γ

α : Prerequisite: must have been derived before rule can be
applied.

β : Consistency condition: the negation may not be derivable.
γ : Consequence: will be concluded.

A default rule is closed if it does not contain free variables.
(Closed) default theory: A pair 〈D,W〉, where D is a
countable set of (closed) default rules and W is a countable
set of FOL formulae.
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Extensions of default theories

Default theories extend the theory given by W using the default
rules in D ( extensions). There may be zero, one, or many
extensions.

Example

W = {a,¬b∨¬c}

D =

{
a : b
b

,
a : c
c

}
One extension contains b, the other contains c.

Intuitively, an extension is a set of beliefs resulting fromW and D.
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Decision problems about extensions in
default logic

Existence of extensions: Does a default theory have an
extension?

Credulous reasoning: If ϕ is in at least one extension, ϕ is a
credulous default conclusion.

Skeptical reasoning: If ϕ is in all extensions, ϕ is a skeptical
default conclusion.
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Extensions (informally)

Desirable properties of an extension E of 〈D,W〉:

1 Contains all facts: W ⊆ E.
2 Is deductively closed: E = Th(E).
3 All applicable default rules have been applied:

If
1 ( α:β

γ
) ∈ D,

2 α ∈ E,
3 ¬β 6∈ E

then γ ∈ E.

Further requirement: Application of default rules must follow
in sequence (groundedness).
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Groundedness

Example

W = /0

D =

{
a : b
b

,
b : a
a

}
Question: Should Th({a,b}) be an extension?
Answer: No!
a can only be derived if we already have derived b.
b can only be derived if we already have derived a.
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Extensions (formally)

Definition
Let ∆ = 〈D,W〉 be a closed default theory.
Let E be any set of closed formulae.
Define:

E0 = W

Ei = Th(Ei−1)∪
{

γ

∣∣∣∣α : β

γ
∈ D,α ∈ Ei−1,¬β 6∈ E

}
E is called an extension of ∆ if

E =
∞⋃
i=0

Ei .
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How to use this definition?

The definition does not tell us how to construct an
extension.

However, it tells us how to check whether a set is an
extension:

1 Guess a set E.
2 Then construct sets Ei by starting with W .
3 If E =

⋃
∞
i=0Ei , then E is an extension of 〈D,W〉.
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Examples

D =

{
a : b
b

,
b : a
a

}
W = {a∨b}

D =

{
a : b
¬b

}
W = /0

D =

{
a : b
¬b

}
W = {a}

D =

{
: a
a
,

: b
b
,

: c
c

}
W = {b→¬a∧¬c}

D =

{
: c
¬d

,
: d
¬e

,
: e
¬f

}
W = /0

D =

{
: c
¬d

,
: d
¬c

}
W = /0

D =

{
a : b
c

,
a : d
e

}
W = {a,¬b∨¬d}
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Questions, questions, questions . . .

What can we say about the existence of extensions?
How are the different extensions related to each other?

Can one extension be a subset of another one?
Are extensions pairwise incompatible (i.e. jointly
inconsistent)?

Can an extension be inconsistent?
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Properties of extensions: existence

Theorem
1 If W is inconsistent, there is only one extension.
2 A closed default theory 〈D,W〉 where all defaults have at

least one justification has an inconsistent extension if and
only if W is inconsistent.

Proof idea.

1 If W is inconsistent, no default rule is applicable and Th(W) is the only
extension.

2 Claim 1 =⇒ the if-part.
For only if: If W is consistent, there is a consistent Ei s.t. Ei+1 is
inconsistent.
Let {γ1, . . . ,γn}= Ei+1\Th(Ei) (the conclusions of applied defaults).
Now {¬β1, . . . ,¬βn}∩E = /0 because otherwise the defaults are not
applicable.
But this contradicts the inconsistency of E.
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Properties of extensions

Theorem
If E and F are extensions of 〈D,W〉 such that E ⊆ F, then E = F.

Proof sketch.

E =
∞⋃
i=0

Ei and F =
∞⋃
i=0

Fi . Use induction to show Fi ⊆ Ei .

Base case i = 0: Trivially E0 = F0 = W .
Inductive case i ≥ 1: Assume γ ∈ Fi+1. Two cases:

1 γ ∈ Th(Fi) implies γ ∈ Th(Ei) (because Fi ⊆ Ei by IH), and
therefore γ ∈ Ei+1.

2 Otherwise α : β

γ
∈ D, α ∈ Fi , ¬β 6∈ F . However, then we have

α ∈ Ei (because Fi ⊆ Ei ) and ¬β 6∈ E (because of E ⊆ F ), i.e.,
γ ∈ Ei+1.
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Normal default theories

All defaults in a normal default theory are normal:
α : β

β
.

Theorem
Normal default theories have at least one extension.

Proof sketch.
If W inconsistent, trivial. Otherwise construct

E0 = W
Ei+1 = Th(Ei)∪Ti E =

⋃
∞
i=0Ei

where Ti is a maximal set s.t. (1) Ei ∪Ti is consistent and (2) if β ∈ Ti

then there is α : β

β
∈ D and α ∈ Ei .

Show: Ti =
{

β

∣∣∣α : β

β
∈ D,α ∈ Ei ,¬β 6∈ E

}
for all i ≥ 0.
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Normal default theories: extensions are
orthogonal

Theorem (Orthogonality)
Let E and F be distinct extensions of a normal default theory.
Then E∪F is inconsistent.

Proof.
Let E =

⋃
Ei and F =

⋃
Fi with

Ei+1 = Th(Ei)∪
{

β

∣∣∣∣ α : β

β
∈ D,α ∈ Ei ,¬β 6∈ E

}
and the same for F . Since E 6= F , there exists a smallest i such that
Ei+1 6= Fi+1. This means there exists α : β

β
∈ D with α ∈ Ei = Fi , but

with, say, β ∈ Ei+1 and β 6∈ Fi+1. This is only possible if ¬β ∈ F . This
means, β ∈ E and ¬β ∈ F , i.e., E∪F is inconsistent.
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Default proofs in normal default theories

Definition
A default proof of γ in a normal default theory 〈D,W〉 is a finite
sequence of defaults (δi = αi : βi

βi
)i=1,...,n in D such that

1 W ∪{β1, . . . ,βn} ` γ ,
2 W ∪{β1, . . . ,βn} is consistent, and
3 W ∪{β1, . . . ,βk} ` αk+1, for 0≤ k ≤ n−1.

Theorem
Let ∆ = 〈D,W〉 be a normal default theory so that W is
consistent. Then γ has a default proof in ∆ if and only if there
exists an extension E of ∆ such that γ ∈ E.

Test 2 (consistency) in the proof procedure suggests that default
provability is not even semi-decidable.
November 21, 23 & 28, 2012 Nebel, Wölfl, Hué – KRR 31 / 47

Introduction

Default Logic
Basics

Extensions

Properties of
extensions

Normal defaults

Default proofs

Decidability

Complexity

Special Kinds
of Defaults

Literature

Decidability

Theorem
It is not semi-decidable to test whether a formula follows
(skeptically or credulously) from a default theory.

Proof.

Let 〈D,W〉 be a default theory with W = /0 and D =
{

: β

β

}
with β an

arbitrary closed FOL formula. Clearly, β is in some/all extensions of
〈D,W〉 if and only if β is satisfiable.
The existence of a semi-decision procedure for default proofs implies
that there is a semi-decision procedure for satisfiability in FOL.
But this is not possible because FOL validity is semi-decidable and this
together with semi-decidability of FOL satisfiability would imply
decidability of FOL, which is not the case.
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Propositional default logic

Propositional DL is decidable.
How difficult is reasoning in propositional DL?

The skeptical default reasoning problem
(does ϕ follow from ∆ skeptically: ∆ |∼ϕ?) is called PDS,
credulous reasoning is called LPDS.

PDS is coNP-hard:
consider D = /0, W = /0

LPDS is NP-hard:
consider D =

{
:β
β

}
, W = /0.

November 21, 23 & 28, 2012 Nebel, Wölfl, Hué – KRR 35 / 47



Introduction

Default Logic

Complexity
Propositional DL

Complexity of DL

Special Kinds
of Defaults

Literature

Skeptical reasoning in propositional DL

Lemma
PDS ∈ Πp

2.

Proof sketch.
We show that the complementary problem UNPDS (is there an
extension E such that ϕ 6∈ E) is in Σp

2. The algorithm:

1 Guess set T ⊆ D of defaults, those that are applied.

2 Verify that defaults in T lead to E, using a SAT oracle and the
guessed E := Th

({
γ : α:β

γ
∈ T
}
∪W

)
.

3 Verify that
{

γ : α:β
γ
∈ T
}
∪W 6` ϕ (SAT oracle).

 UNPDS ∈ Σp
2.

Similar: LPDS ∈ Σp
2.
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Πp
2-Hardness

Lemma
PDS is Πp

2-hard.

Proof sketch.

Reduction from 2QBF to UNPDS: For ∃~a∀~bϕ(~a,~b) with~a = a1, . . . ,an
and~b = b1, . . . ,bm construct ∆ = 〈D,W〉 with

D =

{
: ai
ai

,
: ¬ai
¬ai

,
: ϕ(~a,~b)

ϕ(~a,~b)

}
, W = /0

No extension contains both ai and ¬ai . Then:
∆ |6∼¬ϕ(~a,~b) iff there is an extension E s.t. ¬ϕ(~a,~b) 6∈ E

iff there is E s.t. ϕ(~a,~b) ∈ E (by :ϕ(~a,~b)
ϕ(~a,~b)

∈ D)

iff there is A⊆ {a1,¬a1, . . . ,an,¬an} s.t. A |= ϕ(~a,~b)

iff ∃~a∀~bϕ(~a,~b) is true.
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Conclusions & remarks

Theorem
PDS is Πp

2-complete, even for defaults of the form :α
α
.

Theorem
LPDS is Σp

2-complete, even for defaults of the form :α
α
.

PDS is “easier” than reasoning in most modal logics.
General and normal defaults have the same complexity.
Polynomial special cases cannot be achieved by restricting,
for example, to Horn clauses (satisfiability testing in
polynomial time).
It is necessary to restrict the underlying monotonic
reasoning problem and the number of extensions.
Similar results hold for other nonmonotonic logics.
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4 Special Kinds of Defaults

Semi-normal defaults
Open defaults
Outlook
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Semi-normal defaults (1)

Semi-normal defaults are sometimes useful:
α : β ∧ γ

β

Important when one has interacting defaults:

Adult(x): Employed(x)
Employed(x)

Student(x): Adult(x)
Adult(x)

Student(x): ¬Employed(x)
¬Employed(x)

For Student(TOM) we get two extensions: one with
Employed(TOM) and the other one with ¬Employed(Tom).
Since the third rule is “more specific”, we may prefer it.
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Semi-normal defaults (2)

Since being a student is an exception, we could use a
semi-normal default to exclude students from employed
adults:

Student(x): ¬Employed(x)
¬Employed(x)

Adult(x): Employed(x) ∧¬Student(x)
Employed(x)

Student(x): Adult(x)
Adult(x)

Representing conflict-resolution by semi-normal defaults
becomes clumsy when the number of default rules
becomes high.
A scheme for assigning priorities would be more elegant
(there are indeed such schemes).
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Open defaults (1)

Our examples included open defaults, but the theory covers
only closed defaults.
If we have α(~x):β(~x)

γ(~x) , then the variables should stand for all
nameable objects.
Problem: What about objects that have been introduced
implicitly, e.g., via formulae such a ∃xP(x).
Solution by Reiter: Skolemization of all formulae in W and
D.
Interpretation: An open default stands for all the closed
defaults resulting from substituting ground terms for the
variables.
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Open defaults (2)

Skolemization can create problems because it preserves
satisfiability, but it is not an equivalence transformation.

Example

∀x(Man(x)↔¬Woman(x))
∀x(Man(x)→ (∃y(Spouse(x,y)∧Woman(y))∨Bachelor(x)))
Man(TOM)
Spouse(TOM,MARY)
Woman(MARY)
: Man(x)
Man(x)

Skolemization of ∃y : . . . enables concluding Bachelor(TOM)!
The reason is that for g(TOM) we get Man(g(TOM)) by default
(where g is the Skolem function).
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Open defaults (3)

It is even worse: Logically equivalent theories can have different
extensions:

W1 = {∃x(P(c,x)∨Q(c,x))}
W2 = {∃xP(c,x)∨∃xQ(c,x)}

D =

{
P(x,y)∨Q(x,y) : R

R

}
W1 and W2 are logically equivalent. However, the Skolemization
of W1, symbolically s(W1), is not equivalent with s(W2). The
only extension of 〈D,W1〉 is Th(s(W1)∪R).The only extension
of 〈D,W2〉 is Th(s(W2)).
Note: Skolemization is not the right method to deal with open
defaults in the general case.
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Although Reiter’s definition of DL makes sense, one can come
up with a number of variations and extend the investigation . . .

Extensions can be defined differently (e.g., by remembering
consistency conditions).
. . . or by removing the groundedness condition.
Open defaults can be handled differently (more
model-theoretically).
General proof methods for the finite, decidable case
Applications of default logic:

Diagnosis
Reasoning about actions
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