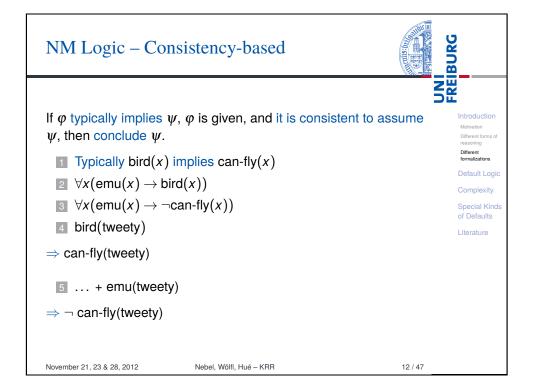

| Defaults in knowledge bases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BURG                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Often we use default assumptions when definite information is not available or when we want to fix a standard value:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Introduction<br>Motivation<br>Different forms of<br>reasoning               |
| <ol> <li>employee(anne)</li> <li>employee(bert)</li> <li>employee(carla)</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Different<br>formalizations<br>Default Logic<br>Complexity<br>Special Kinds |
| <ul> <li>employee(detlef)</li> <li>employee(thomas)</li> <li>onUnpaidMPaternityLeave(thomas)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of Defaults                                                                 |
| <ul> <li>Image: Second and the second s</li></ul> |                                                                             |
| <b>Typically:</b> employee(X) $\rightarrow \neg$ onUnpaidMPaternityLeave(X)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                             |
| November 21, 23 & 28, 2012 Nebel, Wölfl, Hué – KRR 6 / 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                             |

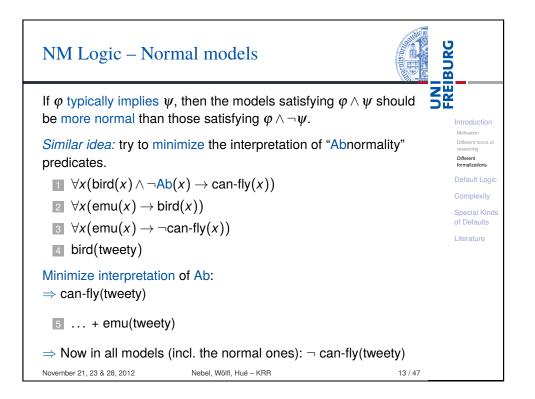
INDUC R

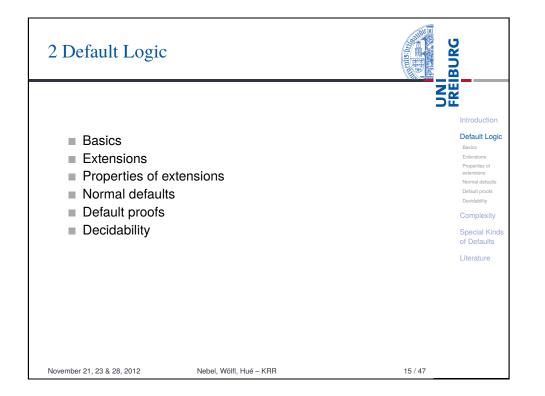


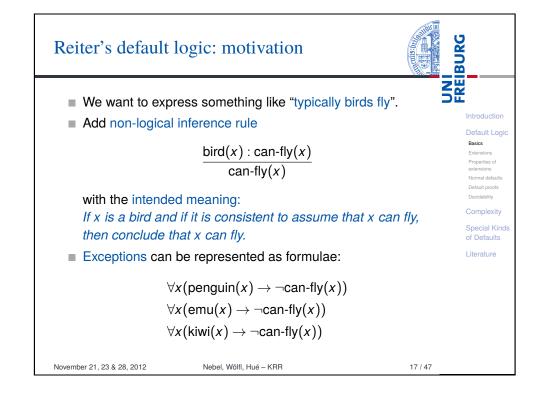
| Defaults in commo                                                                                   | n sense reasoning                                                                                                                                |              | מ<br>מ<br>מ                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| winter he stays in A Would you expect T How does Tweety g How would you formalize expected answers? | he stays in Northern Europe, in the frica.<br>weety to be able to fly?<br>et from Northern Europe to Africate this in formal logic so that you g | a?<br>et the | Introduction<br>Motivation<br>Different forms of<br>reasoning<br>Different<br>formalizations<br>Default Logic<br>Complexity<br>Special Kinds<br>of Defaults<br>Literature |
| November 21, 23 & 28, 2012                                                                          | Nebel, Wölfl, Hué – KRR                                                                                                                          | 7 / 47       |                                                                                                                                                                           |







November 21, 23 & 28, 2012


Nebel, Wölfl, Hué – KRR


10 / 47



| Approaches to n                | onmonotonic reasoni                                                    | ing                                  |       |
|--------------------------------|------------------------------------------------------------------------|--------------------------------------|-------|
|                                |                                                                        | Se                                   | ion   |
|                                | sed: Extend classical theory<br>assumption is consistent wi            | reasoning                            | IS    |
|                                | ogics such as DL (default lo<br>otonic logic programming)              | Dgic), Complexi Special K of Default | linds |
|                                | d on normal models: Mode<br>tailment is determined by co<br>dels only. |                                      | 9     |
| $\Rightarrow$ Circumscription, | preferential and cumulative                                            | e logics                             |       |
| November 21, 23 & 28, 2012     | Nebel, Wölfl, Hué – KRR                                                | 11 / 47                              |       |







| Default Logic – Outline                                                                                                              | BURG                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 Introduction                                                                                                                       | Introduction                                                                                                                                                                          |
| 2 Default Logic<br>= Basics<br>= Extensions<br>= Properties of extensions<br>= Normal defaults<br>= Default proofs<br>= Decidability | Default Logic<br>Basics<br>Extensions<br>Properties of<br>extensions<br>Normal defaults<br>Default proofs<br>Decidability<br>Complexity<br>Special Kinds<br>of Defaults<br>Literature |
| 3 Complexity of<br>Default Logic                                                                                                     |                                                                                                                                                                                       |
| 4 Special Kinds of Defaults<br>November 21, 23 & 28, 2012 Nebel, Wölfl, Hué – KRR                                                    | 16 / 47                                                                                                                                                                               |

| Formal framework                                                                                                                                                                                          | BURG                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| ■ FOL with classical provability relation $\vdash$ and deductive closure: Th( $\Phi$ ) := { $\varphi   \Phi \vdash \varphi$ }                                                                             | Introduction<br>Default Logic                                                            |
| Default rules: $\frac{\alpha:\beta}{\gamma}$                                                                                                                                                              | Basics<br>Extensions<br>Properties of<br>extensions<br>Normal defaults<br>Default proofs |
| <ul> <li>α: Prerequisite: must have been derived before rule can be applied.</li> <li>β: Consistency condition: the negation may not be derivable.</li> <li>γ: Consequence: will be concluded.</li> </ul> | Decidability<br>Complexity<br>Special Kinds<br>of Defaults                               |
| A default rule is closed if it does not contain free variables.                                                                                                                                           | Literature                                                                               |
| <ul> <li>(Closed) default theory: A pair (D, W), where D is a countable set of (closed) default rules and W is a countable set of FOL formulae.</li> </ul>                                                |                                                                                          |
| November 21, 23 & 28, 2012 Nebel, Wölfl, Hué – KRR 18 / 47                                                                                                                                                |                                                                                          |

## Extensions of default theories



Reging

Extensions

Properties of

Normal defaults

Default proofs Decidability

Special Kinds

of Defaults

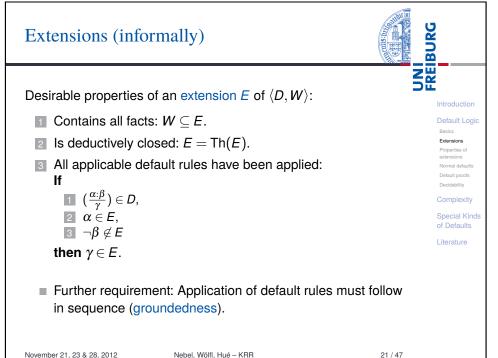
Literature

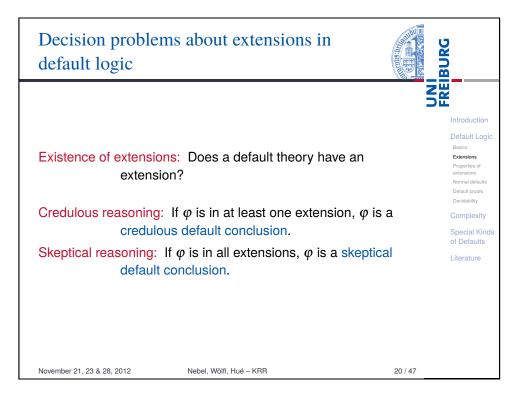
19/47

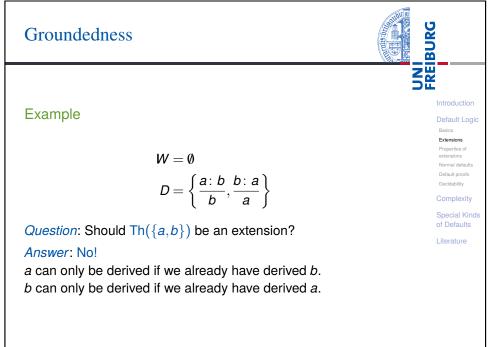
extensions

Default theories extend the theory given by W using the default rules in D ( $\rightsquigarrow$  extensions). There may be zero, one, or many extensions.

### Example


| $W = \{a, \neg b\}$                  | √ ¬ <i>c</i> } |
|--------------------------------------|----------------|
| $D = \left\{ \frac{a:b}{b}, \right.$ | <u>a: c</u> `  |
| Ъ_{b'                                | C ,            |


One extension contains b, the other contains c.


Intuitively, an extension is a set of beliefs resulting from W and D.

November 21, 23 & 28, 2012

Nebel, Wölfl, Hué - KRR







Nebel, Wölfl, Hué - KRR

22 / 47

# Extensions (formally)

### Definition

Let  $\Delta = \langle D, W \rangle$  be a closed default theory. Let *E* be any set of closed formulae. Define:

$$E_{0} = W$$
$$E_{i} = \mathsf{Th}(E_{i-1}) \cup \left\{ \gamma \left| \frac{\alpha \colon \beta}{\gamma} \in D, \alpha \in E_{i-1}, \neg \beta \notin E \right. \right\}$$

BURG

**NN** 

Default Logic

Regine

Extensions

Properties of

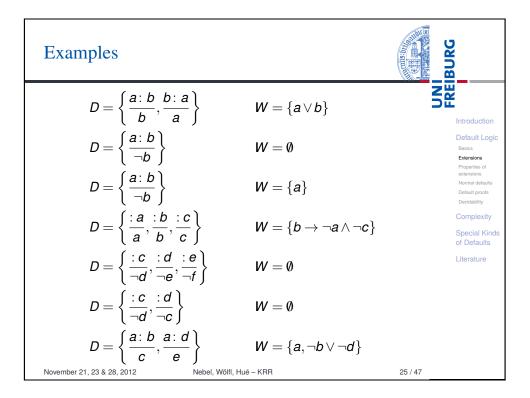
Default proofs

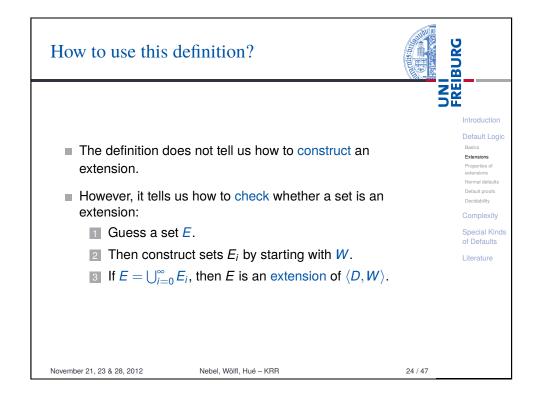
Special Kinds of Defaults

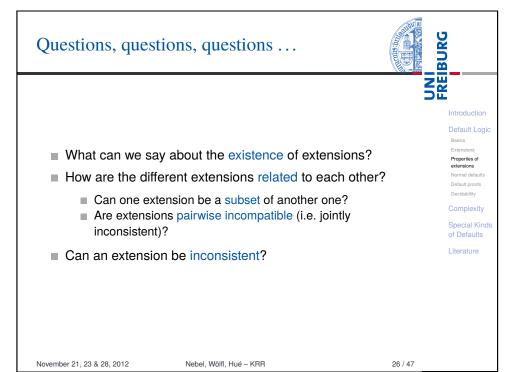
Literature

23/47

Decidability


extensions Normal defaults


*E* is called an extension of  $\Delta$  if


November 21, 23 & 28, 2012

 $E = \bigcup_{i=0}^{\infty} E_i.$ 

Nebel, Wölfl, Hué - KRR







# Properties of extensions: existence

### Theorem

- If W is inconsistent, there is only one extension.
- A closed default theory (D, W) where all defaults have at least one justification has an inconsistent extension if and only if W is inconsistent.

BURG

Default Logic

Properties of

extensions Normal defaults

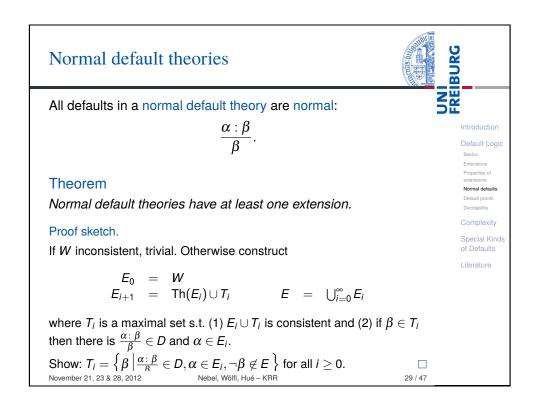
Decidability

Special Kinds

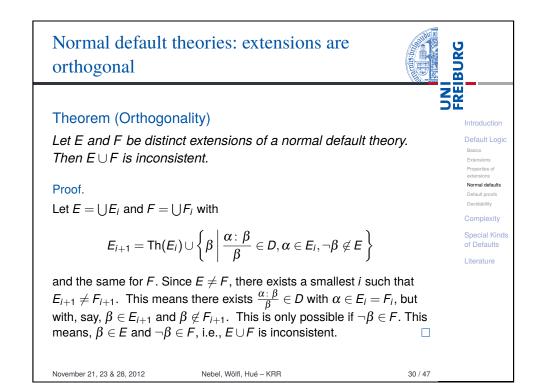
of Defaults

Literature

27 / 47


#### Proof idea.

November 21, 23 & 28, 2012


- If W is inconsistent, no default rule is applicable and Th(W) is the only extension.
- 2 Claim 1  $\implies$  the **if**-part.

For **only if**: If *W* is consistent, there is a consistent  $E_i$  s.t.  $E_{i+1}$  is inconsistent. Let  $\{\gamma_1, \ldots, \gamma_n\} = E_{i+1} \setminus \text{Th}(E_i)$  (the conclusions of applied defaults). Now  $\{\neg \beta_1, \ldots, \neg \beta_n\} \cap E = \emptyset$  because otherwise the defaults are not applicable. But this contradicts the inconsistency of *E*.

Nebel, Wölfl, Hué - KRR



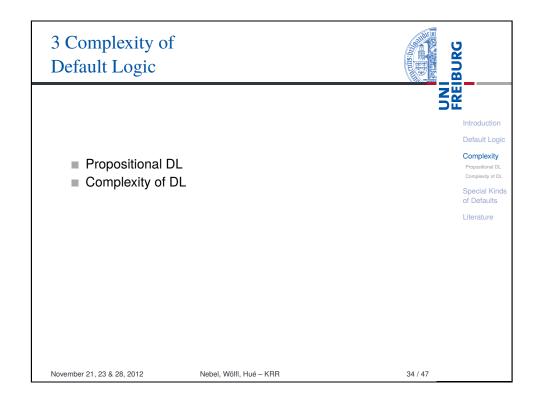
| Properties of extensions                                                                                                                                                                                                                                       | BURG                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Theorem<br>If <i>E</i> and <i>F</i> are extensions of $\langle D, W \rangle$ such that $E \subseteq F$ , then $E = F$                                                                                                                                          | F. Introduction<br>Basics                                                                                                                   |
| Proof sketch.<br>$E = \bigcup_{i=0}^{\infty} E_i$ and $F = \bigcup_{i=0}^{\infty} F_i$ . Use induction to show $F_i \subseteq E_i$ .<br>Base case $i = 0$ : Trivially $E_0 = F_0 = W$ .<br>Inductive case $i \ge 1$ : Assume $\gamma \in F_{i+1}$ . Two cases: | Extensions<br>Properties of<br>extensions<br>Normal defaults<br>Default proofs<br>Decidability<br>Complexity<br>Special Kind<br>of Defaults |
| ■ $\gamma \in \text{Th}(F_i)$ implies $\gamma \in \text{Th}(E_i)$ (because $F_i \subseteq E_i$ by IH), and therefore $\gamma \in E_{i+1}$ .                                                                                                                    | Literature                                                                                                                                  |
| Cherwise $\frac{\alpha:\beta}{\gamma} \in D$ , $\alpha \in F_i$ , $\neg \beta \notin F$ . However, then we have $\alpha \in E_i$ (because $F_i \subseteq E_i$ ) and $\neg \beta \notin E$ (because of $E \subseteq F$ ), i.e., $\gamma \in E_{i+1}$ .          |                                                                                                                                             |
| November 21, 23 & 28, 2012 Nebel, Wölfl, Hué – KRR 28 /                                                                                                                                                                                                        | / 47                                                                                                                                        |



# Default proofs in normal default theories

#### Definition

A default proof of  $\gamma$  in a normal default theory  $\langle D, W \rangle$  is a finite sequence of defaults  $(\delta_i = \frac{\alpha_i : \beta_i}{\beta_i})_{i=1,...,n}$  in *D* such that 1  $W \cup \{\beta_1, \ldots, \beta_n\} \vdash \gamma$ ,


**2**  $W \cup \{\beta_1, \ldots, \beta_n\}$  is consistent, and

**3** 
$$W \cup \{\beta_1, \ldots, \beta_k\} \vdash \alpha_{k+1}$$
, for  $0 \le k \le n-1$ .

### Theorem

Let  $\Delta = \langle D, W \rangle$  be a normal default theory so that W is consistent. Then  $\gamma$  has a default proof in  $\Delta$  if and only if there exists an extension *E* of  $\Delta$  such that  $\gamma \in E$ .

Test 2 (consistency) in the proof procedure suggests that default provability is not even semi-decidable. November 21, 23 & 28, 2012 Nebel, Wölfl, Hué - KRR 31 / 47



# Decidability



Reging

Extensions

Properties of

Normal default:

#### Theorem

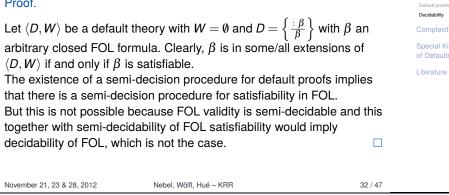
UNI FREIBURG

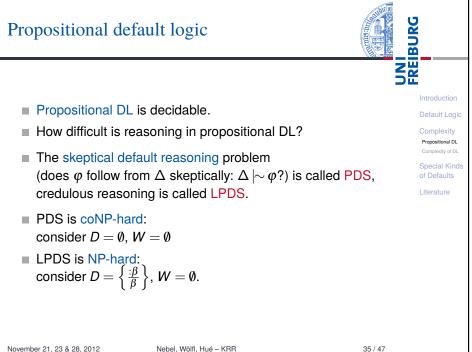
Regine

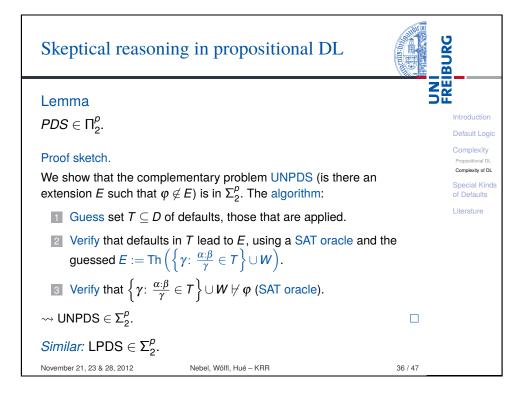
Extensions

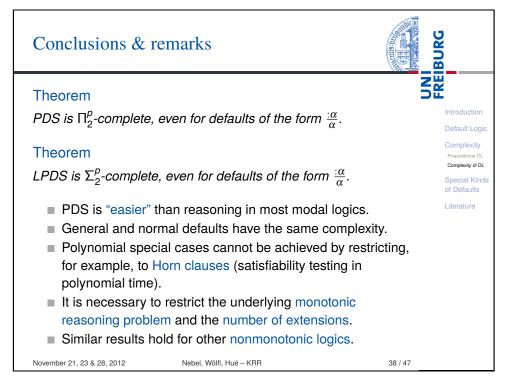
Properties of

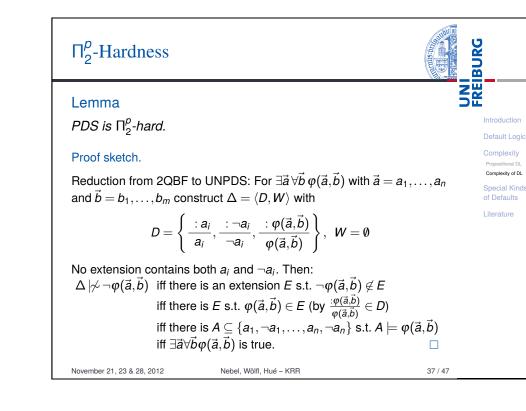
Default proofs

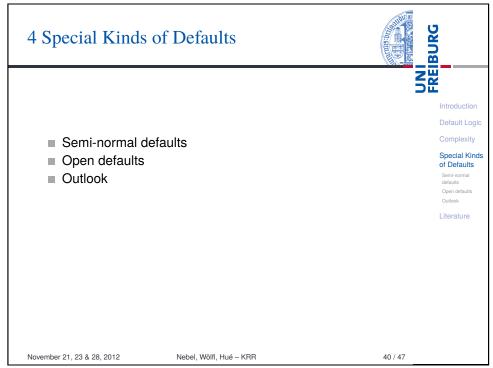

Special Kinds of Defaults

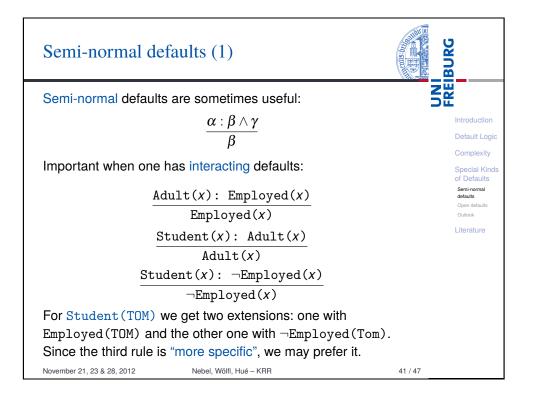

Literature

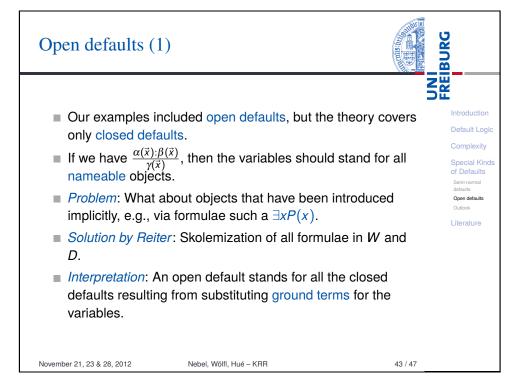

extensions Normal defaults

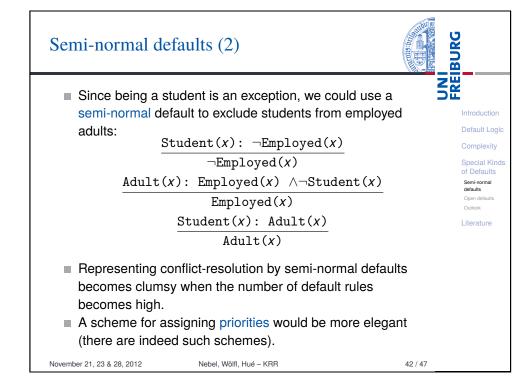

It is not semi-decidable to test whether a formula follows (skeptically or credulously) from a default theory.

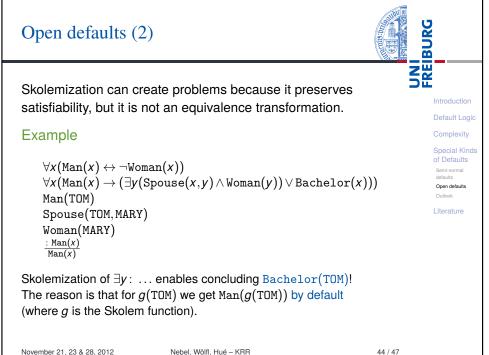

#### Proof.














# Open defaults (3)



It is even worse: Logically equivalent theories can have different extensions:

$$W_1 = \{\exists x (P(c,x) \lor Q(c,x))\}$$
$$W_2 = \{\exists x P(c,x) \lor \exists x Q(c,x)\}$$
$$D = \left\{\frac{P(x,y) \lor Q(x,y) \colon R}{R}\right\}$$

Default Logic Complexity Special Kinds of Defaults Semi-normal defaults Open defaults Outlook

Literature

45 / 47

 $W_1$  and  $W_2$  are logically equivalent. However, the Skolemization of  $W_1$ , symbolically  $s(W_1)$ , is not equivalent with  $s(W_2)$ . The only extension of  $\langle D, W_1 \rangle$  is Th $(s(W_1) \cup R)$ . The only extension of  $\langle D, W_2 \rangle$  is Th $(s(W_2))$ .

*Note*: Skolemization is not the right method to deal with open defaults in the general case.

November 21, 23 & 28, 2012

Nebel, Wölfl, Hué – KRR



| Outlook                                                 |                                                                |                |                    |
|---------------------------------------------------------|----------------------------------------------------------------|----------------|--------------------|
|                                                         |                                                                |                |                    |
| •                                                       | finition of DL makes sense, c<br>variations and extend the inv |                | Intro<br>Def       |
| <ul> <li>Extensions can<br/>consistency con</li> </ul>  | be defined differently (e.g., b<br>aditions).                  | by remembering | Cor<br>Spe<br>of E |
| … or by removi                                          | ng the groundedness conditi                                    | ion.           | Sen<br>defa<br>Ope |
| <ul> <li>Open defaults c<br/>model-theoretic</li> </ul> | an be handled differently (ma<br>ally).                        | ore            | Out                |
| General proof m                                         | nethods for the finite, decidat                                | ble case       |                    |
| Applications of e                                       | default logic:                                                 |                |                    |
| <ul><li>Diagnosis</li><li>Reasoning a</li></ul>         | about actions                                                  |                |                    |
|                                                         |                                                                |                |                    |
| November 21, 23 & 28, 2012                              | Nebel, Wölfl, Hué – KRR                                        | 46 / 47        |                    |