

Motivation for modal logics	BURG
	LNN RE
Often, we want to state something where we have an	Motivation
"embedded proposition":	Syntax
John believes that it is Sunday.	Semantics
I know that $2^{10} = 1024$.	Different Logics
Reasoning with embedded propositions:	Analytic Tableaux
John believes that if it is Sunday, then shops are closed	d. Embedding in FOL
John believes that it is Sunday.	Outlook & literature
This implies (assuming belief is closed under modus ponens): John believes that shops are closed.	
\rightsquigarrow How to formalize this?	
November 7, 9, 14 & 16, 2012 Nebel, Wölfl, Hué – KRR	5 / 50

2 Syntax		BURG
		FREN
		Motivation
		Syntax
		Semantics
		Different Logics
		Analytic Tableaux
		Embedding in FOL
		Outlook & literature
November 7, 9, 14 & 16, 2012	Nebel, Wölfl, Hué – KRR	7 / 50

Syntax	BURG
Propositional logic + operators \Box & \Diamond (Box & Diamond):	FRE
$oldsymbol{arphi} egin{array}{cl} oldsymbol{arphi} & \longrightarrow & \ldots & ext{classical propositional formula} \ & & oldsymbol{arphi}' & ext{Box} \ & & & oldsymbol{arphi} & oldsymbol{arphi}' & ext{Diamond} \end{array}$	Motivation Syntax Semantics Different Logics
\Box and \Diamond have the same operator precedence as $\neg.$	Analytic Tableaux
Some possible readings of $\Box \varphi$: Necessarily φ (alethic) Always φ (temporal) φ should be true (deontic) Agent A believes that φ (doxastic) Agent A lengung that φ (doxastic)	Embedding in FOL Outlook & literature
■ Agent <i>A</i> knows that φ (epistemic) \rightsquigarrow Different semantics for different intended readings	
November 7, 9, 14 & 16, 2012 Nebel, Wölfl, Hué – KRR	8 / 50

Semantics: the idea

Let BURG

Svntax

Possible worlds Kripke semantic Basic notions

properties vs. axioms

Different

Tableaux

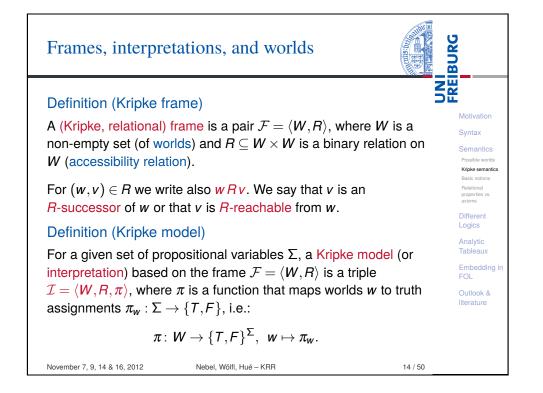
Outlook & literature

12 / 50

Embedding ir FOL

Logics Analytic

In classical propositional logic, formulae are interpreted over single interpretations and are evaluated to true or false.

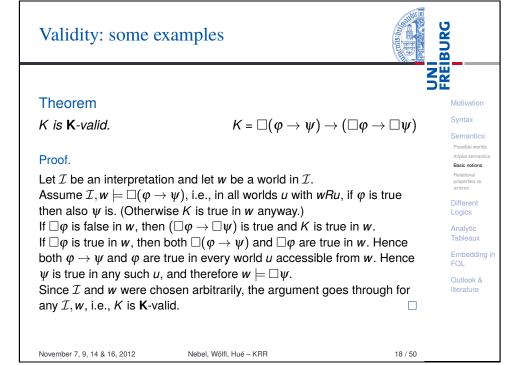

In modal logics one considers sets of interpretations: possible worlds (physically possible, conceivable, \dots).

Main idea:

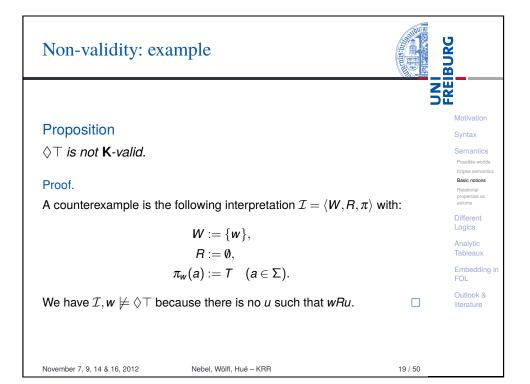
- Consider a world (interpretation) w and a set of worlds W which are possible with respect to w.
- A classical formula (with no modal operators) φ is true with respect to (w, W) iff φ is true in w.
- $\Box \phi$ is true wrt. (*w*, *W*) iff ϕ is true in all worlds in *W*.
- $\Diamond \varphi$ is true wrt. (*w*, *W*) iff φ is true in some world in *W*.
- Meanings of \Box and \Diamond are interrelated by: $\Diamond \phi \equiv \neg \Box \neg \phi$.

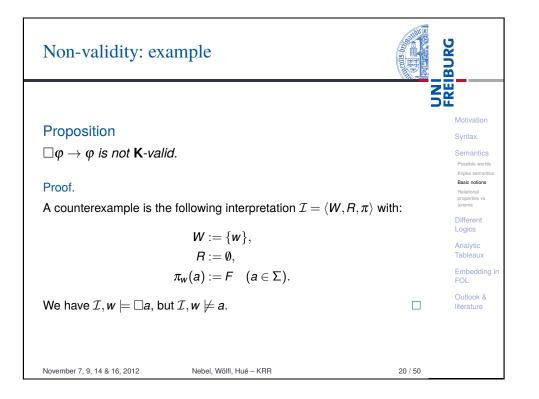
November 7, 9, 14 & 16, 2012

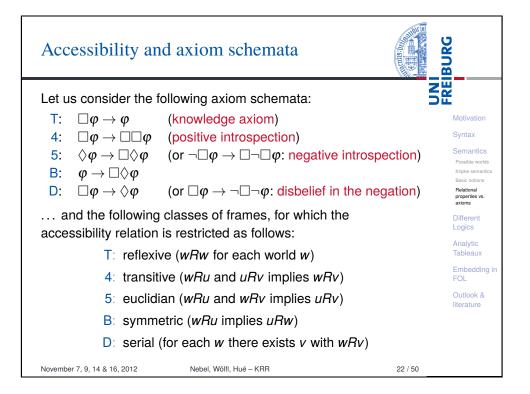
Nebel, Wölfl, Hué – KRR


Semantics: an exa	mple			
-	urrent world	possible worlds		
	W	W		Motivation
		a		Syntax
		b		Semantics
	a	a		Possible worlds Kripke semantics
	(¬b)			Basic notions
	\bigcirc)		Relational properties vs.
		$\begin{pmatrix} \neg a \\ b \end{pmatrix}$		axioms
				Different Logics
Examples:				Analytic
\bullet $a \land \neg b$ is true relat	ive to (w	W/)		Tableaux
	`	,		Embedding in
■ □a is not true relat		· · ·		FOL
■ $\Box(a \lor b)$ is true rel	lative to (w,W).		Outlook & literature
Question: How to evalu	ate moda	I formulae in $w \in W$?		
\rightsquigarrow For each world, we s	specify a	set of possible worlds.		
→ Frames	, ,			
November 7, 9, 14 & 16, 2012	Nebel, Wölfl,	Hué – KRR	13 / 50	

Semantics: truth	n in a world	BURG
A formula φ is true in under the following c	n world <i>w</i> in an interpretation $\mathcal{I}=\langle$ conditions:	W, R, π
$egin{array}{llllllllllllllllllllllllllllllllllll$	iff $\pi_w(a) = T$	Syntax Semantics Possible worlds Kripke semantics Basic notions Relational
$egin{aligned} \mathcal{I}, oldsymbol{w} &\models eg \phi \land oldsymbol{\psi} \ \mathcal{I}, oldsymbol{w} &\models oldsymbol{\phi} \lor oldsymbol{\psi} \ \end{pmatrix}$	$\begin{array}{l} \text{iff} \ \mathcal{I}, w \not\models \varphi \\ \text{iff} \ \mathcal{I}, w \models \varphi \text{ and } \mathcal{I}, w \models \psi \\ \text{iff} \ \mathcal{I}, w \models \varphi \text{ or } \mathcal{I}, w \models \psi \end{array}$	properties vs. axioms Different Logics Analytic
$\mathcal{I}, oldsymbol{w} \models oldsymbol{arphi} o oldsymbol{\psi}$	iff $\mathcal{I}, \pmb{w} \not\models \pmb{\varphi}$ or $\mathcal{I}, \pmb{w} \models \pmb{\psi}$	Tableaux Embedding in FOL
$egin{aligned} \mathcal{I}, oldsymbol{w} &\models oldsymbol{\phi} \ \mathcal{I}, oldsymbol{w} &\models \Box oldsymbol{\phi} \ \mathcal{I}, oldsymbol{w} &\models \Diamond oldsymbol{\phi} \end{aligned}$	iff $\mathcal{I}, w \models \varphi$ if and only if $\mathcal{I}, w \models$ iff $\mathcal{I}, u \models \varphi$, for all u s.t. wRu iff $\mathcal{I}, u \models \varphi$, for at least one u s.t	literature
November 7, 9, 14 & 16, 2012	Nebel, Wölfl, Hué – KRR	15 / 50


Sat


Satisfiability and validit	ty		
A formula φ is satisfiable in an world <i>w</i> in \mathcal{I} such that $\mathcal{I}, w \models$		is a	Motivation
A formula φ is satisfiable in a f frames C) if it is satisfiable in a (satisfiable in an interpretation C).	rame ${\cal F}$ (satisfiable in a class n interpretation ${\cal I}$ based on ${\cal J}$	F	Syntax Semantics Possible worlds Kripke semantics Basic notions Relational properties vs. axioms
A formula φ is true in an interp φ is true in all worlds of \mathcal{I} .	retation $\mathcal I$ (symbolically $\mathcal I \models$	φ) if	Different Logics Analytic Tableaux
A formula φ is valid in a frame if φ is true in all interpretations)	Embedding in FOL
A formula φ is valid in a class (symb. $\mathcal{C} \models \varphi$) if $\mathcal{F} \models \varphi$ for all	of frames ${\mathcal C}$ or ${\mathcal C}$ -valid		Outlook & literature
November 7, 9, 14 & 16, 2012 Nebel, W	fölfl, Hué – KRR	16 / 50	


.....

Validities in K		BURG
K denotes the class of invented this semantic	all frames – named after Sa s.	aul Kripke, who Motivat
Some validities in K : 1 $\varphi \lor \neg \varphi$ 2 $\Box(\varphi \lor \neg \varphi)$		Seman Possible Kripke se Basic noti Retational properties axioms
$\square \varphi$, if φ is a class	sical tautology $ arphi ightarrow \Box \psi)$ (axiom schema $ extsf{\textit{H}}$	Differer Logics K) Analytic Tableat
Moreover, it holds:		Embed FOL
If ϕ is	K-valid, then $\Box arphi$ is K-valid	Outlook literatur
November 7, 9, 14 & 16, 2012	Nebel, Wölfl, Hué – KRR	17 / 50

Non-validity: another example		
Proposition $\Box \varphi \rightarrow \Box \Box \varphi$ <i>is not</i> K - <i>valid.</i>		Motivation Syntax
Proof. A counterexample is the following interpretation: $\mathcal{I} = \langle \{u, v, w\}, \{(u, v), (v, w)\}, \pi \rangle$		Semantics Possible worlds Kripke semantics Basic notions Relational properties vs. axioms
with $\pi_u(a) := T$		Different Logics Analytic Tableaux Embedding in FOL
$\pi_{v}(a):= au$ $\pi_{w}(a):= au$ Hence, $\mathcal{I},u\models \Box a$, but $\mathcal{I},u eq \Box \Box a$.		Outlook & literature
November 7, 9, 14 & 16, 2012 Nebel, Wölfl, Hué – KRR	21 / 50	

Correspondence between accessibility relations and axiom schemata (1)

Theorem

Axiom schema T (4,5,B,D) is T- valid (4-, 5-, B-, or D-valid, respectively).

Proof.

For *T* and **T**: Let \mathcal{F} be a frame from class **T**. Let \mathcal{I} be an interpretation based on \mathcal{F} and let *w* be an arbitrary world in \mathcal{I} . If $\Box \varphi$ is not true in world *w*, then axiom *T* is true in *w*. If $\Box \varphi$ is true in *w*, then φ is true in all accessible worlds. Since the accessibility relation is reflexive, *w* is among the accessible worlds, i.e., φ is true in *w*. Thus also in this case *T* is true in *w*. We conclude: *T* is true in all worlds in all interpretations based on **T**-frames.

Nebel, Wölfl, Hué - KRR

November 7, 9, 14 & 16, 2012

UNI FREIBURG

Motivation

Possible work

Kripke semant

Basic notions

properties vs

Relational

axioms

Different

Logics

Analytic

FOL

Outlook &

Correspondence between accessibility relations and axiom schemata (2)

Theorem

If T (4,5,B,D) is valid in a frame \mathcal{F} , then \mathcal{F} is a **T**-frame (**4-, 5-, B-**, or **D**-frame, respectively).

UNI FREIBURG

Motivation

Kripke semantics Basic notions Relational properties vs.

Syntax

axioms Different

Logics

Analytic

Tableaux

Outlook &

literature

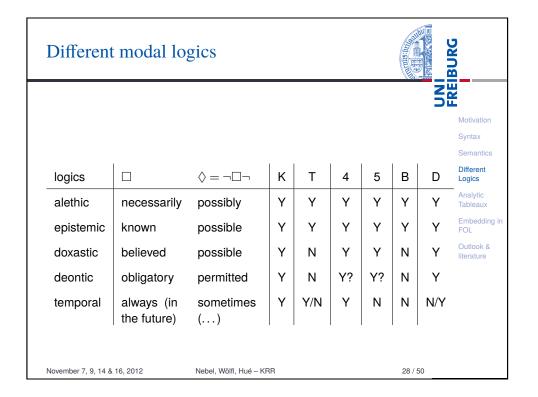
24 / 50

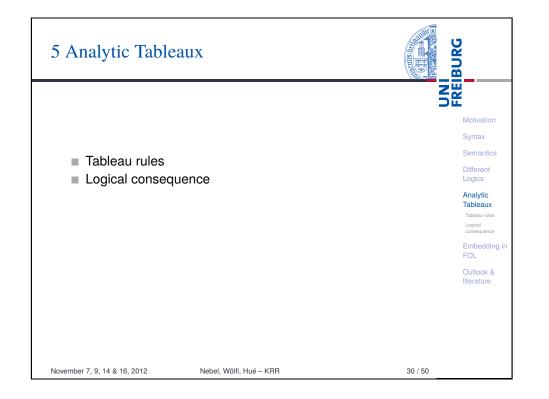
Embedding ir FOL

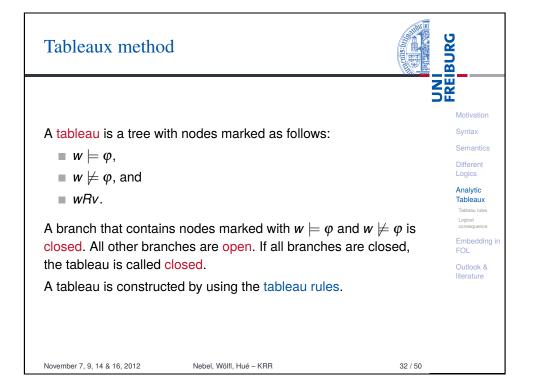
Proof.

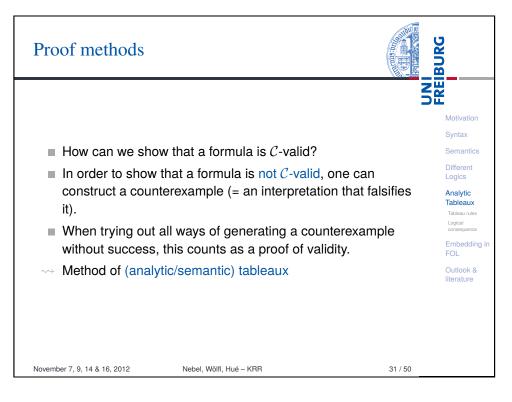
For T and **T**: Assume that \mathcal{F} is not a **T**-frame. We will construct an interpretation based on \mathcal{F} that falsifies T.

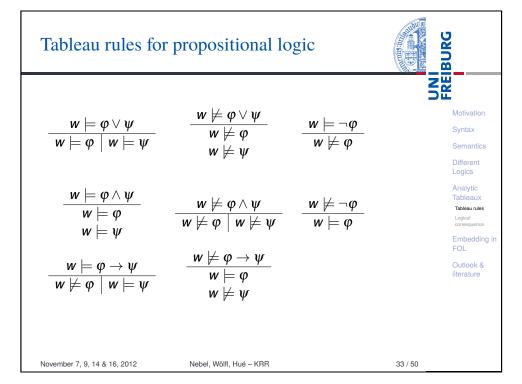
Because \mathcal{F} is not a **T**-frame, there is a world w such that not wRw. Construct an interpretation \mathcal{I} such that $\mathcal{I}, w \not\models a$ and $\mathcal{I}, v \models a$ for all v such that wRv.


Now $\mathcal{I}, w \models \Box a$ and $\mathcal{I}, w \not\models a$, and hence $\mathcal{I}, w \not\models \Box a \rightarrow a$.


November 7, 9, 14 & 16, 2012


Nebel, Wölfl, Hué – KRR


```
UNI
FREIBURG
Different modal logics
                              Property
                                                  Axiom schema
                 Name
                                                                                                                     Motivation
                Κ
                                                  \Box(\phi 
ightarrow \psi) 
ightarrow (\Box \phi 
ightarrow \Box \psi)
                              _
                                                                                                                     Syntax
                 Т
                              reflexivity
                                                  \Box \phi 
ightarrow \phi
                                                                                                                     Semantics
                4
                              transitivity
                                                  \Box \phi \rightarrow \Box \Box \phi
                                                                                                                     Different
                5
                              euclidicity
                                                  \Diamond \phi \rightarrow \Box \Diamond \phi
                                                                                                                     Logics
                В
                                                  \phi \rightarrow \Box \Diamond \phi
                              symmetry
                                                                                                                      Analytic
                 D
                                                                                                                      Tableaux
                              seriality
                                                  \Box \phi \rightarrow \Diamond \phi
                                                                                                                      Outlook &
Some basic modal logics:
                                                                                                                     literature
                                             Κ
                                         KT4 = S4
                                         KT5 = S5
November 7, 9, 14 & 16, 2012
                                          Nebel, Wölfl, Hué - KRR
                                                                                                     27 / 50
```


4 Different Logi	cs	BURG
		FREN
		Motivation
		Syntax
		Semantics
		Different Logics
		Analytic Tableaux
		Embedding i FOL
		Outlook & literature
November 7, 9, 14 & 16, 2012	Nebel, Wölfl, Hué – KRR	26 / 50

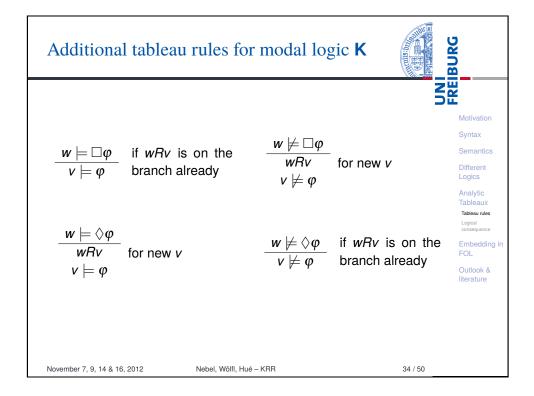


Tableau rules for other modal logics

Proofs within more restricted classes of frames allow the use of further tableau rules.

- For reflexive (**T**) frames we may extend any branch with *wRw*.
- For transitive (4) frames we have the following additional rule:
 - If wRv and vRu are in a branch, wRu may be added to the branch.
- For serial (**D**) frames we have the following rule:
 - If there is $w \models \ldots$ or $w \not\models \ldots$ on a branch, then add wRv for a new world v.
- Similar rules for other properties...

November 7, 9, 14 & 16, 2012

How hard is it to check whether a modal logic formula is satisfiable or valid?

Complexity of simple modal logics

Properties of K tableaux

Theorem (Soundness)

Theorem (Completeness)

Proposition (Termination)

tableau whenever one exists.

November 7, 9, 14 & 16, 2012

Proposition

satisfied.

The answer depends in fact on the considered class of frames! For example, one can show that each formula φ that is satisfiable in some S5-frame is satisfiable in an S5-frame with $|W| \leq |\varphi|$.

If a K-tableau is closed, the truth condition at the root cannot be

If a K-tableau with root $w \not\models \phi$ is closed, then ϕ is K-valid.

If φ is **K**-valid, then there is a closed tableau with root $w \not\models \varphi$.

There are strategies for constructing **K**-tableaux that always terminate after a finite number of steps, and result in a closed

Nebel, Wölfl, Hué - KRR

Proposition

Checking whether a modal formula is satisfiable in some S5-model is NP-complete (and hence checking S5-validity is coNP-complete).

For other modal logics, such as K, KT, KD, K4, S4, these problems are PSPACE-complete.

Motivi Synta Differ Logic Analy Table

Motivation Syntax Semantic: Different Logics Analytic Tableaux Tableaux Logical consequence Engeddin FOL Outlook & Iliterature

Nebel, Wölfl, Hué – KRR

36 / 50

UNI FREIBURG

Motivation

Svntax

Different

Logics

Analytic

Tableaux

Tableau rules

consequenc

Outlook &

literature

FOI

November 7, 9, 14 & 16, 2012

35 / 50

Testing logical consequence with tableaux

Let X be a class of frames.

Let Θ denote a (finite) set of formulae.

Define a consequence relation $\Theta \models_X \phi$ as follows:

For each interpretation \mathcal{I} based on a frame in X, if $\mathcal{I} \models \psi$ for each $\psi \in \Theta$, then $\mathcal{I} \models \varphi$.

- How can we check whether $\Theta \models \phi$?
- Can we apply some kind of deduction theorem as in propositional logic:

 $\Theta \cup \{\psi\} \models_{\mathsf{PL}} \phi \Rightarrow \Theta \models_{\mathsf{PL}} \psi \to \phi \ ?$

- **Example:** $a \models_{\mathbf{K}} \Box a$ holds, but $a \rightarrow \Box a$ is not **K**-valid.
- There is no deduction theorem as in propositional logic, and logical consequence cannot be directly reduced to validity!

November 7, 9, 14 & 16, 2012

Nebel, Wölfl, Hué – KRR

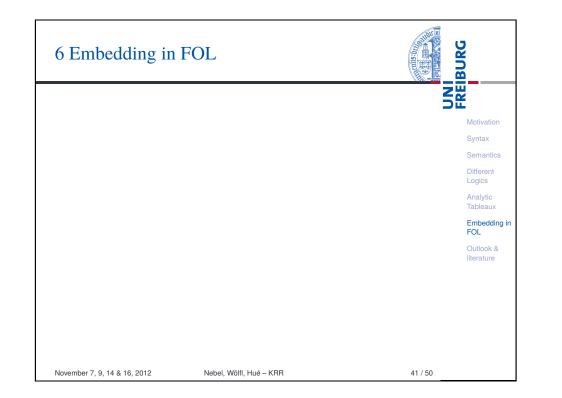
UNI FREIBURG

Motivation

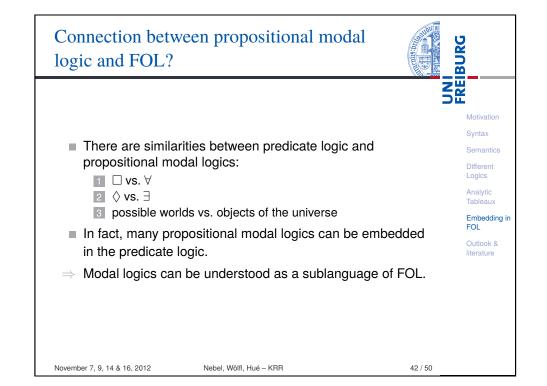
Semantics

Different Logics

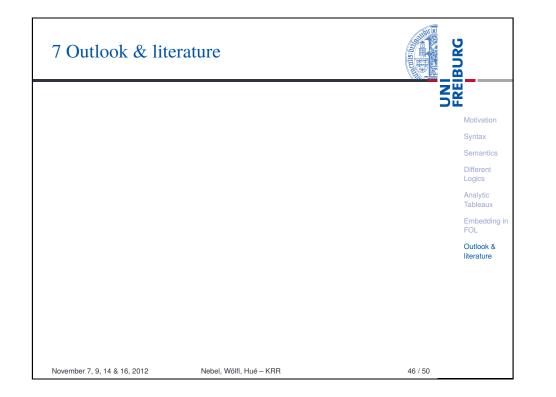
Analytic Tableaux


Tableau rules Logical consequence

Outlook & literature


FOI

38 / 50


Svntax

Tableaux and logi	cal consequence	ZEBURG
For testing logical cons	equence, we can use th	Motivation Syntax e following Semantics
tableau rule:		Different Logics
■ If <i>w</i> is a world on a $w \models \psi$ to our bran ■ Soundness is obvi		en we can add Analytic Tableaux Tableaux Logical consequence
 Completeness is not over a completeness of the comple		Embedding ir FOL
		Outlook & literature
November 7, 9, 14 & 16, 2012	Nebel, Wölfl, Hué – KRR	39 / 50

UNI FREIBURG Embedding modal logics into FOL (1) Motivation Svntax 1 $\tau(p,x) = p(x)$ for propositional variables p Different 2 $\tau(\neg \varphi, x) = \neg \tau(\varphi, x)$ Logics Analytic $\exists \tau(\phi \lor \psi, x) = \tau(\phi, x) \lor \tau(\psi, x)$ Tableaux Embedding in FOL **5** $\tau(\Box \varphi, x) = \forall y (R(x, y) \rightarrow \tau(\varphi, y))$ for some new *y* Outlook & literature **6** $\tau(\Diamond \varphi, x) = \exists y (R(x, y) \land \tau(\varphi, y))$ for some new *y* November 7, 9, 14 & 16, 2012 Nebel, Wölfl, Hué - KRR 43 / 50

Embedding modal logics into FOL (2)

Theorem

 φ is K-valid if and only if $\forall x \tau(\varphi, x)$ is valid in FOL.

Theorem

 φ is *T*-valid if and only if in FOL the logical consequence $\{\forall x R(x,x)\} \models \forall x \tau(\varphi,x) \text{ holds.}$

Example

 $\Box p \land \Diamond (p \rightarrow q) \rightarrow \Diamond q$ is K-valid, because

$$\forall x (\forall x' (R(x,x') \rightarrow p(x')) \land \exists x' (R(x,x') \land (p(x') \rightarrow q(x'))) \\ \rightarrow \exists x' (R(x,x') \land q(x')))$$

is valid in FOL.

November 7, 9, 14 & 16, 2012

November 7, 9, 14 & 16, 2012

Nebel, Wölfl, Hué - KRR

UNI FREIBURG Outlook Motivation Syntax We only looked at some basic propositional modal logics. There are also: Different Logics \blacksquare modal first order logics (with quantification \forall and \exists and Analytic predicates) Tableaux multi-modal logics: more than one modality, e.g. FOL knowledge/belief operators for several agents Outlook & literature temporal and dynamic logics (modalities that refer to time or programs, respectively)

Nebel, Wölfl, Hué - KRR

47 / 50

UNI FREIBURG

Motivation

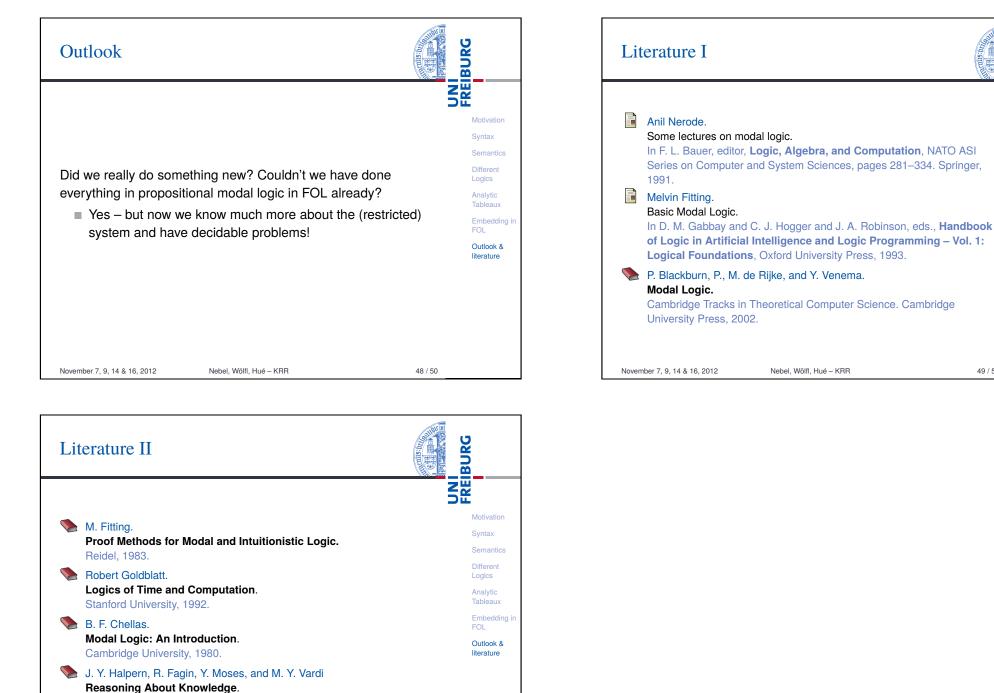
Syntax

Different

Analytic

Tableaux

Outlook 8


literature

FOL

44 / 50

Embedding in

Logics

UNI FREIBURG

Motivation

Syntax

Different

Analytic

Tableaux

Outlook &

literature

FOL

49 / 50

Logics

MIT Press, 1995.

Nebel, Wölfl, Hué - KRR