
Principles of
Knowledge Representation and Reasoning
Complexity Theory

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel, Stefan Wölfl, and Julien Hué
October 31, 2012



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Motivation

October 31, 2012 Nebel, Wölfl, Hué – KRR 2 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Why complexity theory?

Complexity theory can answer questions on how easy or
hard a problem is
Gives hints on what algorithms could be appropriate, e.g.:

algorithms for polynomial-time problems are usually easy to
design
for NP-complete problems, backtracking and local search
work well

Gives hints on what type of algorithm will (most probably)
not work

for problems that are believed to be harder than
NP-complete ones, simple backtracking will not work

Gives hint on what sub-problems might be interesting

October 31, 2012 Nebel, Wölfl, Hué – KRR 4 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Why complexity theory?

Complexity theory can answer questions on how easy or
hard a problem is
Gives hints on what algorithms could be appropriate, e.g.:

algorithms for polynomial-time problems are usually easy to
design
for NP-complete problems, backtracking and local search
work well

Gives hints on what type of algorithm will (most probably)
not work

for problems that are believed to be harder than
NP-complete ones, simple backtracking will not work

Gives hint on what sub-problems might be interesting

October 31, 2012 Nebel, Wölfl, Hué – KRR 4 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Why complexity theory?

Complexity theory can answer questions on how easy or
hard a problem is
Gives hints on what algorithms could be appropriate, e.g.:

algorithms for polynomial-time problems are usually easy to
design
for NP-complete problems, backtracking and local search
work well

Gives hints on what type of algorithm will (most probably)
not work

for problems that are believed to be harder than
NP-complete ones, simple backtracking will not work

Gives hint on what sub-problems might be interesting

October 31, 2012 Nebel, Wölfl, Hué – KRR 4 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Why complexity theory?

Complexity theory can answer questions on how easy or
hard a problem is
Gives hints on what algorithms could be appropriate, e.g.:

algorithms for polynomial-time problems are usually easy to
design
for NP-complete problems, backtracking and local search
work well

Gives hints on what type of algorithm will (most probably)
not work

for problems that are believed to be harder than
NP-complete ones, simple backtracking will not work

Gives hint on what sub-problems might be interesting

October 31, 2012 Nebel, Wölfl, Hué – KRR 4 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Why complexity theory?

Complexity theory can answer questions on how easy or
hard a problem is
Gives hints on what algorithms could be appropriate, e.g.:

algorithms for polynomial-time problems are usually easy to
design
for NP-complete problems, backtracking and local search
work well

Gives hints on what type of algorithm will (most probably)
not work

for problems that are believed to be harder than
NP-complete ones, simple backtracking will not work

Gives hint on what sub-problems might be interesting

October 31, 2012 Nebel, Wölfl, Hué – KRR 4 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Why complexity theory?

Complexity theory can answer questions on how easy or
hard a problem is
Gives hints on what algorithms could be appropriate, e.g.:

algorithms for polynomial-time problems are usually easy to
design
for NP-complete problems, backtracking and local search
work well

Gives hints on what type of algorithm will (most probably)
not work

for problems that are believed to be harder than
NP-complete ones, simple backtracking will not work

Gives hint on what sub-problems might be interesting

October 31, 2012 Nebel, Wölfl, Hué – KRR 4 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Why complexity theory?

Complexity theory can answer questions on how easy or
hard a problem is
Gives hints on what algorithms could be appropriate, e.g.:

algorithms for polynomial-time problems are usually easy to
design
for NP-complete problems, backtracking and local search
work well

Gives hints on what type of algorithm will (most probably)
not work

for problems that are believed to be harder than
NP-complete ones, simple backtracking will not work

Gives hint on what sub-problems might be interesting

October 31, 2012 Nebel, Wölfl, Hué – KRR 4 / 29



Motivation

Reminder:
Basic Notions
Algorithms and
Turing machines

Problems,
solutions, and
complexity

Complexity classes
P and NP

Upper and lower
bounds

Polynomial
reductions

NP-completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Reminder: Basic Notions

October 31, 2012 Nebel, Wölfl, Hué – KRR 5 / 29



Motivation

Reminder:
Basic Notions
Algorithms and
Turing machines

Problems,
solutions, and
complexity

Complexity classes
P and NP

Upper and lower
bounds

Polynomial
reductions

NP-completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Algorithms and Turing machines

We use Turing machines as formal models of algorithms
This is justified, because:

we assume that Turing machines can compute all
computable functions
the resource requirements (in term of time and memory) of
a Turing machine are only polynomially worse than other
models

The regular type of Turing machine is the deterministic one:
DTM (or simply TM)
Often, however, we use the notion of nondeterministic TMs:
NDTM

October 31, 2012 Nebel, Wölfl, Hué – KRR 7 / 29



Motivation

Reminder:
Basic Notions
Algorithms and
Turing machines

Problems,
solutions, and
complexity

Complexity classes
P and NP

Upper and lower
bounds

Polynomial
reductions

NP-completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Algorithms and Turing machines

We use Turing machines as formal models of algorithms
This is justified, because:

we assume that Turing machines can compute all
computable functions
the resource requirements (in term of time and memory) of
a Turing machine are only polynomially worse than other
models

The regular type of Turing machine is the deterministic one:
DTM (or simply TM)
Often, however, we use the notion of nondeterministic TMs:
NDTM

October 31, 2012 Nebel, Wölfl, Hué – KRR 7 / 29



Motivation

Reminder:
Basic Notions
Algorithms and
Turing machines

Problems,
solutions, and
complexity

Complexity classes
P and NP

Upper and lower
bounds

Polynomial
reductions

NP-completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Algorithms and Turing machines

We use Turing machines as formal models of algorithms
This is justified, because:

we assume that Turing machines can compute all
computable functions
the resource requirements (in term of time and memory) of
a Turing machine are only polynomially worse than other
models

The regular type of Turing machine is the deterministic one:
DTM (or simply TM)
Often, however, we use the notion of nondeterministic TMs:
NDTM

October 31, 2012 Nebel, Wölfl, Hué – KRR 7 / 29



Motivation

Reminder:
Basic Notions
Algorithms and
Turing machines

Problems,
solutions, and
complexity

Complexity classes
P and NP

Upper and lower
bounds

Polynomial
reductions

NP-completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Algorithms and Turing machines

We use Turing machines as formal models of algorithms
This is justified, because:

we assume that Turing machines can compute all
computable functions
the resource requirements (in term of time and memory) of
a Turing machine are only polynomially worse than other
models

The regular type of Turing machine is the deterministic one:
DTM (or simply TM)
Often, however, we use the notion of nondeterministic TMs:
NDTM

October 31, 2012 Nebel, Wölfl, Hué – KRR 7 / 29



Motivation

Reminder:
Basic Notions
Algorithms and
Turing machines

Problems,
solutions, and
complexity

Complexity classes
P and NP

Upper and lower
bounds

Polynomial
reductions

NP-completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Algorithms and Turing machines

We use Turing machines as formal models of algorithms
This is justified, because:

we assume that Turing machines can compute all
computable functions
the resource requirements (in term of time and memory) of
a Turing machine are only polynomially worse than other
models

The regular type of Turing machine is the deterministic one:
DTM (or simply TM)
Often, however, we use the notion of nondeterministic TMs:
NDTM

October 31, 2012 Nebel, Wölfl, Hué – KRR 7 / 29



Motivation

Reminder:
Basic Notions
Algorithms and
Turing machines

Problems,
solutions, and
complexity

Complexity classes
P and NP

Upper and lower
bounds

Polynomial
reductions

NP-completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Algorithms and Turing machines

We use Turing machines as formal models of algorithms
This is justified, because:

we assume that Turing machines can compute all
computable functions
the resource requirements (in term of time and memory) of
a Turing machine are only polynomially worse than other
models

The regular type of Turing machine is the deterministic one:
DTM (or simply TM)
Often, however, we use the notion of nondeterministic TMs:
NDTM

October 31, 2012 Nebel, Wölfl, Hué – KRR 7 / 29



Motivation

Reminder:
Basic Notions
Algorithms and
Turing machines

Problems,
solutions, and
complexity

Complexity classes
P and NP

Upper and lower
bounds

Polynomial
reductions

NP-completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Problems, solutions, and complexity

A problem is a set of pairs (I,A) of strings in {0,1}∗.
I: instance; A: answer
If all answers A ∈ {0,1}: decision problem
A decision problem is the same as a formal language:
the set of strings formed by the instances with answer 1
An algorithm decides (or solves) a problem if it computes
the right answer for all instances.
Complexity of an algorithm: function

T : N→N,

measuring the number of basic steps (or memory
requirement) the algorithm needs to compute an answer
depending on the size of the instance
Complexity of a problem: complexity of the most efficient
algorithm that solves this problem.

October 31, 2012 Nebel, Wölfl, Hué – KRR 8 / 29



Motivation

Reminder:
Basic Notions
Algorithms and
Turing machines

Problems,
solutions, and
complexity

Complexity classes
P and NP

Upper and lower
bounds

Polynomial
reductions

NP-completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Problems, solutions, and complexity

A problem is a set of pairs (I,A) of strings in {0,1}∗.
I: instance; A: answer
If all answers A ∈ {0,1}: decision problem
A decision problem is the same as a formal language:
the set of strings formed by the instances with answer 1
An algorithm decides (or solves) a problem if it computes
the right answer for all instances.
Complexity of an algorithm: function

T : N→N,

measuring the number of basic steps (or memory
requirement) the algorithm needs to compute an answer
depending on the size of the instance
Complexity of a problem: complexity of the most efficient
algorithm that solves this problem.

October 31, 2012 Nebel, Wölfl, Hué – KRR 8 / 29



Motivation

Reminder:
Basic Notions
Algorithms and
Turing machines

Problems,
solutions, and
complexity

Complexity classes
P and NP

Upper and lower
bounds

Polynomial
reductions

NP-completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Problems, solutions, and complexity

A problem is a set of pairs (I,A) of strings in {0,1}∗.
I: instance; A: answer
If all answers A ∈ {0,1}: decision problem
A decision problem is the same as a formal language:
the set of strings formed by the instances with answer 1
An algorithm decides (or solves) a problem if it computes
the right answer for all instances.
Complexity of an algorithm: function

T : N→N,

measuring the number of basic steps (or memory
requirement) the algorithm needs to compute an answer
depending on the size of the instance
Complexity of a problem: complexity of the most efficient
algorithm that solves this problem.

October 31, 2012 Nebel, Wölfl, Hué – KRR 8 / 29



Motivation

Reminder:
Basic Notions
Algorithms and
Turing machines

Problems,
solutions, and
complexity

Complexity classes
P and NP

Upper and lower
bounds

Polynomial
reductions

NP-completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Problems, solutions, and complexity

A problem is a set of pairs (I,A) of strings in {0,1}∗.
I: instance; A: answer
If all answers A ∈ {0,1}: decision problem
A decision problem is the same as a formal language:
the set of strings formed by the instances with answer 1
An algorithm decides (or solves) a problem if it computes
the right answer for all instances.
Complexity of an algorithm: function

T : N→N,

measuring the number of basic steps (or memory
requirement) the algorithm needs to compute an answer
depending on the size of the instance
Complexity of a problem: complexity of the most efficient
algorithm that solves this problem.

October 31, 2012 Nebel, Wölfl, Hué – KRR 8 / 29



Motivation

Reminder:
Basic Notions
Algorithms and
Turing machines

Problems,
solutions, and
complexity

Complexity classes
P and NP

Upper and lower
bounds

Polynomial
reductions

NP-completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Problems, solutions, and complexity

A problem is a set of pairs (I,A) of strings in {0,1}∗.
I: instance; A: answer
If all answers A ∈ {0,1}: decision problem
A decision problem is the same as a formal language:
the set of strings formed by the instances with answer 1
An algorithm decides (or solves) a problem if it computes
the right answer for all instances.
Complexity of an algorithm: function

T : N→N,

measuring the number of basic steps (or memory
requirement) the algorithm needs to compute an answer
depending on the size of the instance
Complexity of a problem: complexity of the most efficient
algorithm that solves this problem.

October 31, 2012 Nebel, Wölfl, Hué – KRR 8 / 29



Motivation

Reminder:
Basic Notions
Algorithms and
Turing machines

Problems,
solutions, and
complexity

Complexity classes
P and NP

Upper and lower
bounds

Polynomial
reductions

NP-completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Complexity classes P and NP

Problems are categorized into complexity classes according to
the requirements of computational resources:

The class of problems decidable on deterministic Turing
machines in polynomial time: P

Problems in P are assumed to be efficiently solvable
(although this might not be true if the exponent is very large)
In practice, this notion appears to be more often reasonable
than not

The class of problems decidable on non-deterministic
Turing machines in polynomial time: NP
More classes are definable using other resource bounds on
time and memory

October 31, 2012 Nebel, Wölfl, Hué – KRR 9 / 29



Motivation

Reminder:
Basic Notions
Algorithms and
Turing machines

Problems,
solutions, and
complexity

Complexity classes
P and NP

Upper and lower
bounds

Polynomial
reductions

NP-completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Complexity classes P and NP

Problems are categorized into complexity classes according to
the requirements of computational resources:

The class of problems decidable on deterministic Turing
machines in polynomial time: P

Problems in P are assumed to be efficiently solvable
(although this might not be true if the exponent is very large)
In practice, this notion appears to be more often reasonable
than not

The class of problems decidable on non-deterministic
Turing machines in polynomial time: NP
More classes are definable using other resource bounds on
time and memory

October 31, 2012 Nebel, Wölfl, Hué – KRR 9 / 29



Motivation

Reminder:
Basic Notions
Algorithms and
Turing machines

Problems,
solutions, and
complexity

Complexity classes
P and NP

Upper and lower
bounds

Polynomial
reductions

NP-completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Complexity classes P and NP

Problems are categorized into complexity classes according to
the requirements of computational resources:

The class of problems decidable on deterministic Turing
machines in polynomial time: P

Problems in P are assumed to be efficiently solvable
(although this might not be true if the exponent is very large)
In practice, this notion appears to be more often reasonable
than not

The class of problems decidable on non-deterministic
Turing machines in polynomial time: NP
More classes are definable using other resource bounds on
time and memory

October 31, 2012 Nebel, Wölfl, Hué – KRR 9 / 29



Motivation

Reminder:
Basic Notions
Algorithms and
Turing machines

Problems,
solutions, and
complexity

Complexity classes
P and NP

Upper and lower
bounds

Polynomial
reductions

NP-completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Complexity classes P and NP

Problems are categorized into complexity classes according to
the requirements of computational resources:

The class of problems decidable on deterministic Turing
machines in polynomial time: P

Problems in P are assumed to be efficiently solvable
(although this might not be true if the exponent is very large)
In practice, this notion appears to be more often reasonable
than not

The class of problems decidable on non-deterministic
Turing machines in polynomial time: NP
More classes are definable using other resource bounds on
time and memory

October 31, 2012 Nebel, Wölfl, Hué – KRR 9 / 29



Motivation

Reminder:
Basic Notions
Algorithms and
Turing machines

Problems,
solutions, and
complexity

Complexity classes
P and NP

Upper and lower
bounds

Polynomial
reductions

NP-completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Complexity classes P and NP

Problems are categorized into complexity classes according to
the requirements of computational resources:

The class of problems decidable on deterministic Turing
machines in polynomial time: P

Problems in P are assumed to be efficiently solvable
(although this might not be true if the exponent is very large)
In practice, this notion appears to be more often reasonable
than not

The class of problems decidable on non-deterministic
Turing machines in polynomial time: NP
More classes are definable using other resource bounds on
time and memory

October 31, 2012 Nebel, Wölfl, Hué – KRR 9 / 29



Motivation

Reminder:
Basic Notions
Algorithms and
Turing machines

Problems,
solutions, and
complexity

Complexity classes
P and NP

Upper and lower
bounds

Polynomial
reductions

NP-completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Upper and lower bounds

Upper bounds (membership in a class) are usually easy to
prove:

provide an algorithm
show that the resource bounds are respected

Lower bounds (hardness for a class) are usually difficult to
show:

the technical tool here is the polynomial reduction (or any
other appropriate reduction)
show that some hard problem can be reduced to the
problem at hand

October 31, 2012 Nebel, Wölfl, Hué – KRR 10 / 29



Motivation

Reminder:
Basic Notions
Algorithms and
Turing machines

Problems,
solutions, and
complexity

Complexity classes
P and NP

Upper and lower
bounds

Polynomial
reductions

NP-completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Upper and lower bounds

Upper bounds (membership in a class) are usually easy to
prove:

provide an algorithm
show that the resource bounds are respected

Lower bounds (hardness for a class) are usually difficult to
show:

the technical tool here is the polynomial reduction (or any
other appropriate reduction)
show that some hard problem can be reduced to the
problem at hand

October 31, 2012 Nebel, Wölfl, Hué – KRR 10 / 29



Motivation

Reminder:
Basic Notions
Algorithms and
Turing machines

Problems,
solutions, and
complexity

Complexity classes
P and NP

Upper and lower
bounds

Polynomial
reductions

NP-completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Upper and lower bounds

Upper bounds (membership in a class) are usually easy to
prove:

provide an algorithm
show that the resource bounds are respected

Lower bounds (hardness for a class) are usually difficult to
show:

the technical tool here is the polynomial reduction (or any
other appropriate reduction)
show that some hard problem can be reduced to the
problem at hand

October 31, 2012 Nebel, Wölfl, Hué – KRR 10 / 29



Motivation

Reminder:
Basic Notions
Algorithms and
Turing machines

Problems,
solutions, and
complexity

Complexity classes
P and NP

Upper and lower
bounds

Polynomial
reductions

NP-completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Upper and lower bounds

Upper bounds (membership in a class) are usually easy to
prove:

provide an algorithm
show that the resource bounds are respected

Lower bounds (hardness for a class) are usually difficult to
show:

the technical tool here is the polynomial reduction (or any
other appropriate reduction)
show that some hard problem can be reduced to the
problem at hand

October 31, 2012 Nebel, Wölfl, Hué – KRR 10 / 29



Motivation

Reminder:
Basic Notions
Algorithms and
Turing machines

Problems,
solutions, and
complexity

Complexity classes
P and NP

Upper and lower
bounds

Polynomial
reductions

NP-completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Upper and lower bounds

Upper bounds (membership in a class) are usually easy to
prove:

provide an algorithm
show that the resource bounds are respected

Lower bounds (hardness for a class) are usually difficult to
show:

the technical tool here is the polynomial reduction (or any
other appropriate reduction)
show that some hard problem can be reduced to the
problem at hand

October 31, 2012 Nebel, Wölfl, Hué – KRR 10 / 29



Motivation

Reminder:
Basic Notions
Algorithms and
Turing machines

Problems,
solutions, and
complexity

Complexity classes
P and NP

Upper and lower
bounds

Polynomial
reductions

NP-completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Upper and lower bounds

Upper bounds (membership in a class) are usually easy to
prove:

provide an algorithm
show that the resource bounds are respected

Lower bounds (hardness for a class) are usually difficult to
show:

the technical tool here is the polynomial reduction (or any
other appropriate reduction)
show that some hard problem can be reduced to the
problem at hand

October 31, 2012 Nebel, Wölfl, Hué – KRR 10 / 29



Motivation

Reminder:
Basic Notions
Algorithms and
Turing machines

Problems,
solutions, and
complexity

Complexity classes
P and NP

Upper and lower
bounds

Polynomial
reductions

NP-completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Polynomial reduction

Given languages L1 and L2, L1 can be polynomially
reduced to L2, written L1 ≤p L2, if there exists a
polynomially computable function f such that

x ∈ L1 ⇐⇒ f(x) ∈ L2.

Rationale: it cannot be harder to decide L1 than L2

L is hard for a class C (C-hard) if all languages of this class
can be reduced to L.
L is complete for C (C-complete) if L is C-hard and L ∈ C.

October 31, 2012 Nebel, Wölfl, Hué – KRR 11 / 29



Motivation

Reminder:
Basic Notions
Algorithms and
Turing machines

Problems,
solutions, and
complexity

Complexity classes
P and NP

Upper and lower
bounds

Polynomial
reductions

NP-completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Polynomial reduction

Given languages L1 and L2, L1 can be polynomially
reduced to L2, written L1 ≤p L2, if there exists a
polynomially computable function f such that

x ∈ L1 ⇐⇒ f(x) ∈ L2.

Rationale: it cannot be harder to decide L1 than L2

L is hard for a class C (C-hard) if all languages of this class
can be reduced to L.
L is complete for C (C-complete) if L is C-hard and L ∈ C.

October 31, 2012 Nebel, Wölfl, Hué – KRR 11 / 29



Motivation

Reminder:
Basic Notions
Algorithms and
Turing machines

Problems,
solutions, and
complexity

Complexity classes
P and NP

Upper and lower
bounds

Polynomial
reductions

NP-completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Polynomial reduction

Given languages L1 and L2, L1 can be polynomially
reduced to L2, written L1 ≤p L2, if there exists a
polynomially computable function f such that

x ∈ L1 ⇐⇒ f(x) ∈ L2.

Rationale: it cannot be harder to decide L1 than L2

L is hard for a class C (C-hard) if all languages of this class
can be reduced to L.
L is complete for C (C-complete) if L is C-hard and L ∈ C.

October 31, 2012 Nebel, Wölfl, Hué – KRR 11 / 29



Motivation

Reminder:
Basic Notions
Algorithms and
Turing machines

Problems,
solutions, and
complexity

Complexity classes
P and NP

Upper and lower
bounds

Polynomial
reductions

NP-completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

NP-complete problems

A problem is NP-complete iff it is NP-hard and in NP.
Example: SAT (the satisfiability problem for propositional
logic) is NP-complete (Cook/Karp)

Membership is obvious, hardness follows because
computations on a NDTM correspond to satisfying
truth-assignments of certain formulae

NP

P

NP−hard

NP−complete

all problems

October 31, 2012 Nebel, Wölfl, Hué – KRR 12 / 29



Motivation

Reminder:
Basic Notions
Algorithms and
Turing machines

Problems,
solutions, and
complexity

Complexity classes
P and NP

Upper and lower
bounds

Polynomial
reductions

NP-completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

NP-complete problems

A problem is NP-complete iff it is NP-hard and in NP.
Example: SAT (the satisfiability problem for propositional
logic) is NP-complete (Cook/Karp)

Membership is obvious, hardness follows because
computations on a NDTM correspond to satisfying
truth-assignments of certain formulae

NP

P

NP−hard

NP−complete

all problems

October 31, 2012 Nebel, Wölfl, Hué – KRR 12 / 29



Motivation

Reminder:
Basic Notions
Algorithms and
Turing machines

Problems,
solutions, and
complexity

Complexity classes
P and NP

Upper and lower
bounds

Polynomial
reductions

NP-completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

NP-complete problems

A problem is NP-complete iff it is NP-hard and in NP.
Example: SAT (the satisfiability problem for propositional
logic) is NP-complete (Cook/Karp)

Membership is obvious, hardness follows because
computations on a NDTM correspond to satisfying
truth-assignments of certain formulae

NP

P

NP−hard

NP−complete

all problems

October 31, 2012 Nebel, Wölfl, Hué – KRR 12 / 29



Motivation

Reminder:
Basic Notions
Algorithms and
Turing machines

Problems,
solutions, and
complexity

Complexity classes
P and NP

Upper and lower
bounds

Polynomial
reductions

NP-completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

NP-complete problems

A problem is NP-complete iff it is NP-hard and in NP.
Example: SAT (the satisfiability problem for propositional
logic) is NP-complete (Cook/Karp)

Membership is obvious, hardness follows because
computations on a NDTM correspond to satisfying
truth-assignments of certain formulae

NP

P

NP−hard

NP−complete

all problems

October 31, 2012 Nebel, Wölfl, Hué – KRR 12 / 29



Motivation

Reminder:
Basic Notions

Beyond NP
The class co-NP

The class PSPACE

Other classes

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Beyond NP

October 31, 2012 Nebel, Wölfl, Hué – KRR 13 / 29



Motivation

Reminder:
Basic Notions

Beyond NP
The class co-NP

The class PSPACE

Other classes

Oracle TMs
and the
Polynomial
Hierarchy

Literature

The complexity class co-NP

Note that there is some asymmetry in the definition of NP:
It is clear that we can decide SAT by using a NDTM with
polynomially bounded computation
There exists an accepting computation of polynomial length
iff the formula is satisfiable
What if we want to solve UNSAT, the complementary
problem?
It seems necessary to check all possible truth-assignments!

Define co-C = {Σ∗ \L : L⊆ Σ∗ and L ∈ C} (Σ ranges over
alphabets)
co-NP = {Σ∗ \L : L⊆ Σ∗ and L ∈ NP}
Examples: UNSAT, TAUT ∈ co-NP!
Note: P is closed under complement, in particular,

P⊆ NP∩ co-NP

October 31, 2012 Nebel, Wölfl, Hué – KRR 15 / 29



Motivation

Reminder:
Basic Notions

Beyond NP
The class co-NP

The class PSPACE

Other classes

Oracle TMs
and the
Polynomial
Hierarchy

Literature

The complexity class co-NP

Note that there is some asymmetry in the definition of NP:
It is clear that we can decide SAT by using a NDTM with
polynomially bounded computation
There exists an accepting computation of polynomial length
iff the formula is satisfiable
What if we want to solve UNSAT, the complementary
problem?
It seems necessary to check all possible truth-assignments!

Define co-C = {Σ∗ \L : L⊆ Σ∗ and L ∈ C} (Σ ranges over
alphabets)
co-NP = {Σ∗ \L : L⊆ Σ∗ and L ∈ NP}
Examples: UNSAT, TAUT ∈ co-NP!
Note: P is closed under complement, in particular,

P⊆ NP∩ co-NP

October 31, 2012 Nebel, Wölfl, Hué – KRR 15 / 29



Motivation

Reminder:
Basic Notions

Beyond NP
The class co-NP

The class PSPACE

Other classes

Oracle TMs
and the
Polynomial
Hierarchy

Literature

The complexity class co-NP

Note that there is some asymmetry in the definition of NP:
It is clear that we can decide SAT by using a NDTM with
polynomially bounded computation
There exists an accepting computation of polynomial length
iff the formula is satisfiable
What if we want to solve UNSAT, the complementary
problem?
It seems necessary to check all possible truth-assignments!

Define co-C = {Σ∗ \L : L⊆ Σ∗ and L ∈ C} (Σ ranges over
alphabets)
co-NP = {Σ∗ \L : L⊆ Σ∗ and L ∈ NP}
Examples: UNSAT, TAUT ∈ co-NP!
Note: P is closed under complement, in particular,

P⊆ NP∩ co-NP

October 31, 2012 Nebel, Wölfl, Hué – KRR 15 / 29



Motivation

Reminder:
Basic Notions

Beyond NP
The class co-NP

The class PSPACE

Other classes

Oracle TMs
and the
Polynomial
Hierarchy

Literature

The complexity class co-NP

Note that there is some asymmetry in the definition of NP:
It is clear that we can decide SAT by using a NDTM with
polynomially bounded computation
There exists an accepting computation of polynomial length
iff the formula is satisfiable
What if we want to solve UNSAT, the complementary
problem?
It seems necessary to check all possible truth-assignments!

Define co-C = {Σ∗ \L : L⊆ Σ∗ and L ∈ C} (Σ ranges over
alphabets)
co-NP = {Σ∗ \L : L⊆ Σ∗ and L ∈ NP}
Examples: UNSAT, TAUT ∈ co-NP!
Note: P is closed under complement, in particular,

P⊆ NP∩ co-NP

October 31, 2012 Nebel, Wölfl, Hué – KRR 15 / 29



Motivation

Reminder:
Basic Notions

Beyond NP
The class co-NP

The class PSPACE

Other classes

Oracle TMs
and the
Polynomial
Hierarchy

Literature

The complexity class co-NP

Note that there is some asymmetry in the definition of NP:
It is clear that we can decide SAT by using a NDTM with
polynomially bounded computation
There exists an accepting computation of polynomial length
iff the formula is satisfiable
What if we want to solve UNSAT, the complementary
problem?
It seems necessary to check all possible truth-assignments!

Define co-C = {Σ∗ \L : L⊆ Σ∗ and L ∈ C} (Σ ranges over
alphabets)
co-NP = {Σ∗ \L : L⊆ Σ∗ and L ∈ NP}
Examples: UNSAT, TAUT ∈ co-NP!
Note: P is closed under complement, in particular,

P⊆ NP∩ co-NP

October 31, 2012 Nebel, Wölfl, Hué – KRR 15 / 29



Motivation

Reminder:
Basic Notions

Beyond NP
The class co-NP

The class PSPACE

Other classes

Oracle TMs
and the
Polynomial
Hierarchy

Literature

The complexity class co-NP

Note that there is some asymmetry in the definition of NP:
It is clear that we can decide SAT by using a NDTM with
polynomially bounded computation
There exists an accepting computation of polynomial length
iff the formula is satisfiable
What if we want to solve UNSAT, the complementary
problem?
It seems necessary to check all possible truth-assignments!

Define co-C = {Σ∗ \L : L⊆ Σ∗ and L ∈ C} (Σ ranges over
alphabets)
co-NP = {Σ∗ \L : L⊆ Σ∗ and L ∈ NP}
Examples: UNSAT, TAUT ∈ co-NP!
Note: P is closed under complement, in particular,

P⊆ NP∩ co-NP

October 31, 2012 Nebel, Wölfl, Hué – KRR 15 / 29



Motivation

Reminder:
Basic Notions

Beyond NP
The class co-NP

The class PSPACE

Other classes

Oracle TMs
and the
Polynomial
Hierarchy

Literature

The complexity class co-NP

Note that there is some asymmetry in the definition of NP:
It is clear that we can decide SAT by using a NDTM with
polynomially bounded computation
There exists an accepting computation of polynomial length
iff the formula is satisfiable
What if we want to solve UNSAT, the complementary
problem?
It seems necessary to check all possible truth-assignments!

Define co-C = {Σ∗ \L : L⊆ Σ∗ and L ∈ C} (Σ ranges over
alphabets)
co-NP = {Σ∗ \L : L⊆ Σ∗ and L ∈ NP}
Examples: UNSAT, TAUT ∈ co-NP!
Note: P is closed under complement, in particular,

P⊆ NP∩ co-NP

October 31, 2012 Nebel, Wölfl, Hué – KRR 15 / 29



Motivation

Reminder:
Basic Notions

Beyond NP
The class co-NP

The class PSPACE

Other classes

Oracle TMs
and the
Polynomial
Hierarchy

Literature

The complexity class co-NP

Note that there is some asymmetry in the definition of NP:
It is clear that we can decide SAT by using a NDTM with
polynomially bounded computation
There exists an accepting computation of polynomial length
iff the formula is satisfiable
What if we want to solve UNSAT, the complementary
problem?
It seems necessary to check all possible truth-assignments!

Define co-C = {Σ∗ \L : L⊆ Σ∗ and L ∈ C} (Σ ranges over
alphabets)
co-NP = {Σ∗ \L : L⊆ Σ∗ and L ∈ NP}
Examples: UNSAT, TAUT ∈ co-NP!
Note: P is closed under complement, in particular,

P⊆ NP∩ co-NP

October 31, 2012 Nebel, Wölfl, Hué – KRR 15 / 29



Motivation

Reminder:
Basic Notions

Beyond NP
The class co-NP

The class PSPACE

Other classes

Oracle TMs
and the
Polynomial
Hierarchy

Literature

The complexity class co-NP

Note that there is some asymmetry in the definition of NP:
It is clear that we can decide SAT by using a NDTM with
polynomially bounded computation
There exists an accepting computation of polynomial length
iff the formula is satisfiable
What if we want to solve UNSAT, the complementary
problem?
It seems necessary to check all possible truth-assignments!

Define co-C = {Σ∗ \L : L⊆ Σ∗ and L ∈ C} (Σ ranges over
alphabets)
co-NP = {Σ∗ \L : L⊆ Σ∗ and L ∈ NP}
Examples: UNSAT, TAUT ∈ co-NP!
Note: P is closed under complement, in particular,

P⊆ NP∩ co-NP

October 31, 2012 Nebel, Wölfl, Hué – KRR 15 / 29



Motivation

Reminder:
Basic Notions

Beyond NP
The class co-NP

The class PSPACE

Other classes

Oracle TMs
and the
Polynomial
Hierarchy

Literature

PSPACE

There are problems even more difficult than NP and co-NP. . .

Definition ((N)PSPACE)
PSPACE (NPSPACE) is the class of decision problems that can
be decided on deterministic (non-deterministic) Turing machines
using only polynomially many tape cells.

Some facts about PSPACE:
PSPACE is closed under complements (. . . as all other
deterministic classes)
PSPACE is identical to NPSPACE (because
non-deterministic Turing machines can be simulated on
deterministic TMs using only quadratic space)
NP⊆PSPACE (because in polynomial time one can “visit”
only polynomial space, i.e., NP⊆NPSPACE)
It is unknown whether NP 6=PSPACE, but it is believed that
this is true.October 31, 2012 Nebel, Wölfl, Hué – KRR 16 / 29



Motivation

Reminder:
Basic Notions

Beyond NP
The class co-NP

The class PSPACE

Other classes

Oracle TMs
and the
Polynomial
Hierarchy

Literature

PSPACE

There are problems even more difficult than NP and co-NP. . .

Definition ((N)PSPACE)
PSPACE (NPSPACE) is the class of decision problems that can
be decided on deterministic (non-deterministic) Turing machines
using only polynomially many tape cells.

Some facts about PSPACE:
PSPACE is closed under complements (. . . as all other
deterministic classes)
PSPACE is identical to NPSPACE (because
non-deterministic Turing machines can be simulated on
deterministic TMs using only quadratic space)
NP⊆PSPACE (because in polynomial time one can “visit”
only polynomial space, i.e., NP⊆NPSPACE)
It is unknown whether NP 6=PSPACE, but it is believed that
this is true.October 31, 2012 Nebel, Wölfl, Hué – KRR 16 / 29



Motivation

Reminder:
Basic Notions

Beyond NP
The class co-NP

The class PSPACE

Other classes

Oracle TMs
and the
Polynomial
Hierarchy

Literature

PSPACE

There are problems even more difficult than NP and co-NP. . .

Definition ((N)PSPACE)
PSPACE (NPSPACE) is the class of decision problems that can
be decided on deterministic (non-deterministic) Turing machines
using only polynomially many tape cells.

Some facts about PSPACE:
PSPACE is closed under complements (. . . as all other
deterministic classes)
PSPACE is identical to NPSPACE (because
non-deterministic Turing machines can be simulated on
deterministic TMs using only quadratic space)
NP⊆PSPACE (because in polynomial time one can “visit”
only polynomial space, i.e., NP⊆NPSPACE)
It is unknown whether NP 6=PSPACE, but it is believed that
this is true.October 31, 2012 Nebel, Wölfl, Hué – KRR 16 / 29



Motivation

Reminder:
Basic Notions

Beyond NP
The class co-NP

The class PSPACE

Other classes

Oracle TMs
and the
Polynomial
Hierarchy

Literature

PSPACE

There are problems even more difficult than NP and co-NP. . .

Definition ((N)PSPACE)
PSPACE (NPSPACE) is the class of decision problems that can
be decided on deterministic (non-deterministic) Turing machines
using only polynomially many tape cells.

Some facts about PSPACE:
PSPACE is closed under complements (. . . as all other
deterministic classes)
PSPACE is identical to NPSPACE (because
non-deterministic Turing machines can be simulated on
deterministic TMs using only quadratic space)
NP⊆PSPACE (because in polynomial time one can “visit”
only polynomial space, i.e., NP⊆NPSPACE)
It is unknown whether NP 6=PSPACE, but it is believed that
this is true.October 31, 2012 Nebel, Wölfl, Hué – KRR 16 / 29



Motivation

Reminder:
Basic Notions

Beyond NP
The class co-NP

The class PSPACE

Other classes

Oracle TMs
and the
Polynomial
Hierarchy

Literature

PSPACE

There are problems even more difficult than NP and co-NP. . .

Definition ((N)PSPACE)
PSPACE (NPSPACE) is the class of decision problems that can
be decided on deterministic (non-deterministic) Turing machines
using only polynomially many tape cells.

Some facts about PSPACE:
PSPACE is closed under complements (. . . as all other
deterministic classes)
PSPACE is identical to NPSPACE (because
non-deterministic Turing machines can be simulated on
deterministic TMs using only quadratic space)
NP⊆PSPACE (because in polynomial time one can “visit”
only polynomial space, i.e., NP⊆NPSPACE)
It is unknown whether NP 6=PSPACE, but it is believed that
this is true.October 31, 2012 Nebel, Wölfl, Hué – KRR 16 / 29



Motivation

Reminder:
Basic Notions

Beyond NP
The class co-NP

The class PSPACE

Other classes

Oracle TMs
and the
Polynomial
Hierarchy

Literature

PSPACE

There are problems even more difficult than NP and co-NP. . .

Definition ((N)PSPACE)
PSPACE (NPSPACE) is the class of decision problems that can
be decided on deterministic (non-deterministic) Turing machines
using only polynomially many tape cells.

Some facts about PSPACE:
PSPACE is closed under complements (. . . as all other
deterministic classes)
PSPACE is identical to NPSPACE (because
non-deterministic Turing machines can be simulated on
deterministic TMs using only quadratic space)
NP⊆PSPACE (because in polynomial time one can “visit”
only polynomial space, i.e., NP⊆NPSPACE)
It is unknown whether NP 6=PSPACE, but it is believed that
this is true.October 31, 2012 Nebel, Wölfl, Hué – KRR 16 / 29



Motivation

Reminder:
Basic Notions

Beyond NP
The class co-NP

The class PSPACE

Other classes

Oracle TMs
and the
Polynomial
Hierarchy

Literature

PSPACE-completeness

Definition (PSPACE-completeness)
A decision problem (or language) is PSPACE-complete if it is in
PSPACE and all other problems in PSPACE can be polynomially
reduced to it.

Intuitively, PSPACE-complete problems are the “hardest”
problems in PSPACE (similar to NP-completeness). They appear
to be “harder” than NP-complete problems from a practical point
of view.
An example for a PSPACE-complete problem is the NDFA
equivalence problem:

Instance: Two non-deterministic finite state automata A1 and
A2.

Question: Are the languages accepted by A1 and A2
identical?

October 31, 2012 Nebel, Wölfl, Hué – KRR 17 / 29



Motivation

Reminder:
Basic Notions

Beyond NP
The class co-NP

The class PSPACE

Other classes

Oracle TMs
and the
Polynomial
Hierarchy

Literature

PSPACE-completeness

Definition (PSPACE-completeness)
A decision problem (or language) is PSPACE-complete if it is in
PSPACE and all other problems in PSPACE can be polynomially
reduced to it.

Intuitively, PSPACE-complete problems are the “hardest”
problems in PSPACE (similar to NP-completeness). They appear
to be “harder” than NP-complete problems from a practical point
of view.
An example for a PSPACE-complete problem is the NDFA
equivalence problem:

Instance: Two non-deterministic finite state automata A1 and
A2.

Question: Are the languages accepted by A1 and A2
identical?

October 31, 2012 Nebel, Wölfl, Hué – KRR 17 / 29



Motivation

Reminder:
Basic Notions

Beyond NP
The class co-NP

The class PSPACE

Other classes

Oracle TMs
and the
Polynomial
Hierarchy

Literature

PSPACE-completeness

Definition (PSPACE-completeness)
A decision problem (or language) is PSPACE-complete if it is in
PSPACE and all other problems in PSPACE can be polynomially
reduced to it.

Intuitively, PSPACE-complete problems are the “hardest”
problems in PSPACE (similar to NP-completeness). They appear
to be “harder” than NP-complete problems from a practical point
of view.
An example for a PSPACE-complete problem is the NDFA
equivalence problem:

Instance: Two non-deterministic finite state automata A1 and
A2.

Question: Are the languages accepted by A1 and A2
identical?

October 31, 2012 Nebel, Wölfl, Hué – KRR 17 / 29



Motivation

Reminder:
Basic Notions

Beyond NP
The class co-NP

The class PSPACE

Other classes

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Other complexity classes . . .

There are complexity classes above PSPACE (EXPTIME,
EXPSPACE, NEXPTIME, DEXPTIME . . . )
There are (infinitely many) classes between NP and
PSPACE (the polynomial hierarchy defined by oracle
machines)
There are (infinitely many) classes inside P (circuit classes
with different depths)
. . . and for most of the classes we do not know whether the
containment relationships are strict

October 31, 2012 Nebel, Wölfl, Hué – KRR 18 / 29



Motivation

Reminder:
Basic Notions

Beyond NP
The class co-NP

The class PSPACE

Other classes

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Other complexity classes . . .

There are complexity classes above PSPACE (EXPTIME,
EXPSPACE, NEXPTIME, DEXPTIME . . . )
There are (infinitely many) classes between NP and
PSPACE (the polynomial hierarchy defined by oracle
machines)
There are (infinitely many) classes inside P (circuit classes
with different depths)
. . . and for most of the classes we do not know whether the
containment relationships are strict

October 31, 2012 Nebel, Wölfl, Hué – KRR 18 / 29



Motivation

Reminder:
Basic Notions

Beyond NP
The class co-NP

The class PSPACE

Other classes

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Other complexity classes . . .

There are complexity classes above PSPACE (EXPTIME,
EXPSPACE, NEXPTIME, DEXPTIME . . . )
There are (infinitely many) classes between NP and
PSPACE (the polynomial hierarchy defined by oracle
machines)
There are (infinitely many) classes inside P (circuit classes
with different depths)
. . . and for most of the classes we do not know whether the
containment relationships are strict

October 31, 2012 Nebel, Wölfl, Hué – KRR 18 / 29



Motivation

Reminder:
Basic Notions

Beyond NP
The class co-NP

The class PSPACE

Other classes

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Other complexity classes . . .

There are complexity classes above PSPACE (EXPTIME,
EXPSPACE, NEXPTIME, DEXPTIME . . . )
There are (infinitely many) classes between NP and
PSPACE (the polynomial hierarchy defined by oracle
machines)
There are (infinitely many) classes inside P (circuit classes
with different depths)
. . . and for most of the classes we do not know whether the
containment relationships are strict

October 31, 2012 Nebel, Wölfl, Hué – KRR 18 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

Oracle TMs and the
Polynomial Hierarchy

October 31, 2012 Nebel, Wölfl, Hué – KRR 19 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

Oracle Turing machines

An Oracle Turing machine ((N)OTM) is a Turing machine
(DTM, NDTM) with the possibility to query an oracle (i. e., a
different Turing machine without resource restrictions)
whether it accepts or rejects a given string.
Computation by the oracle does not cost anything!
Formalization:

a tape onto which strings for the oracle are written,
a yes/no answer from the oracle depending on whether it
accepts or rejects the input string.

Usage of OTMs answers what-if questions: What if we
could solve the oracle-problem efficiently?

October 31, 2012 Nebel, Wölfl, Hué – KRR 21 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

Oracle Turing machines

An Oracle Turing machine ((N)OTM) is a Turing machine
(DTM, NDTM) with the possibility to query an oracle (i. e., a
different Turing machine without resource restrictions)
whether it accepts or rejects a given string.
Computation by the oracle does not cost anything!
Formalization:

a tape onto which strings for the oracle are written,
a yes/no answer from the oracle depending on whether it
accepts or rejects the input string.

Usage of OTMs answers what-if questions: What if we
could solve the oracle-problem efficiently?

October 31, 2012 Nebel, Wölfl, Hué – KRR 21 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

Oracle Turing machines

An Oracle Turing machine ((N)OTM) is a Turing machine
(DTM, NDTM) with the possibility to query an oracle (i. e., a
different Turing machine without resource restrictions)
whether it accepts or rejects a given string.
Computation by the oracle does not cost anything!
Formalization:

a tape onto which strings for the oracle are written,
a yes/no answer from the oracle depending on whether it
accepts or rejects the input string.

Usage of OTMs answers what-if questions: What if we
could solve the oracle-problem efficiently?

October 31, 2012 Nebel, Wölfl, Hué – KRR 21 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

Oracle Turing machines

An Oracle Turing machine ((N)OTM) is a Turing machine
(DTM, NDTM) with the possibility to query an oracle (i. e., a
different Turing machine without resource restrictions)
whether it accepts or rejects a given string.
Computation by the oracle does not cost anything!
Formalization:

a tape onto which strings for the oracle are written,
a yes/no answer from the oracle depending on whether it
accepts or rejects the input string.

Usage of OTMs answers what-if questions: What if we
could solve the oracle-problem efficiently?

October 31, 2012 Nebel, Wölfl, Hué – KRR 21 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

Oracle Turing machines

An Oracle Turing machine ((N)OTM) is a Turing machine
(DTM, NDTM) with the possibility to query an oracle (i. e., a
different Turing machine without resource restrictions)
whether it accepts or rejects a given string.
Computation by the oracle does not cost anything!
Formalization:

a tape onto which strings for the oracle are written,
a yes/no answer from the oracle depending on whether it
accepts or rejects the input string.

Usage of OTMs answers what-if questions: What if we
could solve the oracle-problem efficiently?

October 31, 2012 Nebel, Wölfl, Hué – KRR 21 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

Oracle Turing machines

An Oracle Turing machine ((N)OTM) is a Turing machine
(DTM, NDTM) with the possibility to query an oracle (i. e., a
different Turing machine without resource restrictions)
whether it accepts or rejects a given string.
Computation by the oracle does not cost anything!
Formalization:

a tape onto which strings for the oracle are written,
a yes/no answer from the oracle depending on whether it
accepts or rejects the input string.

Usage of OTMs answers what-if questions: What if we
could solve the oracle-problem efficiently?

October 31, 2012 Nebel, Wölfl, Hué – KRR 21 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

Turing reductions

OTMs allow us to define a more general type of reduction
Idea: The “classical” reduction can be seen as calling a
subroutine once.
L1 is Turing-reducible to L2, symbolically L1 ≤T L2, if there
exists a poly-time OTM that decides L1 by using an oracle
for L2.
Polynomial reducibility implies Turing reducibility, but not
vice versa!
NP-hardness and co-NP-hardness with respect to Turing
reducibility are equivalent!
Turing reducibility can also be applied to general search
problems!

October 31, 2012 Nebel, Wölfl, Hué – KRR 22 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

Turing reductions

OTMs allow us to define a more general type of reduction
Idea: The “classical” reduction can be seen as calling a
subroutine once.
L1 is Turing-reducible to L2, symbolically L1 ≤T L2, if there
exists a poly-time OTM that decides L1 by using an oracle
for L2.
Polynomial reducibility implies Turing reducibility, but not
vice versa!
NP-hardness and co-NP-hardness with respect to Turing
reducibility are equivalent!
Turing reducibility can also be applied to general search
problems!

October 31, 2012 Nebel, Wölfl, Hué – KRR 22 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

Turing reductions

OTMs allow us to define a more general type of reduction
Idea: The “classical” reduction can be seen as calling a
subroutine once.
L1 is Turing-reducible to L2, symbolically L1 ≤T L2, if there
exists a poly-time OTM that decides L1 by using an oracle
for L2.
Polynomial reducibility implies Turing reducibility, but not
vice versa!
NP-hardness and co-NP-hardness with respect to Turing
reducibility are equivalent!
Turing reducibility can also be applied to general search
problems!

October 31, 2012 Nebel, Wölfl, Hué – KRR 22 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

Turing reductions

OTMs allow us to define a more general type of reduction
Idea: The “classical” reduction can be seen as calling a
subroutine once.
L1 is Turing-reducible to L2, symbolically L1 ≤T L2, if there
exists a poly-time OTM that decides L1 by using an oracle
for L2.
Polynomial reducibility implies Turing reducibility, but not
vice versa!
NP-hardness and co-NP-hardness with respect to Turing
reducibility are equivalent!
Turing reducibility can also be applied to general search
problems!

October 31, 2012 Nebel, Wölfl, Hué – KRR 22 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

Turing reductions

OTMs allow us to define a more general type of reduction
Idea: The “classical” reduction can be seen as calling a
subroutine once.
L1 is Turing-reducible to L2, symbolically L1 ≤T L2, if there
exists a poly-time OTM that decides L1 by using an oracle
for L2.
Polynomial reducibility implies Turing reducibility, but not
vice versa!
NP-hardness and co-NP-hardness with respect to Turing
reducibility are equivalent!
Turing reducibility can also be applied to general search
problems!

October 31, 2012 Nebel, Wölfl, Hué – KRR 22 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

Turing reductions

OTMs allow us to define a more general type of reduction
Idea: The “classical” reduction can be seen as calling a
subroutine once.
L1 is Turing-reducible to L2, symbolically L1 ≤T L2, if there
exists a poly-time OTM that decides L1 by using an oracle
for L2.
Polynomial reducibility implies Turing reducibility, but not
vice versa!
NP-hardness and co-NP-hardness with respect to Turing
reducibility are equivalent!
Turing reducibility can also be applied to general search
problems!

October 31, 2012 Nebel, Wölfl, Hué – KRR 22 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

Complexity classes based on Oracle TMs

1 PNP = decision problems solved by poly-time DTMs with an
oracle for a decision problem in NP.

2 NPNP = decision problems solved by poly-time NDTMs with
an oracle for a decision problem in NP.

3 co-NPNP = complements of decision problems solved by
poly-time NDTMs with an oracle for a decision problem in
NP.

4 NPNP
NP

= ...

. . . and so on

October 31, 2012 Nebel, Wölfl, Hué – KRR 23 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

Complexity classes based on Oracle TMs

1 PNP = decision problems solved by poly-time DTMs with an
oracle for a decision problem in NP.

2 NPNP = decision problems solved by poly-time NDTMs with
an oracle for a decision problem in NP.

3 co-NPNP = complements of decision problems solved by
poly-time NDTMs with an oracle for a decision problem in
NP.

4 NPNP
NP

= ...

. . . and so on

October 31, 2012 Nebel, Wölfl, Hué – KRR 23 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

Complexity classes based on Oracle TMs

1 PNP = decision problems solved by poly-time DTMs with an
oracle for a decision problem in NP.

2 NPNP = decision problems solved by poly-time NDTMs with
an oracle for a decision problem in NP.

3 co-NPNP = complements of decision problems solved by
poly-time NDTMs with an oracle for a decision problem in
NP.

4 NPNP
NP

= ...

. . . and so on

October 31, 2012 Nebel, Wölfl, Hué – KRR 23 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

Complexity classes based on Oracle TMs

1 PNP = decision problems solved by poly-time DTMs with an
oracle for a decision problem in NP.

2 NPNP = decision problems solved by poly-time NDTMs with
an oracle for a decision problem in NP.

3 co-NPNP = complements of decision problems solved by
poly-time NDTMs with an oracle for a decision problem in
NP.

4 NPNP
NP

= ...

. . . and so on

October 31, 2012 Nebel, Wölfl, Hué – KRR 23 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

Example

Consider the Minimum Equivalent Expression (MEE) problem:
Instance: A well-formed Boolean formula ϕ using the

standard connectives (not↔) and a non-negative
integer k.

Question: Is there a well-formed Boolean formula ϕ ′ that
contains k or fewer literal occurrences and that is
logically equivalent to ϕ?

This problem is NP-hard (wrt. to Turing reductions).
It does not appear to be NP-complete.
We could guess a formula and then use a SAT-oracle . . .
MEE ∈ NPNP.

October 31, 2012 Nebel, Wölfl, Hué – KRR 24 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

Example

Consider the Minimum Equivalent Expression (MEE) problem:
Instance: A well-formed Boolean formula ϕ using the

standard connectives (not↔) and a non-negative
integer k.

Question: Is there a well-formed Boolean formula ϕ ′ that
contains k or fewer literal occurrences and that is
logically equivalent to ϕ?

This problem is NP-hard (wrt. to Turing reductions).
It does not appear to be NP-complete.
We could guess a formula and then use a SAT-oracle . . .
MEE ∈ NPNP.

October 31, 2012 Nebel, Wölfl, Hué – KRR 24 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

Example

Consider the Minimum Equivalent Expression (MEE) problem:
Instance: A well-formed Boolean formula ϕ using the

standard connectives (not↔) and a non-negative
integer k.

Question: Is there a well-formed Boolean formula ϕ ′ that
contains k or fewer literal occurrences and that is
logically equivalent to ϕ?

This problem is NP-hard (wrt. to Turing reductions).
It does not appear to be NP-complete.
We could guess a formula and then use a SAT-oracle . . .
MEE ∈ NPNP.

October 31, 2012 Nebel, Wölfl, Hué – KRR 24 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

Example

Consider the Minimum Equivalent Expression (MEE) problem:
Instance: A well-formed Boolean formula ϕ using the

standard connectives (not↔) and a non-negative
integer k.

Question: Is there a well-formed Boolean formula ϕ ′ that
contains k or fewer literal occurrences and that is
logically equivalent to ϕ?

This problem is NP-hard (wrt. to Turing reductions).
It does not appear to be NP-complete.
We could guess a formula and then use a SAT-oracle . . .
MEE ∈ NPNP.

October 31, 2012 Nebel, Wölfl, Hué – KRR 24 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

Example

Consider the Minimum Equivalent Expression (MEE) problem:
Instance: A well-formed Boolean formula ϕ using the

standard connectives (not↔) and a non-negative
integer k.

Question: Is there a well-formed Boolean formula ϕ ′ that
contains k or fewer literal occurrences and that is
logically equivalent to ϕ?

This problem is NP-hard (wrt. to Turing reductions).
It does not appear to be NP-complete.
We could guess a formula and then use a SAT-oracle . . .
MEE ∈ NPNP.

October 31, 2012 Nebel, Wölfl, Hué – KRR 24 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

The polynomial hierarchy

The complexity classes based on OTMs form an infinite
hierarchy.

The polynomial hierarchy PH

Σp
0 = P Πp

0 = P ∆p
0 = P

Σp
i+1 = NPΣp

i Πp
i+1 = co-Σp

i+1 ∆p
i+1 = PΣp

i

PH =
⋃

i≥0(Σp
i ∪Πp

i ∪∆p
i )⊆PSPACE

NP = Σp
1

co-NP = Πp
1

October 31, 2012 Nebel, Wölfl, Hué – KRR 25 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

The polynomial hierarchy

The complexity classes based on OTMs form an infinite
hierarchy.

The polynomial hierarchy PH

Σp
0 = P Πp

0 = P ∆p
0 = P

Σp
i+1 = NPΣp

i Πp
i+1 = co-Σp

i+1 ∆p
i+1 = PΣp

i

PH =
⋃

i≥0(Σp
i ∪Πp

i ∪∆p
i )⊆PSPACE

NP = Σp
1

co-NP = Πp
1

October 31, 2012 Nebel, Wölfl, Hué – KRR 25 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

The polynomial hierarchy

The complexity classes based on OTMs form an infinite
hierarchy.

The polynomial hierarchy PH

Σp
0 = P Πp

0 = P ∆p
0 = P

Σp
i+1 = NPΣp

i Πp
i+1 = co-Σp

i+1 ∆p
i+1 = PΣp

i

PH =
⋃

i≥0(Σp
i ∪Πp

i ∪∆p
i )⊆PSPACE

NP = Σp
1

co-NP = Πp
1

October 31, 2012 Nebel, Wölfl, Hué – KRR 25 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

Quantified Boolean formulae: definition

If ϕ is a propositional formula, P is the set of Boolean
variables used in ϕ and σ is a sequence of ∃p and ∀p, one
for every p ∈ P, then σϕ is a QBF.

A formula ∃xϕ is true if and only if ϕ[x/>]∨ϕ[x/⊥] is true
(equivalently, ϕ[x/>] is true or ϕ[x/⊥] is true).

A formula ∀xϕ is true if and only if ϕ[x/>]∧ϕ[x/⊥] is true
(equivalently, ϕ[x/>] is true and ϕ[x/⊥] is true).

This definition directly leads to an AND/OR tree traversal
algorithm for evaluating QBF.

October 31, 2012 Nebel, Wölfl, Hué – KRR 26 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

Quantified Boolean formulae: definition

If ϕ is a propositional formula, P is the set of Boolean
variables used in ϕ and σ is a sequence of ∃p and ∀p, one
for every p ∈ P, then σϕ is a QBF.

A formula ∃xϕ is true if and only if ϕ[x/>]∨ϕ[x/⊥] is true
(equivalently, ϕ[x/>] is true or ϕ[x/⊥] is true).

A formula ∀xϕ is true if and only if ϕ[x/>]∧ϕ[x/⊥] is true
(equivalently, ϕ[x/>] is true and ϕ[x/⊥] is true).

This definition directly leads to an AND/OR tree traversal
algorithm for evaluating QBF.

October 31, 2012 Nebel, Wölfl, Hué – KRR 26 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

Quantified Boolean formulae: definition

If ϕ is a propositional formula, P is the set of Boolean
variables used in ϕ and σ is a sequence of ∃p and ∀p, one
for every p ∈ P, then σϕ is a QBF.

A formula ∃xϕ is true if and only if ϕ[x/>]∨ϕ[x/⊥] is true
(equivalently, ϕ[x/>] is true or ϕ[x/⊥] is true).

A formula ∀xϕ is true if and only if ϕ[x/>]∧ϕ[x/⊥] is true
(equivalently, ϕ[x/>] is true and ϕ[x/⊥] is true).

This definition directly leads to an AND/OR tree traversal
algorithm for evaluating QBF.

October 31, 2012 Nebel, Wölfl, Hué – KRR 26 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

Quantified Boolean formulae: definition

If ϕ is a propositional formula, P is the set of Boolean
variables used in ϕ and σ is a sequence of ∃p and ∀p, one
for every p ∈ P, then σϕ is a QBF.

A formula ∃xϕ is true if and only if ϕ[x/>]∨ϕ[x/⊥] is true
(equivalently, ϕ[x/>] is true or ϕ[x/⊥] is true).

A formula ∀xϕ is true if and only if ϕ[x/>]∧ϕ[x/⊥] is true
(equivalently, ϕ[x/>] is true and ϕ[x/⊥] is true).

This definition directly leads to an AND/OR tree traversal
algorithm for evaluating QBF.

October 31, 2012 Nebel, Wölfl, Hué – KRR 26 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

Quantified Boolean formulae: definition

The evaluation problem of QBF generalizes both the satisfiability
and validity/tautology problems of propositional logic.
The latter are NP-complete and co-NP-complete, resp., whereas
the former is PSPACE-complete.

Example
The formulae ∀x∃y(x↔ y) and ∃x∃y(x∧ y) are true.

Example
The formulae ∃x∀y(x↔ y) and ∀x∀y(x∨ y) are false.

October 31, 2012 Nebel, Wölfl, Hué – KRR 27 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

Quantified Boolean formulae: definition

The evaluation problem of QBF generalizes both the satisfiability
and validity/tautology problems of propositional logic.
The latter are NP-complete and co-NP-complete, resp., whereas
the former is PSPACE-complete.

Example
The formulae ∀x∃y(x↔ y) and ∃x∃y(x∧ y) are true.

Example
The formulae ∃x∀y(x↔ y) and ∀x∀y(x∨ y) are false.

October 31, 2012 Nebel, Wölfl, Hué – KRR 27 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

Quantified Boolean formulae: definition

The evaluation problem of QBF generalizes both the satisfiability
and validity/tautology problems of propositional logic.
The latter are NP-complete and co-NP-complete, resp., whereas
the former is PSPACE-complete.

Example
The formulae ∀x∃y(x↔ y) and ∃x∃y(x∧ y) are true.

Example
The formulae ∃x∀y(x↔ y) and ∀x∀y(x∨ y) are false.

October 31, 2012 Nebel, Wölfl, Hué – KRR 27 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

Quantified Boolean formulae: definition

The evaluation problem of QBF generalizes both the satisfiability
and validity/tautology problems of propositional logic.
The latter are NP-complete and co-NP-complete, resp., whereas
the former is PSPACE-complete.

Example
The formulae ∀x∃y(x↔ y) and ∃x∃y(x∧ y) are true.

Example
The formulae ∃x∀y(x↔ y) and ∀x∀y(x∨ y) are false.

October 31, 2012 Nebel, Wölfl, Hué – KRR 27 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

The Polynomial Hierarchy: connection to
QBF

Truth of QBFs with prefix
i︷ ︸︸ ︷

∀∃∀ . . . is Πp
i -complete.

Truth of QBFs with prefix
i︷ ︸︸ ︷

∃∀∃ . . . is Σp
i -complete.

Special cases corresponding to SAT and TAUT:

The truth of QBFs with prefix ∃x1
1 . . .x

1
n is

NP= Σp
1-complete.

The truth of QBFs with prefix ∀x1
1 . . .x

1
n is

co-NP= Πp
1-complete.

October 31, 2012 Nebel, Wölfl, Hué – KRR 28 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

The Polynomial Hierarchy: connection to
QBF

Truth of QBFs with prefix
i︷ ︸︸ ︷

∀∃∀ . . . is Πp
i -complete.

Truth of QBFs with prefix
i︷ ︸︸ ︷

∃∀∃ . . . is Σp
i -complete.

Special cases corresponding to SAT and TAUT:

The truth of QBFs with prefix ∃x1
1 . . .x

1
n is

NP= Σp
1-complete.

The truth of QBFs with prefix ∀x1
1 . . .x

1
n is

co-NP= Πp
1-complete.

October 31, 2012 Nebel, Wölfl, Hué – KRR 28 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

The Polynomial Hierarchy: connection to
QBF

Truth of QBFs with prefix
i︷ ︸︸ ︷

∀∃∀ . . . is Πp
i -complete.

Truth of QBFs with prefix
i︷ ︸︸ ︷

∃∀∃ . . . is Σp
i -complete.

Special cases corresponding to SAT and TAUT:

The truth of QBFs with prefix ∃x1
1 . . .x

1
n is

NP= Σp
1-complete.

The truth of QBFs with prefix ∀x1
1 . . .x

1
n is

co-NP= Πp
1-complete.

October 31, 2012 Nebel, Wölfl, Hué – KRR 28 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines

Turing reduction

Complexity classes
based on OTMs

QBF

Literature

The Polynomial Hierarchy: connection to
QBF

Truth of QBFs with prefix
i︷ ︸︸ ︷

∀∃∀ . . . is Πp
i -complete.

Truth of QBFs with prefix
i︷ ︸︸ ︷

∃∀∃ . . . is Σp
i -complete.

Special cases corresponding to SAT and TAUT:

The truth of QBFs with prefix ∃x1
1 . . .x

1
n is

NP= Σp
1-complete.

The truth of QBFs with prefix ∀x1
1 . . .x

1
n is

co-NP= Πp
1-complete.

October 31, 2012 Nebel, Wölfl, Hué – KRR 28 / 29



Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Literature

M. R. Garey and D. S. Johnson.
Computers and Intractability – A Guide to the Theory of
NP-Completeness.
Freeman and Company, San Francisco, 1979.

C. H. Papadimitriou.
Computational Complexity.
Addison-Wesley,Reading, MA, 1994.

October 31, 2012 Nebel, Wölfl, Hué – KRR 29 / 29


	Motivation
	Reminder: Basic Notions
	Algorithms and Turing machines
	Problems, solutions, and complexity
	Complexity classes P and NP
	Upper and lower bounds
	Polynomial reductions
	NP-completeness

	Beyond NP
	The class co-NP
	The class PSPACE
	Other classes

	Oracle TMs and the Polynomial Hierarchy
	Oracle Turing machines
	Turing reduction
	Complexity classes based on OTMs
	QBF


