Principles of Knowledge Representation and Reasoning Complexity Theory

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel, Stefan Wölfl, and Julien Hué October 31, 2012

Motivation

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Literature

Motivation

Complexity theory can answer questions on how easy or hard a problem is

- Gives hints on what algorithms could be appropriate, e.g.:
 - algorithms for polynomial-time problems are usually easy to design
 - for NP-complete problems, backtracking and local search work well
- Gives hints on what type of algorithm will (most probably) not work
 - for problems that are believed to be harder than NP-complete ones, simple backtracking will not work
- Gives hint on what sub-problems might be interesting

Motivation

DRD

2

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

- Complexity theory can answer questions on how easy or hard a problem is
- Gives hints on what algorithms could be appropriate, e.g.:
 - algorithms for polynomial-time problems are usually easy to design
 - for NP-complete problems, backtracking and local search work well
- Gives hints on what type of algorithm will (most probably) not work
 - for problems that are believed to be harder than NP-complete ones, simple backtracking will not work
- Gives hint on what sub-problems might be interesting

Motivation

DRD

2

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

- Complexity theory can answer questions on how easy or hard a problem is
- Gives hints on what algorithms could be appropriate, e.g.:
 - algorithms for polynomial-time problems are usually easy to design
 - for NP-complete problems, backtracking and local search work well
 - Gives hints on what type of algorithm will (most probably) not work
 - for problems that are believed to be harder than NP-complete ones, simple backtracking will not work
- Gives hint on what sub-problems might be interesting

Motivation

DRD

2

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

- Complexity theory can answer questions on how easy or hard a problem is
- Gives hints on what algorithms could be appropriate, e.g.:
 - algorithms for polynomial-time problems are usually easy to design
 - for NP-complete problems, backtracking and local search work well
- Gives hints on what type of algorithm will (most probably) not work
 - for problems that are believed to be harder than NP-complete ones, simple backtracking will not work
- Gives hint on what sub-problems might be interesting

Motivation

DRD

2

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

- Complexity theory can answer questions on how easy or hard a problem is
- Gives hints on what algorithms could be appropriate, e.g.:
 - algorithms for polynomial-time problems are usually easy to design
 - for NP-complete problems, backtracking and local search work well
- Gives hints on what type of algorithm will (most probably) not work
 - for problems that are believed to be harder than NP-complete ones, simple backtracking will not work
- Gives hint on what sub-problems might be interesting

Motivation

BURG

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

- Complexity theory can answer questions on how easy or hard a problem is
- Gives hints on what algorithms could be appropriate, e.g.:
 - algorithms for polynomial-time problems are usually easy to design
 - for NP-complete problems, backtracking and local search work well
- Gives hints on what type of algorithm will (most probably) not work
 - for problems that are believed to be harder than NP-complete ones, simple backtracking will not work

Gives hint on what sub-problems might be interesting

Motivation

BURG

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

- Complexity theory can answer questions on how easy or hard a problem is
- Gives hints on what algorithms could be appropriate, e.g.:
 - algorithms for polynomial-time problems are usually easy to design
 - for NP-complete problems, backtracking and local search work well
- Gives hints on what type of algorithm will (most probably) not work
 - for problems that are believed to be harder than NP-complete ones, simple backtracking will not work
- Gives hint on what sub-problems might be interesting

Motivation

BURG

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Motivation

Reminder: Basic Notions

Algorithms and Turing machines

Problems, solutions, and complexity

Complexity classes P and NP

Upper and lower bounds

Polynomial reductions

NP-completeness

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Literature

Reminder: Basic Notions

We use Turing machines as formal models of algorithms

- This is justified, because:
 - we assume that Turing machines can compute all computable functions
 - the resource requirements (in term of time and memory) of a Turing machine are only polynomially worse than other models
- The regular type of Turing machine is the deterministic one: DTM (or simply TM)
- Often, however, we use the notion of nondeterministic TMs: NDTM

Motivation

DRG

2

Reminder: Basic Notions

Algorithms and Turing machines

Problems, solutions, and complexity

Complexity classes P and NP

Upper and lower

Polynomial

NP-completeness

Beyond NP

Oracle TMs and the Polynomial Hierarchy

- We use Turing machines as formal models of algorithms
- This is justified, because:
 - we assume that Turing machines can compute all computable functions
 - the resource requirements (in term of time and memory) of a Turing machine are only polynomially worse than other models
- The regular type of Turing machine is the deterministic one: DTM (or simply TM)
- Often, however, we use the notion of nondeterministic TMs: NDTM

Motivation

DRG

2

Reminder: Basic Notions

Algorithms and Turing machines

Problems, solutions, and complexity

Complexity classes P and NP

Upper and lower

Polynomial

NP-completeness

Beyond NP

Oracle TMs and the Polynomial Hierarchy

- We use Turing machines as formal models of algorithms
- This is justified, because:
 - we assume that Turing machines can compute all computable functions
 - the resource requirements (in term of time and memory) of a Turing machine are only polynomially worse than other models
- The regular type of Turing machine is the deterministic one: DTM (or simply TM)
- Often, however, we use the notion of nondeterministic TMs: NDTM

Motivation

DRG

2

Reminder: Basic Notions

Algorithms and Turing machines

Problems, solutions, and complexity

Complexity classes P and NP

Upper and lower

Polynomial

NP-completeness

Beyond NP

Oracle TMs and the Polynomial Hierarchy

- We use Turing machines as formal models of algorithms
- This is justified, because:
 - we assume that Turing machines can compute all computable functions
 - the resource requirements (in term of time and memory) of a Turing machine are only polynomially worse than other models
- The regular type of Turing machine is the deterministic one: DTM (or simply TM)
- Often, however, we use the notion of nondeterministic TMs: NDTM

Motivation

DRG

2

Reminder: Basic Notions

Algorithms and Turing machines

Problems, solutions, and complexity

Complexity classes P and NP

Upper and lower bounds

Polynomial reductions

NP-completeness

Beyond NP

Oracle TMs and the Polynomial Hierarchy

- We use Turing machines as formal models of algorithms
- This is justified, because:
 - we assume that Turing machines can compute all computable functions
 - the resource requirements (in term of time and memory) of a Turing machine are only polynomially worse than other models
- The regular type of Turing machine is the deterministic one: DTM (or simply TM)
- Often, however, we use the notion of nondeterministic TMs: NDTM

Motivation

DRG

2

Reminder: Basic Notions

Algorithms and Turing machines

Problems, solutions, and complexity

Complexity classes P and NP

Upper and lower bounds

Polynomial reductions

NP-completeness

Beyond NP

Oracle TMs and the Polynomial Hierarchy

- We use Turing machines as formal models of algorithms
- This is justified, because:
 - we assume that Turing machines can compute all computable functions
 - the resource requirements (in term of time and memory) of a Turing machine are only polynomially worse than other models
- The regular type of Turing machine is the deterministic one: DTM (or simply TM)
- Often, however, we use the notion of nondeterministic TMs: NDTM

Motivation

DRG

Reminder: Basic Notions

Algorithms and Turing machines

Problems, solutions, and complexity

Complexity classes P and NP

Upper and lower bounds

Polynomial reductions

NP-completeness

Beyond NP

Oracle TMs and the Polynomial Hierarchy

- A problem is a set of pairs (*I*,*A*) of strings in {0,1}*.
 I: instance; *A*: answer
 If all answers A ∈ {0,1}: decision problem
- A decision problem is the same as a formal language: the set of strings formed by the instances with answer 1
- An algorithm decides (or solves) a problem if it computes the right answer for all instances.
- Complexity of an algorithm: function
 - $T\colon \mathbb{N}\to\mathbb{N},$

measuring the number of basic steps (or memory requirement) the algorithm needs to compute an answe depending on the size of the instance

Complexity of a problem: complexity of the most efficient algorithm that solves this problem.

Motivation

BUR

Reminder: Basic Notions

Algorithms and Turing machines

Problems, solutions, and complexity

Complexity classes P and NP

Upper and lower bounds

Polynomial

NP-completeness

Beyond NP

Oracle TMs and the Polynomial Hierarchy

- A problem is a set of pairs (*I*, *A*) of strings in {0,1}*.
 I: instance; *A*: answer
 If all answers A ∈ {0,1}: decision problem
- A decision problem is the same as a formal language: the set of strings formed by the instances with answer 1
- An algorithm decides (or solves) a problem if it computes the right answer for all instances.
- Complexity of an algorithm: function

$$T: \mathbb{N} \to \mathbb{N},$$

measuring the number of basic steps (or memory requirement) the algorithm needs to compute an answe depending on the size of the instance

Complexity of a problem: complexity of the most efficient algorithm that solves this problem.

Motivation

Reminder: Basic Notions

Algorithms and Turing machines

Problems, solutions, and complexity

Complexity classes P and NP

Upper and lower bounds

Polynomial

NP-completeness

Beyond NP

Oracle TMs and the Polynomial Hierarchy

- A problem is a set of pairs (*I*, *A*) of strings in {0,1}*.
 I: instance; *A*: answer
 If all answers A ∈ {0,1}: decision problem
- A decision problem is the same as a formal language: the set of strings formed by the instances with answer 1
- An algorithm decides (or solves) a problem if it computes the right answer for all instances.

Complexity of an algorithm: function

 $T: \mathbb{N} \to \mathbb{N},$

measuring the number of basic steps (or memory requirement) the algorithm needs to compute an answe depending on the size of the instance

Complexity of a problem: complexity of the most efficient algorithm that solves this problem.

Motivotic

BUR

Reminder: Basic Notions

Algorithms and Turing machines

Problems, solutions, and complexity

Complexity classes P and NP

Upper and lower bounds

Polynomial

NP-completeness

Beyond NP

Oracle TMs and the Polynomial Hierarchy

- A problem is a set of pairs (*I*, *A*) of strings in {0,1}*.
 I: instance; *A*: answer
 If all answers A ∈ {0,1}: decision problem
- A decision problem is the same as a formal language: the set of strings formed by the instances with answer 1
- An algorithm decides (or solves) a problem if it computes the right answer for all instances.
- Complexity of an algorithm: function

 $T\colon \mathbb{N}\to\mathbb{N},$

measuring the number of basic steps (or memory requirement) the algorithm needs to compute an answer depending on the size of the instance

Complexity of a problem: complexity of the most efficient algorithm that solves this problem.

Motivation

2

Reminder: Basic Notions

Algorithms and Turing machines

Problems, solutions, and complexity

Complexity classes P and NP

Upper and lower bounds

Polynomial

NP-completeness

Beyond NP

Oracle TMs and the Polynomial Hierarchy

- A problem is a set of pairs (*I*, *A*) of strings in {0,1}*.
 I: instance; *A*: answer
 If all answers A ∈ {0,1}: decision problem
- A decision problem is the same as a formal language: the set of strings formed by the instances with answer 1
- An algorithm decides (or solves) a problem if it computes the right answer for all instances.
- Complexity of an algorithm: function

 $T\colon \mathbb{N}\to\mathbb{N},$

measuring the number of basic steps (or memory requirement) the algorithm needs to compute an answer depending on the size of the instance

Complexity of a problem: complexity of the most efficient algorithm that solves this problem.

Motivation

Reminder: Basic Notions

Algorithms and Turing machines

Problems, solutions, and complexity

Complexity classes P and NP

Upper and lower bounds

Polynomial reductions

NP-completeness

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Problems are categorized into complexity classes according to the requirements of computational resources:

- The class of problems decidable on deterministic Turing machines in polynomial time: P
 - Problems in P are assumed to be efficiently solvable (although this might not be true if the exponent is very lar
 - In practice, this notion appears to be more often reasonable than not
- The class of problems decidable on non-deterministic Turing machines in polynomial time: NP
- More classes are definable using other resource bounds on time and memory

Motivation

2

Reminder: Basic Notions

Algorithms and Turing machines

Problems, solutions, and complexity

Complexity classes P and NP

Upper and lower bounds Polynomial

NP-completeness

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Problems are categorized into complexity classes according to the requirements of computational resources:

- The class of problems decidable on deterministic Turing machines in polynomial time: P
 - Problems in P are assumed to be efficiently solvable (although this might not be true if the exponent is very large)
 - In practice, this notion appears to be more often reasonable than not
- The class of problems decidable on non-deterministic Turing machines in polynomial time: NP
- More classes are definable using other resource bounds on time and memory

Motivation

2

Reminder: Basic Notions

Algorithms and Turing machines

Problems, solutions, and complexity

Complexity classes P and NP

Upper and lower bounds Polynomial reductions

NP-completeness

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Problems are categorized into complexity classes according to the requirements of computational resources:

- The class of problems decidable on deterministic Turing machines in polynomial time: P
 - Problems in P are assumed to be efficiently solvable (although this might not be true if the exponent is very large)
 - In practice, this notion appears to be more often reasonable than not
- The class of problems decidable on non-deterministic Turing machines in polynomial time: NP
- More classes are definable using other resource bounds on time and memory

Motivation

2

Reminder: Basic Notions

Algorithms and Turing machines

Problems, solutions, and complexity

Complexity classes P and NP

Upper and lower bounds Polynomial

NP-completeness

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Problems are categorized into complexity classes according to the requirements of computational resources:

- The class of problems decidable on deterministic Turing machines in polynomial time: P
 - Problems in P are assumed to be efficiently solvable (although this might not be true if the exponent is very large)
 - In practice, this notion appears to be more often reasonable than not
- The class of problems decidable on non-deterministic Turing machines in polynomial time: NP
- More classes are definable using other resource bounds on time and memory

Motivation

Reminder: Basic Notions

Algorithms and Turing machines

Problems, solutions, and complexity

Complexity classes P and NP

Upper and lower bounds Polynomial

NP-completeness

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Problems are categorized into complexity classes according to the requirements of computational resources:

- The class of problems decidable on deterministic Turing machines in polynomial time: P
 - Problems in P are assumed to be efficiently solvable (although this might not be true if the exponent is very large)
 - In practice, this notion appears to be more often reasonable than not
- The class of problems decidable on non-deterministic Turing machines in polynomial time: NP
- More classes are definable using other resource bounds on time and memory

Motivation

Reminder: Basic Notions

Algorithms and Turing machines

Problems, solutions, and complexity

Complexity classes P and NP

Upper and lower bounds Polynomial

NP-completeness

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Upper bounds (membership in a class) are usually easy to prove:

- provide an algorithm
- show that the resource bounds are respected
- Lower bounds (hardness for a class) are usually difficult to show:
 - the technical tool here is the polynomial reduction (or any other appropriate reduction)
 - show that some hard problem can be reduced to the problem at hand

Motivation

BURG

Reminder: Basic Notions

Algorithms and Turing machines

Problems, solutions, and complexity

Complexity classes P and NP

Upper and lower bounds

Polynomial reductions

NP-completeness

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Upper bounds (membership in a class) are usually easy to prove:

provide an algorithm

- show that the resource bounds are respected
- Lower bounds (hardness for a class) are usually difficult to show:
 - the technical tool here is the polynomial reduction (or any other appropriate reduction)
 - show that some hard problem can be reduced to the problem at hand

Motivation

BURG

Reminder: Basic Notions

Algorithms and Turing machines

Problems, solutions, and complexity

Complexity classes P and NP

Upper and lower bounds

Polynomial reductions

NP-completeness

Beyond NP

Oracle TMs and the Polynomial Hierarchy

- Upper bounds (membership in a class) are usually easy to prove:
 - provide an algorithm
 - show that the resource bounds are respected
- Lower bounds (hardness for a class) are usually difficult to show:
 - the technical tool here is the polynomial reduction (or any other appropriate reduction)
 - show that some hard problem can be reduced to the problem at hand

Motivation

BURG

Reminder: Basic Notions

Algorithms and Turing machines

Problems, solutions, and complexity

Complexity classes P and NP

Upper and lower bounds

Polynomial reductions

NP-completeness

Beyond NP

Oracle TMs and the Polynomial Hierarchy

- Upper bounds (membership in a class) are usually easy to prove:
 - provide an algorithm
 - show that the resource bounds are respected
- Lower bounds (hardness for a class) are usually difficult to show:
 - the technical tool here is the polynomial reduction (or any other appropriate reduction)
 - show that some hard problem can be reduced to the problem at hand

Motivation

8

Reminder: Basic Notions

Algorithms and Turing machines

Problems, solutions, and complexity

Complexity classes P and NP

Upper and lower bounds

Polynomial reductions

NP-completeness

Beyond NP

Oracle TMs and the Polynomial Hierarchy

- Upper bounds (membership in a class) are usually easy to prove:
 - provide an algorithm
 - show that the resource bounds are respected
- Lower bounds (hardness for a class) are usually difficult to show:
 - the technical tool here is the polynomial reduction (or any other appropriate reduction)
 - show that some hard problem can be reduced to the problem at hand

Motivation

DRG

8

Reminder: Basic Notions

Algorithms and Turing machines

Problems, solutions, and complexity

Complexity classes P and NP

Upper and lower bounds

Polynomial reductions

NP-completeness

Beyond NP

Oracle TMs and the Polynomial Hierarchy

- Upper bounds (membership in a class) are usually easy to prove:
 - provide an algorithm
 - show that the resource bounds are respected
- Lower bounds (hardness for a class) are usually difficult to show:
 - the technical tool here is the polynomial reduction (or any other appropriate reduction)
 - show that some hard problem can be reduced to the problem at hand

Motivation

DRG

Reminder: Basic Notions

Algorithms and Turing machines

Problems, solutions, and complexity

Complexity classes P and NP

Upper and lower bounds

Polynomial reductions

NP-completeness

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Polynomial reduction

Given languages L_1 and L_2 , L_1 can be polynomially reduced to L_2 , written $L_1 \leq_p L_2$, if there exists a polynomially computable function *f* such that

$$x \in L_1 \iff f(x) \in L_2$$

Rationale: it cannot be harder to decide L_1 than L_2

- L is hard for a class C (C-hard) if all languages of this class can be reduced to L.
- L is complete for C (C-complete) if L is C-hard and $L \in C$.

FRE

Motivation

Reminder: Basic Notions

Algorithms and Turing machines

Problems, solutions, and complexity

Complexity classes P and NP

Upper and lower bounds

Polynomial reductions

NP-completeness

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Polynomial reduction

Given languages L_1 and L_2 , L_1 can be polynomially reduced to L_2 , written $L_1 \leq_p L_2$, if there exists a polynomially computable function *f* such that

$$x \in L_1 \iff f(x) \in L_2$$

Rationale: it cannot be harder to decide L_1 than L_2

- L is hard for a class C (*C*-hard) if all languages of this class can be reduced to *L*.
- L is complete for C (C-complete) if L is C-hard and $L \in C$.

solu

D^RC

complexity

Reminder:

Complexity classes P and NP

Upper and lower bounds

Polynomial reductions

NP-completeness

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Polynomial reduction

Given languages L_1 and L_2 , L_1 can be polynomially reduced to L_2 , written $L_1 \leq_p L_2$, if there exists a polynomially computable function *f* such that

$$x \in L_1 \iff f(x) \in L_2$$

Rationale: it cannot be harder to decide L_1 than L_2

- L is hard for a class C (C-hard) if all languages of this class can be reduced to L.
- *L* is complete for *C* (*C*-complete) if *L* is *C*-hard and $L \in C$.

Motivation

Dal

Reminder: Basic Notions

Algorithms and Turing machines

Problems, solutions, and complexity

Complexity classes P and NP

Upper and lower bounds

Polynomial reductions

NP-completeness

Beyond NP

Oracle TMs and the Polynomial Hierarchy

NP-complete problems

UNI FREIBURG

A problem is NP-complete iff it is NP-hard and in NP.

- Example: SAT (the satisfiability problem for propositional logic) is NP-complete (Cook/Karp)
 - Membership is obvious, hardness follows because computations on a NDTM correspond to satisfying truth-assignments of certain formulae

Motivation

Reminder: Basic Notions

Algorithms and Turing machines

Problems, solutions, and complexity

Complexity classes P and NP

Upper and lower bounds

Polynomial reductions

NP-completeness

Beyond NP

Oracle TMs and the Polynomial Hierarchy
NP-complete problems

- A problem is NP-complete iff it is NP-hard and in NP.
- Example: SAT (the satisfiability problem for propositional logic) is NP-complete (Cook/Karp)
 - Membership is obvious, hardness follows because computations on a NDTM correspond to satisfying truth-assignments of certain formulae

UNI FREIBURG

Motivation

Reminder: Basic Notions

Algorithms and Turing machines

Problems, solutions, and complexity

Complexity classes P and NP

Upper and lower bounds

Polynomial reductions

NP-completeness

Beyond NP

Oracle TMs and the Polynomial Hierarchy

NP-complete problems

- A problem is NP-complete iff it is NP-hard and in NP.
- Example: SAT (the satisfiability problem for propositional logic) is NP-complete (Cook/Karp)
 - Membership is obvious, hardness follows because computations on a NDTM correspond to satisfying truth-assignments of certain formulae

UNI FREIBURG

Motivation

Reminder: Basic Notions

Algorithms and Turing machines

Problems, solutions, and complexity

Complexity classes P and NP

Upper and lower bounds

Polynomial reductions

NP-completeness

Beyond NP

Oracle TMs and the Polynomial Hierarchy

NP-complete problems

- A problem is NP-complete iff it is NP-hard and in NP.
- Example: SAT (the satisfiability problem for propositional logic) is NP-complete (Cook/Karp)
 - Membership is obvious, hardness follows because computations on a NDTM correspond to satisfying truth-assignments of certain formulae

Motivation

Reminder: Basic Notions

Algorithms and Turing machines

Problems, solutions, and complexity

Complexity classes P and NP

Upper and lower bounds

Polynomial reductions

NP-completeness

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Motivation

Reminder: Basic Notions

Beyond NP

The class co-NP The class PSPACE Other classes

Oracle TMs and the Polynomial Hierarchy

Literature

Beyond NP

Note that there is some asymmetry in the definition of NP:

- It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
- There exists an accepting computation of polynomial length iff the formula is satisfiable
- What if we want to solve UNSAT, the complementary problem?
- It seems necessary to check all possible truth-assignments!
- Define co- $C = \{\Sigma^* \setminus L : L \subseteq \Sigma^* \text{ and } L \in C\}$ (Σ ranges over alphabets)
- co-NP = $\{\Sigma^* \setminus L : L \subseteq \Sigma^* \text{ and } L \in \mathsf{NP}\}$
- Examples: UNSAT, TAUT \in co-NP!
- Note: P is closed under complement, in particular,

 $\mathsf{P}\subseteq\mathsf{NP}\cap\mathsf{co}\mathsf{-}\mathsf{NP}$

Motivation

Reminder: Basic Notions

Beyond NP

The class co-NP The class PSPACE Other classes

Oracle TMs and the Polynomial Hierarchy

Note that there is some asymmetry in the definition of NP:

- It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
- There exists an accepting computation of polynomial length iff the formula is satisfiable
- What if we want to solve UNSAT, the complementary problem?
- It seems necessary to check all possible truth-assignments!
- Define co- $C = \{\Sigma^* \setminus L : L \subseteq \Sigma^* \text{ and } L \in C\}$ (Σ ranges over alphabets)
- co-NP = $\{\Sigma^* \setminus L : L \subseteq \Sigma^* \text{ and } L \in \mathsf{NP}\}$
- Examples: UNSAT, TAUT ∈ co-NP!
- Note: P is closed under complement, in particular,

 $\mathsf{P}\subseteq\mathsf{NP}\cap\mathsf{co}\mathsf{-}\mathsf{NP}$

5**E** Motivation

M

Reminder: Basic Notions

Beyond NP

The class co-NP The class PSPACE Other classes

Oracle TMs and the Polynomial Hierarchy

- Note that there is some asymmetry in the definition of NP:
 - It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
 - There exists an accepting computation of polynomial length iff the formula is satisfiable
 - What if we want to solve UNSAT, the complementary problem?
 - It seems necessary to check all possible truth-assignments!
- Define co- $C = \{\Sigma^* \setminus L : L \subseteq \Sigma^* \text{ and } L \in C\}$ (Σ ranges over alphabets)
- co-NP = $\{\Sigma^* \setminus L : L \subseteq \Sigma^* \text{ and } L \in \mathsf{NP}\}$
- Examples: UNSAT, TAUT ∈ co-NP!
- Note: P is closed under complement, in particular,

 $\mathsf{P}\subseteq\mathsf{NP}\cap\mathsf{co}\mathsf{-}\mathsf{NP}$

M

Motivation

Reminder: Basic Notions

Beyond NP

The class co-NP The class PSPACE Other classes

Oracle TMs and the Polynomial Hierarchy

- Note that there is some asymmetry in the definition of NP:
 - It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
 - There exists an accepting computation of polynomial length iff the formula is satisfiable
 - What if we want to solve UNSAT, the complementary problem?
 - It seems necessary to check all possible truth-assignments!
- Define co- $C = \{\Sigma^* \setminus L : L \subseteq \Sigma^* \text{ and } L \in C\}$ (Σ ranges over alphabets)
- co-NP = { $\Sigma^* \setminus L : L \subseteq \Sigma^*$ and $L \in NP$ }
- Examples: UNSAT, TAUT ∈ co-NP!
- Note: P is closed under complement, in particular,

 $\mathsf{P}\subseteq\mathsf{NP}\cap\mathsf{co}\mathsf{-}\mathsf{NP}$

S. H

2

Motivation

Reminder: Basic Notions

Beyond NP

The class co-NP The class PSPACE Other classes

Oracle TMs and the Polynomial Hierarchy

- Note that there is some asymmetry in the definition of NP:
 - It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
 - There exists an accepting computation of polynomial length iff the formula is satisfiable
 - What if we want to solve UNSAT, the complementary problem?
 - It seems necessary to check all possible truth-assignments!
- Define co-C = {Σ* \L: L ⊆ Σ* and L ∈ C} (Σ ranges over alphabets)
- co-NP = { $\Sigma^* \setminus L : L \subseteq \Sigma^*$ and $L \in NP$ }
- Examples: UNSAT, TAUT ∈ co-NP!
- Note: P is closed under complement, in particular,

 $\mathsf{P}\subseteq\mathsf{NP}\cap\mathsf{co}\mathsf{-}\mathsf{NP}$

2

Motivation

Reminder: Basic Notions

Beyond NP

The class co-NP The class PSPACE Other classes

Oracle TMs and the Polynomial Hierarchy

- Note that there is some asymmetry in the definition of NP:
 - It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
 - There exists an accepting computation of polynomial length iff the formula is satisfiable
 - What if we want to solve UNSAT, the complementary problem?
 - It seems necessary to check all possible truth-assignments!
- Define co-C = {Σ* \L: L ⊆ Σ* and L ∈ C} (Σ ranges over alphabets)
- co-NP = { $\Sigma^* \setminus L : L \subseteq \Sigma^*$ and $L \in NP$ }
- Examples: UNSAT, TAUT \in co-NP!
- Note: P is closed under complement, in particular,

 $\mathsf{P} \subseteq \mathsf{NP} \cap \mathsf{co}\text{-}\mathsf{NP}$

UNI FREIBL

Motivation

Reminder: Basic Notions

Beyond NP

The class co-NP The class PSPACE Other classes

Oracle TMs and the Polynomial Hierarchy

- Note that there is some asymmetry in the definition of NP:
 - It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
 - There exists an accepting computation of polynomial length iff the formula is satisfiable
 - What if we want to solve UNSAT, the complementary problem?
 - It seems necessary to check all possible truth-assignments!
- Define co-C = {Σ* \L: L ⊆ Σ* and L ∈ C} (Σ ranges over alphabets)
- co-NP = { $\Sigma^* \setminus L : L \subseteq \Sigma^*$ and $L \in NP$ }

Examples: UNSAT, TAUT \in co-NP!

Note: P is closed under complement, in particular,

 $\mathsf{P}\subseteq\mathsf{NP}\cap\mathsf{co}\mathsf{-}\mathsf{NP}$

UNI FREIBL

Motivation

Reminder: Basic Notions

Beyond NP

The class co-NP The class PSPACE Other classes

Oracle TMs and the Polynomial Hierarchy

- Note that there is some asymmetry in the definition of NP:
 - It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
 - There exists an accepting computation of polynomial length iff the formula is satisfiable
 - What if we want to solve UNSAT, the complementary problem?
 - It seems necessary to check all possible truth-assignments!
- Define co-C = {Σ* \L: L ⊆ Σ* and L ∈ C} (Σ ranges over alphabets)
- co-NP = { $\Sigma^* \setminus L : L \subseteq \Sigma^*$ and $L \in NP$ }

■ Examples: UNSAT, TAUT ∈ co-NP!

 $\mathsf{P} \subseteq \mathsf{NP} \cap \mathsf{co}\mathsf{-}\mathsf{NP}$

UNI FREIBL

Motivation

Reminder: Basic Notions

Beyond NP

The class co-NP The class PSPACE Other classes

Oracle TMs and the Polynomial Hierarchy

Note: P is closed under complement, in particular,

- Note that there is some asymmetry in the definition of NP:
 - It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
 - There exists an accepting computation of polynomial length iff the formula is satisfiable
 - What if we want to solve UNSAT, the complementary problem?
 - It seems necessary to check all possible truth-assignments!
- Define co-C = {Σ* \L: L ⊆ Σ* and L ∈ C} (Σ ranges over alphabets)
- co-NP = { $\Sigma^* \setminus L : L \subseteq \Sigma^*$ and $L \in NP$ }
- Examples: UNSAT, TAUT ∈ co-NP!
- Note: P is closed under complement, in particular,

 $\mathsf{P}\subseteq\mathsf{NP}\cap\mathsf{co}\text{-}\mathsf{NP}$

5**E**

8

Motivation

Reminder: Basic Notions

Beyond NP

The class co-NP The class PSPACE Other classes

Oracle TMs and the Polynomial Hierarchy

Definition ((N)PSPACE)

PSPACE (NPSPACE) is the class of decision problems that can be decided on deterministic (non-deterministic) Turing machines using only polynomially many tape cells.

Some facts about PSPACE:

- PSPACE is closed under complements (... as all other deterministic classes)
- PSPACE is identical to NPSPACE (because non-deterministic Turing machines can be simulated on deterministic TMs using only quadratic space)
- NP⊆PSPACE (because in polynomial time one can "visit" only polynomial space, i.e., NP⊆NPSPACE)
 It is upknown whether NP→PSPACE, but it is believed that

H.

m

Motivation

Reminder: Basic Notions

Beyond NP

The class PSPACE Other classes

Oracle TMs and the Polynomial Hierarchy

Definition ((N)PSPACE)

PSPACE (NPSPACE) is the class of decision problems that can be decided on deterministic (non-deterministic) Turing machines using only polynomially many tape cells.

Some facts about PSPACE:

- PSPACE is closed under complements (... as all other deterministic classes)
- PSPACE is identical to NPSPACE (because non-deterministic Turing machines can be simulated on deterministic TMs using only quadratic space)
- NP⊆PSPACE (because in polynomial time one can "visit" only polynomial space, i.e., NP⊆NPSPACE)
 It is unknown whether NP+PSPACE, but it is believed that

UNI FREIBURG

Motivation

Reminder: Basic Notions

Beyond NP

The class PSPACE Other classes

Oracle TMs and the Polynomial Hierarchy

Definition ((N)PSPACE)

PSPACE (NPSPACE) is the class of decision problems that can be decided on deterministic (non-deterministic) Turing machines using only polynomially many tape cells.

Some facts about PSPACE:

- PSPACE is closed under complements (... as all other deterministic classes)
- PSPACE is identical to NPSPACE (because non-deterministic Turing machines can be simulated on deterministic TMs using only quadratic space)
- NP⊆PSPACE (because in polynomial time one can "visit" only polynomial space, i.e., NP⊆NPSPACE)
 It is unknown whether NP≠PSPACE, but it is believed that

Motivation

Reminder: Basic Notions

Beyond NP

The class PSPACE Other classes

Oracle TMs and the Polynomial Hierarchy

Definition ((N)PSPACE)

PSPACE (NPSPACE) is the class of decision problems that can be decided on deterministic (non-deterministic) Turing machines using only polynomially many tape cells.

Some facts about PSPACE:

- PSPACE is closed under complements (... as all other deterministic classes)
- PSPACE is identical to NPSPACE (because non-deterministic Turing machines can be simulated on deterministic TMs using only quadratic space)

NP⊆PSPACE (because in polynomial time one can "visit" only polynomial space, i.e., NP⊆NPSPACE)
 It is unknown whether NP≠PSPACE, but it is believed that

UNI FREIBUR

Motivation

Reminder: Basic Notions

Beyond NP

The class PSPACE Other classes

Oracle TMs and the Polynomial Hierarchy

Definition ((N)PSPACE)

PSPACE (NPSPACE) is the class of decision problems that can be decided on deterministic (non-deterministic) Turing machines using only polynomially many tape cells.

Some facts about PSPACE:

- PSPACE is closed under complements (... as all other deterministic classes)
- PSPACE is identical to NPSPACE (because non-deterministic Turing machines can be simulated on deterministic TMs using only quadratic space)
- NPCPSPACE (because in polynomial time one can "visit" only polynomial space, i.e., NPCNPSPACE)
 - It is unknown whether NP \neq PSPACE, but it is believed that

Motivation

2

Reminder: Basic Notions

Beyond NP

The class PSPACE Other classes

Oracle TMs and the Polynomial Hierarchy

Definition ((N)PSPACE)

PSPACE (NPSPACE) is the class of decision problems that can be decided on deterministic (non-deterministic) Turing machines using only polynomially many tape cells.

Some facts about PSPACE:

- PSPACE is closed under complements (... as all other deterministic classes)
- PSPACE is identical to NPSPACE (because non-deterministic Turing machines can be simulated on deterministic TMs using only quadratic space)
- NPCPSPACE (because in polynomial time one can "visit" only polynomial space, i.e., NPCNPSPACE)
- It is unknown whether NP≠PSPACE, but it is believed that

Motivation

Reminder: Basic Notions

Beyond NP

The class PSPACE Other classes

Oracle TMs and the Polynomial Hierarchy

PSPACE-completeness

Definition (PSPACE-completeness)

A decision problem (or language) is PSPACE-complete if it is in PSPACE and all other problems in PSPACE can be polynomially reduced to it.

Intuitively, PSPACE-complete problems are the "hardest" problems in PSPACE (similar to NP-completeness). They appear to be "harder" than NP-complete problems from a practical point of view.

An example for a PSPACE-complete problem is the NDFA equivalence problem:

Instance: Two non-deterministic finite state automata A_1 and A_2 .

Question: Are the languages accepted by A_1 and A_2 identical?

Nebel, Wölfl, Hué - KRR

Motivation

Reminder: Basic Notions

Beyond NP The class co-NP

The class PSPACE Other classes

Oracle TMs and the Polynomial Hierarchy

PSPACE-completeness

Definition (PSPACE-completeness)

A decision problem (or language) is PSPACE-complete if it is in PSPACE and all other problems in PSPACE can be polynomially reduced to it.

Intuitively, PSPACE-complete problems are the "hardest" problems in PSPACE (similar to NP-completeness). They appear to be "harder" than NP-complete problems from a practical point of view.

An example for a PSPACE-complete problem is the NDFA equivalence problem:

Instance: Two non-deterministic finite state automata A_1 and A_2 .

Question: Are the languages accepted by A_1 and A_2 identical?

UNI FREIBURG

Motivation

Reminder: Basic Notions

Beyond NP The class co-NP

The class PSPACE Other classes

Oracle TMs and the Polynomial Hierarchy

Literature

Nebel, Wölfl, Hué - KRR

PSPACE-completeness

Definition (PSPACE-completeness)

A decision problem (or language) is PSPACE-complete if it is in PSPACE and all other problems in PSPACE can be polynomially reduced to it.

Intuitively, PSPACE-complete problems are the "hardest" problems in PSPACE (similar to NP-completeness). They appear to be "harder" than NP-complete problems from a practical point of view.

An example for a PSPACE-complete problem is the NDFA equivalence problem:

Instance: Two non-deterministic finite state automata A_1 and A_2 . Question: Are the languages accepted by A_1 and A_2 identical?

October 31, 2012

Nebel, Wölfl, Hué - KRR

FRE

DRD

8

Motivation

Reminder: Basic Notions

Beyond NP The class co-NP

The class PSPACE Other classes

Oracle TMs and the Polynomial Hierarchy

UNI FREIBL

Motivation

Reminder: Basic Notions

Beyond NP

The class co-NP The class PSPACE

Other classes

Oracle TMs and the Polynomial Hierarchy

- There are complexity classes above PSPACE (EXPTIME, EXPSPACE, NEXPTIME, DEXPTIME ...)
- There are (infinitely many) classes between NP and PSPACE (the polynomial hierarchy defined by oracle machines)
- There are (infinitely many) classes inside P (circuit classes with different depths)
 - ... and for most of the classes we do not know whether the containment relationships are strict

- There are complexity classes above PSPACE (EXPTIME, EXPSPACE, NEXPTIME, DEXPTIME ...)
- There are (infinitely many) classes between NP and PSPACE (the polynomial hierarchy defined by oracle machines)
- There are (infinitely many) classes inside P (circuit classes with different depths)
 - and for most of the classes we do not know whether the containment relationships are strict

Motivation

Reminder: Basic Notions

Beyond NP

The class co-NP The class PSPACE

Other classes

Oracle TMs and the Polynomial Hierarchy

- There are complexity classes above PSPACE (EXPTIME, EXPSPACE, NEXPTIME, DEXPTIME ...)
- There are (infinitely many) classes between NP and PSPACE (the polynomial hierarchy defined by oracle machines)
- There are (infinitely many) classes inside P (circuit classes with different depths)
 - I ... and for most of the classes we do not know whether the containment relationships are strict

Motivation

Reminder: Basic Notions

Beyond NP

The class co-NP The class PSPACE

Other classes

Oracle TMs and the Polynomial Hierarchy

- There are complexity classes above PSPACE (EXPTIME, EXPSPACE, NEXPTIME, DEXPTIME ...)
- There are (infinitely many) classes between NP and PSPACE (the polynomial hierarchy defined by oracle machines)
- There are (infinitely many) classes inside P (circuit classes with different depths)
- and for most of the classes we do not know whether the containment relationships are strict

Motivation

Reminder: Basic Notions

Beyond NP

The class co-NP The class PSPACE

Other classes

Oracle TMs and the Polynomial Hierarchy

UNI FREIBURG

Motivation

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction

Complexity classes based on OTMs QBF

Literature

Oracle TMs and the Polynomial Hierarchy

- An Oracle Turing machine ((N)OTM) is a Turing machine (DTM, NDTM) with the possibility to query an oracle (i. e., a different Turing machine without resource restrictions) whether it accepts or rejects a given string.
- Computation by the oracle does not cost anything!
- Formalization:
 - a tape onto which strings for the oracle are written,
 - a yes/no answer from the oracle depending on whether it accepts or rejects the input string.
- Usage of OTMs answers what-if questions: What if we could solve the oracle-problem efficiently?

Motivation

2

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction Complexity classes based on OTMs QBF

- An Oracle Turing machine ((N)OTM) is a Turing machine (DTM, NDTM) with the possibility to query an oracle (i. e., a different Turing machine without resource restrictions) whether it accepts or rejects a given string.
- Computation by the oracle does not cost anything!
- Formalization:
 - a tape onto which strings for the oracle are written,
 - a yes/no answer from the oracle depending on whether it accepts or rejects the input string.
- Usage of OTMs answers what-if questions: What if we could solve the oracle-problem efficiently?

Motivation

M

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction Complexity classes based on OTMs QBF

- An Oracle Turing machine ((N)OTM) is a Turing machine (DTM, NDTM) with the possibility to query an oracle (i. e., a different Turing machine without resource restrictions) whether it accepts or rejects a given string.
- Computation by the oracle does not cost anything!
- Formalization:
 - a tape onto which strings for the oracle are written,
 - a yes/no answer from the oracle depending on whether it accepts or rejects the input string.
- Usage of OTMs answers what-if questions: What if we could solve the oracle-problem efficiently?

Motivation

2

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction Complexity classes based on OTMs QBF

- An Oracle Turing machine ((N)OTM) is a Turing machine (DTM, NDTM) with the possibility to query an oracle (i. e., a different Turing machine without resource restrictions) whether it accepts or rejects a given string.
- Computation by the oracle does not cost anything!
- Formalization:
 - a tape onto which strings for the oracle are written,
 - a yes/no answer from the oracle depending on whether it accepts or rejects the input string.
- Usage of OTMs answers what-if questions: What if we could solve the oracle-problem efficiently?

Motivation

2

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction Complexity classes based on OTMs QBF

- An Oracle Turing machine ((N)OTM) is a Turing machine (DTM, NDTM) with the possibility to query an oracle (i. e., a different Turing machine without resource restrictions) whether it accepts or rejects a given string.
- Computation by the oracle does not cost anything!
- Formalization:
 - a tape onto which strings for the oracle are written,
 - a yes/no answer from the oracle depending on whether it accepts or rejects the input string.

Usage of OTMs answers what-if questions: What if we could solve the oracle-problem efficiently?

Motivation

2

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction Complexity classes based on OTMs QBF

- An Oracle Turing machine ((N)OTM) is a Turing machine (DTM, NDTM) with the possibility to query an oracle (i. e., a different Turing machine without resource restrictions) whether it accepts or rejects a given string.
- Computation by the oracle does not cost anything!
- Formalization:
 - a tape onto which strings for the oracle are written,
 - a yes/no answer from the oracle depending on whether it accepts or rejects the input string.
- Usage of OTMs answers what-if questions: What if we could solve the oracle-problem efficiently?

Motivation

DRD

2

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction Complexity classes based on OTMs QBF

Turing reductions

OTMs allow us to define a more general type of reduction

- Idea: The "classical" reduction can be seen as calling a subroutine once.
- L_1 is Turing-reducible to L_2 , symbolically $L_1 \leq_T L_2$, if there exists a poly-time OTM that decides L_1 by using an oracle for L_2 .
- Polynomial reducibility implies Turing reducibility, but not vice versa!
- NP-hardness and co-NP-hardness with respect to Turing reducibility are equivalent!
- Turing reducibility can also be applied to general search problems!

Motivation

m

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction

Complexity classes based on OTMs QBF

Turing reductions

- OTMs allow us to define a more general type of reduction
- Idea: The "classical" reduction can be seen as calling a subroutine once.
- L_1 is Turing-reducible to L_2 , symbolically $L_1 \leq_T L_2$, if there exists a poly-time OTM that decides L_1 by using an oracle for L_2 .
- Polynomial reducibility implies Turing reducibility, but not vice versa!
- NP-hardness and co-NP-hardness with respect to Turing reducibility are equivalent!
- Turing reducibility can also be applied to general search problems!

Motivation

m

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction

Complexity classes based on OTMs QBF

Turing reductions

- OTMs allow us to define a more general type of reduction
- Idea: The "classical" reduction can be seen as calling a subroutine once.
- L_1 is Turing-reducible to L_2 , symbolically $L_1 \leq_T L_2$, if there exists a poly-time OTM that decides L_1 by using an oracle for L_2 .
- Polynomial reducibility implies Turing reducibility, but not vice versa!
- NP-hardness and co-NP-hardness with respect to Turing reducibility are equivalent!
- Turing reducibility can also be applied to general search problems!

Motivation

m

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction

Complexity classes based on OTMs QBF
Turing reductions

- OTMs allow us to define a more general type of reduction
- Idea: The "classical" reduction can be seen as calling a subroutine once.
- L_1 is Turing-reducible to L_2 , symbolically $L_1 \leq_T L_2$, if there exists a poly-time OTM that decides L_1 by using an oracle for L_2 .
- Polynomial reducibility implies Turing reducibility, but not vice versa!
- NP-hardness and co-NP-hardness with respect to Turing reducibility are equivalent!
- Turing reducibility can also be applied to general search problems!

Motivation

8

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction

Complexity classes based on OTMs QBF

Turing reductions

- OTMs allow us to define a more general type of reduction
- Idea: The "classical" reduction can be seen as calling a subroutine once.
- L_1 is Turing-reducible to L_2 , symbolically $L_1 \leq_T L_2$, if there exists a poly-time OTM that decides L_1 by using an oracle for L_2 .
- Polynomial reducibility implies Turing reducibility, but not vice versa!
- NP-hardness and co-NP-hardness with respect to Turing reducibility are equivalent!
- Turing reducibility can also be applied to general search problems!

Motivation

8

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction

Complexity classes based on OTMs QBF

Turing reductions

- OTMs allow us to define a more general type of reduction
- Idea: The "classical" reduction can be seen as calling a subroutine once.
- L_1 is Turing-reducible to L_2 , symbolically $L_1 \leq_T L_2$, if there exists a poly-time OTM that decides L_1 by using an oracle for L_2 .
- Polynomial reducibility implies Turing reducibility, but not vice versa!
- NP-hardness and co-NP-hardness with respect to Turing reducibility are equivalent!
- Turing reducibility can also be applied to general search problems!

Motivation

DRD

8

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction

Complexity classes based on OTMs QBF

- P^{NP} = decision problems solved by poly-time DTMs with an oracle for a decision problem in NP.
- NP^{NP} = decision problems solved by poly-time NDTMs with an oracle for a decision problem in NP.
- co-NP^{NP} = complements of decision problems solved by poly-time NDTMs with an oracle for a decision problem in NP.

4 NP NP = ...

... and so on

Motivation

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

> Oracle Turing machines

Turing reduction

Complexity classes based on OTMs QBF

- P^{NP} = decision problems solved by poly-time DTMs with an oracle for a decision problem in NP.
- NP^{NP} = decision problems solved by poly-time NDTMs with an oracle for a decision problem in NP.
- co-NP^{NP} = complements of decision problems solved by poly-time NDTMs with an oracle for a decision problem in NP.

... and so on

Motivation

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

> Oracle Turing machines

Turing reduction

Complexity classes based on OTMs QBF

- P^{NP} = decision problems solved by poly-time DTMs with an oracle for a decision problem in NP.
- NP^{NP} = decision problems solved by poly-time NDTMs with an oracle for a decision problem in NP.
- co-NP^{NP} = complements of decision problems solved by poly-time NDTMs with an oracle for a decision problem in NP.

Motivation

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

> Oracle Turing machines

Turing reduction

Complexity classes based on OTMs QBF

Literature

... and so on

- P^{NP} = decision problems solved by poly-time DTMs with an oracle for a decision problem in NP.
- 2 NP^{NP} = decision problems solved by poly-time NDTMs with an oracle for a decision problem in NP.
- co-NP^{NP} = complements of decision problems solved by poly-time NDTMs with an oracle for a decision problem in NP.

... and so on

Motivation

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

> Oracle Turing machines

Turing reduction

Complexity classes based on OTMs QBF

Consider the Minimum Equivalent Expression (MEE) problem:

- Instance: A well-formed Boolean formula φ using the standard connectives (not \leftrightarrow) and a non-negative integer *k*.
- Question: Is there a well-formed Boolean formula φ' that contains *k* or fewer literal occurrences and that is logically equivalent to φ ?
- This problem is NP-hard (wrt. to Turing reductions).
- It does not appear to be NP-complete.
- We could guess a formula and then use a SAT-oracle ...
 MEE ∈ NP^{NP}.

Motivation

BURG

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

> Oracle Turing machines

Turing reduction

Complexity classes based on OTMs QBF

Consider the Minimum Equivalent Expression (MEE) problem:

- Instance: A well-formed Boolean formula φ using the standard connectives (not \leftrightarrow) and a non-negative integer *k*.
- Question: Is there a well-formed Boolean formula φ' that contains *k* or fewer literal occurrences and that is logically equivalent to φ ?
- This problem is NP-hard (wrt. to Turing reductions).
- It does not appear to be NP-complete.
- We could guess a formula and then use a SAT-oracle . . . $\mathsf{MEE} \in \mathsf{NP}^{NP}.$

Motivation

2

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

> Oracle Turing machines

Turing reduction

Complexity classes based on OTMs QBF

Consider the Minimum Equivalent Expression (MEE) problem:

- Instance: A well-formed Boolean formula φ using the standard connectives (not \leftrightarrow) and a non-negative integer *k*.
- Question: Is there a well-formed Boolean formula φ' that contains *k* or fewer literal occurrences and that is logically equivalent to φ ?
- This problem is NP-hard (wrt. to Turing reductions).
- It does not appear to be NP-complete.
- We could guess a formula and then use a SAT-oracle . . . $\mathsf{MEE} \in \mathsf{NP}^{NP}.$

Motivation

2

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction

Complexity classes based on OTMs QBF

Consider the Minimum Equivalent Expression (MEE) problem:

- Instance: A well-formed Boolean formula φ using the standard connectives (not \leftrightarrow) and a non-negative integer *k*.
- Question: Is there a well-formed Boolean formula φ' that contains *k* or fewer literal occurrences and that is logically equivalent to φ ?
- This problem is NP-hard (wrt. to Turing reductions).
- It does not appear to be NP-complete.
- We could guess a formula and then use a SAT-oracle . . . $\mathsf{MEE} \in \mathsf{NP}^{NP}.$

Motivation

2

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

> Oracle Turing machines

Turing reduction

Complexity classes based on OTMs QBF

Consider the Minimum Equivalent Expression (MEE) problem:

- Instance: A well-formed Boolean formula φ using the standard connectives (not \leftrightarrow) and a non-negative integer *k*.
- Question: Is there a well-formed Boolean formula φ' that contains *k* or fewer literal occurrences and that is logically equivalent to φ ?
- This problem is NP-hard (wrt. to Turing reductions).
- It does not appear to be NP-complete.
- We could guess a formula and then use a SAT-oracle ...
 MEE ∈ NP^{NP}.

Motivation

8

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

> Oracle Turing machines

Turing reduction

Complexity classes based on OTMs QBF

The polynomial hierarchy

The complexity classes based on OTMs form an infinite hierarchy.

$$\begin{split} \Sigma_0^\rho &= \mathsf{P} & \Pi_0^\rho &= \mathsf{P} & \Delta_0^\rho &= \mathsf{P} \\ \Sigma_{i+1}^\rho &= \mathsf{N}\mathsf{P}^{\Sigma_i^\rho} & \Pi_{i+1}^\rho &= \mathsf{co}\text{-}\Sigma_{i+1}^\rho & \Delta_{i+1}^\rho &= \mathsf{P}^{\Sigma_i^\rho} \end{split}$$

PH =
$$\bigcup_{i \ge 0} (\Sigma_i^p \cup \Pi_i^p \cup \Delta_i^p) \subseteq PSPACE$$

NP = Σ_1^p
co-NP = Π_1^p

Ě

BURG

Motivation

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

> Oracle Turing machines

Turing reduction

Complexity classes based on OTMs QBF

The polynomial hierarchy

The complexity classes based on OTMs form an infinite hierarchy.

The polynomial hierarchy PH

■ PH =
$$\bigcup_{i\geq 0} (\Sigma_i^{p} \cup \Pi_i^{p} \cup \Delta_i^{p}) \subseteq PSPACE$$

■ NP = Σ_1^{p}
■ co-NP = Π_1^{p}

UNI FREIBURG

Motivation

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

> Oracle Turing machines

Turing reduction

Complexity classes based on OTMs QBF

The polynomial hierarchy

The complexity classes based on OTMs form an infinite hierarchy.

The polynomial hierarchy PH

■ PH =
$$\bigcup_{i\geq 0} (\Sigma_i^{\rho} \cup \Pi_i^{\rho} \cup \Delta_i^{\rho}) \subseteq PSPACE$$

■ NP = Σ_1^{ρ}
■ co-NP = Π_1^{ρ}

UNI FREIBURG

Motivation

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

> Oracle Turing machines

Turing reduction

Complexity classes based on OTMs QBF

- If φ is a propositional formula, *P* is the set of Boolean variables used in φ and σ is a sequence of $\exists p$ and $\forall p$, one for every $p \in P$, then $\sigma \varphi$ is a QBF.
- A formula $\exists x \varphi$ is true if and only if $\varphi[x/\top] \lor \varphi[x/\bot]$ is true (equivalently, $\varphi[x/\top]$ is true or $\varphi[x/\bot]$ is true).
- A formula ∀xφ is true if and only if φ[x/⊤] ∧ φ[x/⊥] is true (equivalently, φ[x/⊤] is true and φ[x/⊥] is true).
- This definition directly leads to an AND/OR tree traversal algorithm for evaluating QBF.

Motivation

DRD

m

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction

Complexity classes based on OTMs

QBF

- If φ is a propositional formula, *P* is the set of Boolean variables used in φ and σ is a sequence of $\exists p$ and $\forall p$, one for every $p \in P$, then $\sigma \varphi$ is a QBF.
- A formula ∃xφ is true if and only if φ[x/⊤] ∨ φ[x/⊥] is true (equivalently, φ[x/⊤] is true or φ[x/⊥] is true).
- A formula $\forall x \varphi$ is true if and only if $\varphi[x/\top] \land \varphi[x/\bot]$ is true (equivalently, $\varphi[x/\top]$ is true and $\varphi[x/\bot]$ is true).
- This definition directly leads to an AND/OR tree traversal algorithm for evaluating QBF.

Motivation

DRD

B

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction

Complexity classes based on OTMs

QBF

- If φ is a propositional formula, *P* is the set of Boolean variables used in φ and σ is a sequence of $\exists p$ and $\forall p$, one for every $p \in P$, then $\sigma \varphi$ is a QBF.
- A formula ∃xφ is true if and only if φ[x/⊤] ∨ φ[x/⊥] is true (equivalently, φ[x/⊤] is true or φ[x/⊥] is true).
- A formula ∀xφ is true if and only if φ[x/⊤] ∧ φ[x/⊥] is true (equivalently, φ[x/⊤] is true and φ[x/⊥] is true).
- This definition directly leads to an AND/OR tree traversal algorithm for evaluating QBF.

Motivation

DRD

m

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction

based on OTMs

QBF

- If φ is a propositional formula, *P* is the set of Boolean variables used in φ and σ is a sequence of $\exists p$ and $\forall p$, one for every $p \in P$, then $\sigma \varphi$ is a QBF.
- A formula ∃xφ is true if and only if φ[x/⊤] ∨ φ[x/⊥] is true (equivalently, φ[x/⊤] is true or φ[x/⊥] is true).
- A formula ∀xφ is true if and only if φ[x/⊤] ∧ φ[x/⊥] is true (equivalently, φ[x/⊤] is true and φ[x/⊥] is true).
- This definition directly leads to an AND/OR tree traversal algorithm for evaluating QBF.

Motivation

DRD

2

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction

Complexity classes based on OTMs

QBF

The evaluation problem of QBF generalizes both the satisfiability and validity/tautology problems of propositional logic.

The latter are NP-complete and co-NP-complete, resp., whereas the former is PSPACE-complete.

Example

The formulae $\forall x \exists y (x \leftrightarrow y)$ and $\exists x \exists y (x \land y)$ are true.

Example

The formulae $\exists x \forall y (x \leftrightarrow y)$ and $\forall x \forall y (x \lor y)$ are false.

Motivation

DRG

8

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction

Complexity classes based on OTMs

QBF

The evaluation problem of QBF generalizes both the satisfiability and validity/tautology problems of propositional logic. The latter are NP-complete and co-NP-complete, resp., whereas the former is PSPACE-complete.

Example

The formulae $\forall x \exists y (x \leftrightarrow y)$ and $\exists x \exists y (x \land y)$ are true.

Example

The formulae $\exists x \forall y (x \leftrightarrow y)$ and $\forall x \forall y (x \lor y)$ are false.

Motivation

DRG

8

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction

Complexity classes based on OTMs

QBF

The evaluation problem of QBF generalizes both the satisfiability and validity/tautology problems of propositional logic. The latter are NP-complete and co-NP-complete, resp., whereas the former is PSPACE-complete.

Example

The formulae $\forall x \exists y (x \leftrightarrow y)$ and $\exists x \exists y (x \land y)$ are true.

Example

The formulae $\exists x \forall y (x \leftrightarrow y)$ and $\forall x \forall y (x \lor y)$ are false.

Motivation

DRD

2

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction

based on OTMs

QBF

The evaluation problem of QBF generalizes both the satisfiability and validity/tautology problems of propositional logic. The latter are NP-complete and co-NP-complete, resp., whereas the former is PSPACE-complete.

Example

The formulae $\forall x \exists y (x \leftrightarrow y)$ and $\exists x \exists y (x \land y)$ are true.

Example

The formulae $\exists x \forall y (x \leftrightarrow y)$ and $\forall x \forall y (x \lor y)$ are false.

Motivation

2

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction

Complexity classes based on OTMs

QBF

Special cases corresponding to SAT and TAUT:

- The truth of QBFs with prefix $\exists x_1^1 \dots x_n^1$ is NP= Σ_1^{ρ} -complete.
- The truth of QBFs with prefix $\forall x_1^1 \dots x_n^1$ is co-NP= \prod_{1}^{p} -complete.

Motivation

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction

Complexity classes based on OTMs

QBF

Special cases corresponding to SAT and TAUT:

- The truth of QBFs with prefix $\exists x_1^1 \dots x_n^1$ is NP= Σ_1^{ρ} -complete.
- The truth of QBFs with prefix $\forall x_1^1 \dots x_n^1$ is co-NP= \prod_{1}^{p} -complete.

Motivation

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction

Complexity classes based on OTMs

QBF

Special cases corresponding to SAT and TAUT:

- The truth of QBFs with prefix $\exists x_1^1 \dots x_n^1$ is NP= Σ_1^p -complete.
- The truth of QBFs with prefix $\forall x_1^1 \dots x_n^1$ is co-NP= \prod_{1}^{p} -complete.

Motivation

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction

Complexity classes based on OTMs

QBF

Special cases corresponding to SAT and TAUT:

- The truth of QBFs with prefix $\exists x_1^1 \dots x_n^1$ is NP= Σ_1^{ρ} -complete.
- The truth of QBFs with prefix $\forall x_1^1 \dots x_n^1$ is co-NP= Π_1^p -complete.

Motivation

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction

Complexity classes based on OTMs

QBF

Literature

Motivation

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Literature

M. R. Garey and D. S. Johnson. Computers and Intractability – A Guide to the Theory of NP-Completeness. Freeman and Company, San Francisco, 1979.

C. H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading, MA, 1994.