Principles of
 Knowledge Representation and Reasoning
 Complexity Theory

Bernhard Nebel, Stefan Wölfl, and Julien Hué October 31, 2012

Reminder:
Basic Notions
Beyond NP

Motivation

Why complexity theory?

Complexity theory can answer questions on how easy or hard a problem is
Gives hints on what algorithms could be appropriate, e.g.:

Motivation

Reminder:
Basic Notions
Beyond NP
Oracle TMs
and the
Polynomia
Hierarchy

Gives hints on what type of algorithm will (most probably)

 not workGives hint on what sub-problems might be interesting

Why complexity theory?

- Complexity theory can answer questions on how easy or hard a problem is
- Gives hints on what algorithms could be appropriate, e.g.:
 design
for NP-complete problems, backtracking and local search work well

Gives hints on what type of algorithm will (most probably) not work

Gives hint on what sub-problems might be interesting

Why complexity theory?

- Complexity theory can answer questions on how easy or hard a problem is
- Gives hints on what algorithms could be appropriate, e.g.:
- algorithms for polynomial-time problems are usually easy to design
for NP-complete problems, backtracking and local search work well

Gives hints on what type of algorithm will (most probably) not work

Gives hint on what sub-problems might be interesting

Why complexity theory?

- Complexity theory can answer questions on how easy or hard a problem is
- Gives hints on what algorithms could be appropriate, e.g.:
- algorithms for polynomial-time problems are usually easy to design
- for NP-complete problems, backtracking and local search work well

Gives hints on what type of algorithm will (most probably) not work

Gives hint on what sub-problems might be interesting

Why complexity theory?

- Complexity theory can answer questions on how easy or hard a problem is
- Gives hints on what algorithms could be appropriate, e.g.:
- algorithms for polynomial-time problems are usually easy to design
- for NP-complete problems, backtracking and local search work well
- Gives hints on what type of algorithm will (most probably) not work
for problems that are believed to be harder than
NP-complete ones, simple backtracking will not work
Gives hint on what suh-problems might be interesting

Why complexity theory?

- Complexity theory can answer questions on how easy or hard a problem is
- Gives hints on what algorithms could be appropriate, e.g.:
- algorithms for polynomial-time problems are usually easy to design
- for NP-complete problems, backtracking and local search work well
- Gives hints on what type of algorithm will (most probably) not work
- for problems that are believed to be harder than NP-complete ones, simple backtracking will not work

Gives hint on what sub-problems might be interesting

Why complexity theory?

- Complexity theory can answer questions on how easy or hard a problem is
- Gives hints on what algorithms could be appropriate, e.g.:
- algorithms for polynomial-time problems are usually easy to design
- for NP-complete problems, backtracking and local search work well
- Gives hints on what type of algorithm will (most probably) not work
- for problems that are believed to be harder than NP-complete ones, simple backtracking will not work
- Gives hint on what sub-problems might be interesting

Motivation
Reminder:
Basic Notions
Algorithms and
Turing machines
Problems,

Reminder: Basic Notions

Algorithms and Turing machines

- We use Turing machines as formal models of algorithms This is justified, because:
The regular type of Turing machine is the deterministic one:
DTM (or simply TM)
Often, however, we use the notion of nondeterministic TMs:
NDTM

Motivation
Reminder:
Basic Notions
Algorithms and Turing machines

Problems
solutions, and
complexity
Complexity classes P and NP

Upper and lowe
bounds
Polynomial
reductions
NP-completeness
Beyond NP
Oracle TMs
and the
Polynomial
Hierarchy
Literature

Algorithms and Turing machines

- We use Turing machines as formal models of algorithms
- This is justified, because:
> we assume that Turing machines can compute all computable functions the resource requirements (in term of time and memory) of a Turing machine are only polynomially worse than other models

The regular type of Turing machine is the deterministic one: DTM (or simply TM) Often, however, we use the notion of nondeterministic TMs: NDTM

Motivation
Reminder:
Basic Notions
Algorithms and Turing machines

Problems.
solutions, and
complexity
Complexity classes P and NP

Upper and lowe
bounds
Polynomial
reductions
NP-completeness
Beyond NP
Oracle TMs
and the
Polynomial
Hierarchy
Literature

Algorithms and Turing machines

- We use Turing machines as formal models of algorithms
- This is justified, because:
- we assume that Turing machines can compute all computable functions
the resource requirements (in term of time and memory) of a Turing machine are only polynomially worse than other models

The regular type of Turing machine is the deterministic one: DTM (or simply TM) Often, however, we use the notion of nondeterministic TMs:

Motivation
Reminder:
Basic Notions
Algorithms and Turing machines

Problems,
solutions, and
complexity
Complexity classes P and NP

Upper and lower
bounds
Polynomial
reductions
NP-completeness
Beyond NP
Oracle TMs
and the
Polynomial
Hierarchy
Literature

Algorithms and Turing machines

- We use Turing machines as formal models of algorithms
- This is justified, because:
- we assume that Turing machines can compute all computable functions
- the resource requirements (in term of time and memory) of a Turing machine are only polynomially worse than other models

The regular type of Turing machine is the deterministic one: DTM (or simply TM)
Often, however, we use the notion of nondeterministic TMs:

Algorithms and Turing machines

- We use Turing machines as formal models of algorithms
- This is justified, because:
- we assume that Turing machines can compute all computable functions
- the resource requirements (in term of time and memory) of a Turing machine are only polynomially worse than other models
- The regular type of Turing machine is the deterministic one: DTM (or simply TM)

Algorithms and Turing machines

- We use Turing machines as formal models of algorithms
- This is justified, because:
- we assume that Turing machines can compute all computable functions
- the resource requirements (in term of time and memory) of a Turing machine are only polynomially worse than other models
- The regular type of Turing machine is the deterministic one: DTM (or simply TM)
- Often, however, we use the notion of nondeterministic TMs: NDTM

Problems, solutions, and complexity

- A problem is a set of pairs (I, A) of strings in $\{0,1\}^{*}$.

If all answers $A \in\{0,1\}$: decision problem
A decision problem is the same as a formal language:
the set of strings formed by the instances with answer 1
An algorithm decides (or solves) a problem if it computes the right answer for all instances.
Complexity of an algorithm: function

Motivation
Reminder:
Basic Notions
Algorithms and Turing machines

Problems, solutions, and complexity
Complexity classes P and NP

Upper and lower bounds

Polynomial reductions

NP-completeness
Beyond NP
Oracle TMs and the
Polynomial
Hierarchy
Literature

Complexity of a problem: complexity of the most efficient algorithm that solves this problem.

Problems, solutions, and complexity

- A problem is a set of pairs (I, A) of strings in $\{0,1\}^{*}$. I : instance; A : answer
If all answers $A \in\{0,1\}$: decision problem
\square A decision problem is the same as a formal language: the set of strings formed by the instances with answer 1
An algorithm decides (or solves) a problem if it computes the right answer for all instances.
Complexity of an algorithm: function

Motivation

Reminder:
Basic Notions
Algorithms and Turing machines

Problems, solutions, and complexity
Complexity classes P and NP

Upper and lower bounds

Polynomial
reductions
NP-completeness

Beyond NP
Oracle TMs
and the
Polynomial
Hierarchy
Literature

Complexity of a problem: complexity of the most efficient algorithm that solves this problem

Problems, solutions, and complexity

- A problem is a set of pairs (I, A) of strings in $\{0,1\}^{*}$. I : instance; A : answer If all answers $A \in\{0,1\}$: decision problem
\square A decision problem is the same as a formal language: the set of strings formed by the instances with answer 1
- An algorithm decides (or solves) a problem if it computes the right answer for all instances.
Complexity of an algorithm: function

Motivation
Reminder:
Basic Notions
Algorithms and Turing machines

Problems,
solutions, and complexity
Complexity classes P and NP

Upper and lower bounds

Polynomial
reductions
NP-completeness

Complexity of a problem: complexity of the most efficient algorithm that solves this nroblem

Problems, solutions, and complexity

- A problem is a set of pairs (I, A) of strings in $\{0,1\}^{*}$. I : instance; A : answer If all answers $A \in\{0,1\}$: decision problem
\square A decision problem is the same as a formal language: the set of strings formed by the instances with answer 1
- An algorithm decides (or solves) a problem if it computes the right answer for all instances.
- Complexity of an algorithm: function

$$
T: \mathbb{N} \rightarrow \mathbb{N},
$$

measuring the number of basic steps (or memory requirement) the algorithm needs to compute an answer depending on the size of the instance

Motivation
Reminder:
Basic Notions
Algorithms and
Turing machines
Problems,
solutions, and
complexity
Complexity classes
P and NP
Upper and lower
bounds
Polynomial
reductions
NP-completeness

Complexity of a problem: complexity of the most efficient algorithm that solves this problem

Problems, solutions, and complexity

- A problem is a set of pairs (I, A) of strings in $\{0,1\}^{*}$. I : instance; A : answer If all answers $A \in\{0,1\}$: decision problem
\square A decision problem is the same as a formal language: the set of strings formed by the instances with answer 1
- An algorithm decides (or solves) a problem if it computes the right answer for all instances.
- Complexity of an algorithm: function

$$
T: \mathbb{N} \rightarrow \mathbb{N},
$$

measuring the number of basic steps (or memory requirement) the algorithm needs to compute an answer depending on the size of the instance

Motivation
Reminder:
Basic Notions
Algorithms and
Turing machines
Problems,
solutions, and complexity
Complexity classes P and NP
Upper and lower bounds

Polynomial reductions
NP-completeness

- Complexity of a problem: complexity of the most efficient algorithm that solves this problem.

Complexity classes P and NP

Problems are categorized into complexity classes according to the requirements of computational resources:

- The class of problems decidable on deterministic Turing machines in polynomial time: P

Problems in P are assumed to be efficiently solvable
(although this might not be true if the exponent is very large)
In practice, this notion appears to be more often reasonable than not

The class of problems decidable on non-deterministic Turing machines in polynomial time: NP

More classes are definable using other resource bounds on time and memory

Motivation
Reminder:
Basic Notions
Algorithms and Turing machines

Problems,
solutions, and
complexity
Complexity classes P and NP

Upper and lower bounds

Polynomial
reductions
NP-completeness

Oracle TMs
and the
Polynomial
Hierarchy
Literature

Complexity classes P and NP

Problems are categorized into complexity classes according to the requirements of computational resources:

- The class of problems decidable on deterministic Turing machines in polynomial time: P
- Problems in P are assumed to be efficiently solvable (although this might not be true if the exponent is very large)
In practice, this notion appears to be more often reasonable than not

The class of problems decidable on non-deterministic Turing machines in polynomial time: NP

More classes are definable using other resource bounds on time and memory

Complexity classes P and NP

Problems are categorized into complexity classes according to the requirements of computational resources:

- The class of problems decidable on deterministic Turing machines in polynomial time: P
- Problems in P are assumed to be efficiently solvable (although this might not be true if the exponent is very large)
- In practice, this notion appears to be more often reasonable than not

> The class of problems decidable on non-deterministic Turing machines in polynomial time: NP

> More classes are definable using other resource bounds on time and memory

Complexity classes P and NP

Problems are categorized into complexity classes according to the requirements of computational resources:

- The class of problems decidable on deterministic Turing machines in polynomial time: P
- Problems in P are assumed to be efficiently solvable (although this might not be true if the exponent is very large)
- In practice, this notion appears to be more often reasonable than not
- The class of problems decidable on non-deterministic Turing machines in polynomial time: NP

More classes are definable using other resource bounds on time and memory

Complexity classes P and NP

Problems are categorized into complexity classes according to the requirements of computational resources:

- The class of problems decidable on deterministic Turing machines in polynomial time: P
- Problems in P are assumed to be efficiently solvable (although this might not be true if the exponent is very large)
- In practice, this notion appears to be more often reasonable than not
- The class of problems decidable on non-deterministic Turing machines in polynomial time: NP
- More classes are definable using other resource bounds on time and memory

Motivation
Reminder:
Basic Notions
Algorithms and
Turing machines
Problems,
solutions, and
complexity
Complexity classes P and NP
Upper and lower
bounds
Polynomial
reductions
NP-completeness
Beyond NP
Oracle TMs
and the
Polynomial
Hierarchy
Literature

Upper and lower bounds

- Upper bounds (membership in a class) are usually easy to prove:
provide an algorithm
show that the resource bounds are respected
Lower bounds (hardness for a class) are usually clifficult to show:

Reminder:
Basic Notions
Algorithms and
Turing machines
Problems
solutions, and
complexity
Complexity classes
P and NP
Upper and lower bounds

Polynomial
reductions
NP-completeness
Beyond NP
Oracle TMs
and the
Polynomial
Hierarchy
Literature

Upper and lower bounds

Motivation

- Upper bounds (membership in a class) are usually easy to prove:
provide an algorithm

Reminder:
Basic Notions
Algorithms and
Turing machines
Problems
solutions, and
complexity
Complexity classes
P and NP
Upper and lower bounds

Polynomial
reductions
NP-completeness
Beyond NP
Oracle TMs
and the
Polynomial
Hierarchy
Literature

Upper and lower bounds

- Upper bounds (membership in a class) are usually easy to prove:

provide an algorithm

- show that the resource bounds are respected

Lower bounds (hardness for a class) are usually difficult to show:

Reminder:
Basic Notions
Algorithms and
Turing machines
Problems.
solutions, and
complexity
Complexity classes P and NP

Upper and lower bounds

Polynomial
reductions
NP-completeness
Beyond NP
Oracle TMs
and the
Polynomial
Hierarchy
Literature

Upper and lower bounds

- Upper bounds (membership in a class) are usually easy to prove:
- provide an algorithm

Reminder:
Basic Notions
Algorithms and
Turing machines
Problems,
solutions, and
complexity
Complexity classes P and NP

Upper and lower bounds

Polynomial
reductions
NP-completeness

Oracle TMs
and the
Polynomial
Hierarchy
Literature

Upper and lower bounds

- Upper bounds (membership in a class) are usually easy to prove:
- provide an algorithm
- show that the resource bounds are respected
- Lower bounds (hardness for a class) are usually difficult to show:
- the technical tool here is the polynomial reduction (or any other appropriate reduction)

Upper and lower bounds

- Upper bounds (membership in a class) are usually easy to prove:
- provide an algorithm
- show that the resource bounds are respected
- Lower bounds (hardness for a class) are usually difficult to show:
- the technical tool here is the polynomial reduction (or any other appropriate reduction)
- show that some hard problem can be reduced to the problem at hand

Polynomial reduction

■ Given languages L_{1} and L_{2}, L_{1} can be polynomially reduced to L_{2}, written $L_{1} \leq_{p} L_{2}$, if there exists a polynomially computable function f such that

$$
x \in L_{1} \Longleftrightarrow f(x) \in L_{2}
$$

Rationale: it cannot be harder to decide L_{1} than L_{2}
L is hard for a class C (C-hard) if all languages of this class can be reduced to L.
I is comnlete for C (C-complete) if L is C-hard and $L \in C$.

Reminder:
Basic Notions
Algorithms and
Turing machines
Problems,
solutions, and
complexity
Complexity classes P and NP
Upper and lower
bounds
Polynomial
reductions
NP-completeness

Polynomial reduction

■ Given languages L_{1} and L_{2}, L_{1} can be polynomially reduced to L_{2}, written $L_{1} \leq_{p} L_{2}$, if there exists a polynomially computable function f such that

$$
x \in L_{1} \Longleftrightarrow f(x) \in L_{2}
$$

Rationale: it cannot be harder to decide L_{1} than L_{2}
$\square L$ is hard for a class C (C-hard) if all languages of this class can be reduced to L.
L is complete for C (C-complete) if L is C-hard and $L \in C$.

Reminder:
Basic Notions
Algorithms and
Turing machines
Problems,
solutions, and
complexity
Complexity classes P and NP
Upper and lower
bounds
Polynomial reductions
NP-completeness

Polynomial reduction

■ Given languages L_{1} and L_{2}, L_{1} can be polynomially reduced to L_{2}, written $L_{1} \leq_{p} L_{2}$, if there exists a polynomially computable function f such that

$$
x \in L_{1} \Longleftrightarrow f(x) \in L_{2}
$$

Rationale: it cannot be harder to decide L_{1} than L_{2}

- L is hard for a class C (C-hard) if all languages of this class can be reduced to L.
- L is complete for C (C-complete) if L is C-hard and $L \in C$.

Reminder:
Basic Notions
Algorithms and
Turing machines
Problems,
solutions, and
complexity
Complexity classes
P and NP
Upper and lower
bounds
Polynomial reductions

NP-completeness

NP-complete problems

A problem is NP-complete iff it is NP-hard and in NP.

Reminder:
Basic Notions
Algorithms and
Turing machines
Problems
solutions, and
complexity
Complexity classes P and NP

Upper and lower
bounds
Polynomial
reductions
NP-completeness
Beyond NP
Oracle TMs
and the
Polynomial
Hierarchy
Literature

NP-complete problems

- A problem is NP-complete iff it is NP-hard and in NP.
- Example: SAT (the satisfiability problem for propositional logic) is NP-complete (Cook/Karp)

Membership is obvious, hardness follows because computations on a NDTM correspond to satisfying truth-assignments of certain formulae

Motivation
Reminder:
Basic Notions
Algorithms and
Turing machines
Problems.
solutions, and
complexity
Complexity classes P and NP

Upper and lower
bounds
Polynomial
reductions
NP-completeness
Beyond NP
Oracle TMs
and the
Polynomial
Hierarchy
Literature

NP-complete problems

- A problem is NP-complete iff it is NP-hard and in NP.
- Example: SAT (the satisfiability problem for propositional logic) is NP-complete (Cook/Karp)
- Membership is obvious, hardness follows because computations on a NDTM correspond to satisfying truth-assignments of certain formulae

NP-complete problems

- A problem is NP-complete iff it is NP-hard and in NP.
- Example: SAT (the satisfiability problem for propositional logic) is NP-complete (Cook/Karp)
- Membership is obvious, hardness follows because computations on a NDTM correspond to satisfying truth-assignments of certain formulae

Reminder:
Basic Notions
Beyond NP
The class co-NP

Beyond NP

The class PSPACE
Other classes
Oracle TMs
and the
Polynomial
Hierarchy
Literature

The complexity class co-NP

Note that there is some asymmetry in the definition of NP:

Motivation

Reminder: Basic Notions

Beyond NP
The class co-NP
The class PSPACE Other classes

Oracle TMs and the
Polynomial Hierarchy

Literature

Examples: UNSAT, TAUT \in co-NP!
Note: P is closed under complement, in particular,

The complexity class co-NP

Note that there is some asymmetry in the definition of NP:

- It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
There exists an accepting computation of polynomial length iff the formula is satisfiable
What if we want to solve UNSAT, the complementary problem?
It seems necessary to check all possible truth-assignments!
 alphabets)

Reminder:
Basic Notions
Beyond NP
The class co-NP
The class PSPACE Other classes

Oracle TMs and the
Polynomial Hierarchy

Literature
co-NP $=\left\{\Sigma^{*} \backslash L: L \subseteq \sum^{*}\right.$ and $\left.L \in N P\right\}$
Examples: UNSAT, TAUT \in co-NP!
Note: P is closed under complement, in particular,

The complexity class co-NP

- Note that there is some asymmetry in the definition of NP: polynomially bounded computation
- There exists an accepting computation of polynomial length iff the formula is satisfiable

What if we want to solve UNSAT, the complementary problem?

It seems necessary to check all possible truth-assignments! $L: L \subseteq \Sigma^{*}$ and $\left.L \in C\right\}$ (Σ ranges over

Reminder:
Basic Notions
Beyond NP
The class co-NP
The class PSPACE Other classes

Oracle TMs
and the
Polynomial
Hierarchy
Literature

The complexity class co-NP

- Note that there is some asymmetry in the definition of NP:
- It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
- There exists an accepting computation of polynomial length iff the formula is satisfiable
- What if we want to solve UNSAT, the complementary problem?

The complexity class co-NP

- Note that there is some asymmetry in the definition of NP:
- It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
- There exists an accepting computation of polynomial length iff the formula is satisfiable
- What if we want to solve UNSAT, the complementary problem?
- It seems necessary to check all possible truth-assignments!

The complexity class co-NP

- Note that there is some asymmetry in the definition of NP:
- It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
- There exists an accepting computation of polynomial length iff the formula is satisfiable
- What if we want to solve UNSAT, the complementary problem?
- It seems necessary to check all possible truth-assignments!
- Define co-C $=\left\{\Sigma^{*} \backslash L: L \subseteq \Sigma^{*}\right.$ and $\left.L \in C\right\}$ (Σ ranges over alphabets)
$c o-N P=\left\{\Sigma^{*} \backslash L: L \subseteq \Sigma^{*}\right.$ and $\left.L \in N P\right\}$
Examples: UNSAT, TAUT \in co-NP!
Note: P is closed under comblement, in particular,

The complexity class co-NP

- Note that there is some asymmetry in the definition of NP:
- It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
- There exists an accepting computation of polynomial length iff the formula is satisfiable
- What if we want to solve UNSAT, the complementary problem?
- It seems necessary to check all possible truth-assignments!
- Define co-C $=\left\{\Sigma^{*} \backslash L: L \subseteq \Sigma^{*}\right.$ and $\left.L \in C\right\}$ (Σ ranges over alphabets)
- co-NP $=\left\{\Sigma^{*} \backslash L: L \subseteq \Sigma^{*}\right.$ and $\left.L \in N P\right\}$

Examples: UNSAT, TAUT \in co-NP!
Note: P is closed under complement, in particular,

The complexity class co-NP

- Note that there is some asymmetry in the definition of NP:
- It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
- There exists an accepting computation of polynomial length iff the formula is satisfiable
- What if we want to solve UNSAT, the complementary problem?
- It seems necessary to check all possible truth-assignments!
- Define co- $C=\left\{\Sigma^{*} \backslash L: L \subseteq \Sigma^{*}\right.$ and $\left.L \in C\right\}$ (Σ ranges over alphabets)
- co-NP $=\left\{\Sigma^{*} \backslash L: L \subseteq \Sigma^{*}\right.$ and $\left.L \in \mathrm{NP}\right\}$
- Examples: UNSAT, TAUT \in co-NP!

Note: P is closed under complement, in particular,

The complexity class co-NP

- Note that there is some asymmetry in the definition of NP:
- It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
- There exists an accepting computation of polynomial length iff the formula is satisfiable
- What if we want to solve UNSAT, the complementary problem?
- It seems necessary to check all possible truth-assignments!
- Define co- $C=\left\{\Sigma^{*} \backslash L: L \subseteq \Sigma^{*}\right.$ and $\left.L \in C\right\}$ (Σ ranges over alphabets)

Motivation
Reminder:
Basic Notions
Beyond NP
The class co-NP
The class PSPACE

- co-NP $=\left\{\Sigma^{*} \backslash L: L \subseteq \Sigma^{*}\right.$ and $\left.L \in N P\right\}$
- Examples: UNSAT, TAUT \in co-NP!
- Note: P is closed under complement, in particular,

$$
\mathrm{P} \subseteq \mathrm{NP} \cap \mathrm{co-NP}
$$

There are problems even Definition (N)PSPACE)

PSPACE (NPSPACE) is the class of decision problems that can be decided on deterministic (non-deterministic) Turing machines using only polynomially many tape cells.

Some facts about PSPACE:

Reminder:
Basic Notions
Beyond NP
The class co-NP
The class PSPACE
Other classes
Oracle TMs
and the
Polynomial
Hierarchy
Literature

PSPACE

There are problems even more difficult than NP and co-NP...

Definition ((N)PSPACE)

PSPACE (NPSPACE) is the class of decision problems that can be decided on deterministic (non-deterministic) Turing machines using only polynomially many tape cells.

Some facts about PSPACE

PSPACE

There are problems even more difficult than NP and co-NP...

Definition ((N)PSPACE)

PSPACE (NPSPACE) is the class of decision problems that can be decided on deterministic (non-deterministic) Turing machines using only polynomially many tape cells.

Some facts about PSPACE:

- PSPACE is closed under complements (... as all other deterministic classes)

> PSPACE is identical to NPSPACE (because non-deterministic Turing machines can be simulated on deterministic TMs using only quadratic space) $N P \subseteq P S P A C E$ (because in polynomial time one can "visit" only polynomial space, i.e., NP \subseteq NPSPACE) It is unknown whether NP $\neq \mathrm{PSPACE}$, but it is believed that

PSPACE

There are problems even more difficult than NP and co-NP...

Definition ((N)PSPACE)

PSPACE (NPSPACE) is the class of decision problems that can be decided on deterministic (non-deterministic) Turing machines using only polynomially many tape cells.

Some facts about PSPACE:

- PSPACE is closed under complements (... as all other deterministic classes)

Motivation

Reminder:
Basic Notions
Beyond NP
The class co-NP
The class PSPACE Other classes

- PSPACE is identical to NPSPACE (because non-deterministic Turing machines can be simulated on deterministic TMs using only quadratic space)

> NP $\subseteq P S P A C E$ (because in polynomial time one can "visit"
> only polynomial space, i.e., NP \subseteq NPSPACE) It is unknown whether NP \neq PSPACE, but it is believed that

PSPACE

There are problems even more difficult than NP and co-NP...

Definition ((N)PSPACE)

Motivation

Reminder:
Basic Notions
Beyond NP
The class co-NP
The class PSPACE
Other classes

- PSPACE is identical to NPSPACE (because non-deterministic Turing machines can be simulated on deterministic TMs using only quadratic space)
- NP \subseteq PSPACE (because in polynomial time one can "visit" only polynomial space, i.e., NP \subseteq NPSPACE)

[^0]
PSPACE

There are problems even more difficult than NP and co-NP...

Definition ((N)PSPACE)

Motivation

Reminder:
Basic Notions
Beyond NP
The class co-NP
The class PSPACE
Other classes

- PSPACE is identical to NPSPACE (because non-deterministic Turing machines can be simulated on deterministic TMs using only quadratic space)
- NP \subseteq PSPACE (because in polynomial time one can "visit" only polynomial space, i.e., NP \subseteq NPSPACE)
- It is unknown whether NP \neq PSPACE, but it is believed that

PSPACE-completeness

Definition (PSPACE-completeness)

 reduced to it.Intuitively, PSPACE-complete problems are the "hardest" problems in PSPACE (similar to NP-completeness). They appear to be "harder" than NP-complete problems from a practical point of view.

A decision problem (or language) is PSPACE-complete if it is in
 PSPACE and all other problems in PSPACE can be polynomially

An example for a PSPACE-complete problem is the NDFA equivalence problem:

Instance: Two non-deterministic finite state automata A_{1} and

Question: Are the languages accepted by A_{1} and A_{2} identical?

PSPACE-completeness

Definition (PSPACE-completeness)

A decision problem (or language) is PSPACE-complete if it is in PSPACE and all other problems in PSPACE can be polynomially reduced to it.

Intuitively, PSPACE-complete problems are the "hardest" problems in PSPACE (similar to NP-completeness). They appear to be "harder" than NP-complete problems from a practical point of view.

An example for a PSPACE-complete problem is the NDFA equivalence problem:

Instance: Two non-cleterministic finite state automata A_{1} and

Question: Are the languages accepted by A_{1} and A_{2} identical?

PSPACE-completeness

Definition (PSPACE-completeness)

A decision problem (or language) is PSPACE-complete if it is in PSPACE and all other problems in PSPACE can be polynomially reduced to it.

Intuitively, PSPACE-complete problems are the "hardest" problems in PSPACE (similar to NP-completeness). They appear to be "harder" than NP-complete problems from a practical point of view.
An example for a PSPACE-complete problem is the NDFA equivalence problem:

Instance: Two non-deterministic finite state automata A_{1} and A_{2}.
Question: Are the languages accepted by A_{1} and A_{2} identical?

Other complexity classes ...

■ There are complexity classes above PSPACE (EXPTIME, EXPSPACE, NEXPTIME, DEXPTIME ...)

There are (infinitely many) classes between NP and PSPACE (the polynomial hierarchy defined by oracle machines)

There are (infinitely many) classes inside P (circuit classes with different depths)

Reminder:
Basic Notions
Beyond NP
The class co-NP
The class PSPACE
Other classes
Oracle TMs
and the
Polynomial
Hierarchy
Literature
and for most of the classes we do not know whether the containment relationships are strict

Other complexity classes ...

■ There are complexity classes above PSPACE (EXPTIME, EXPSPACE, NEXPTIME, DEXPTIME ...)

- There are (infinitely many) classes between NP and PSPACE (the polynomial hierarchy defined by oracle machines)

There are (infinitely many) classes inside P (circuit classes with different depths)
and for most of the classes we do not know whether the containment relationships are strict

Other complexity classes ...

■ There are complexity classes above PSPACE (EXPTIME, EXPSPACE, NEXPTIME, DEXPTIME ...)

- There are (infinitely many) classes between NP and PSPACE (the polynomial hierarchy defined by oracle machines)
- There are (infinitely many) classes inside P (circuit classes with different depths)
and for most of the classes we do not know whether the containment relationships are strict

Other complexity classes ...

- There are complexity classes above PSPACE (EXPTIME, EXPSPACE, NEXPTIME, DEXPTIME ...)

Reminder:
Basic Notions
Beyond NP
The class co-NP
The class PSPACE
Other classes
Oracle TMs
and the
Polynomial
Hierarchy
Literature with different depths)

■ ... and for most of the classes we do not know whether the containment relationships are strict

Oracle TMs and the Polynomial Hierarchy

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines
Turing reduction
Complexity classe based on OTMs
QBF
Literature

Oracle Turing machines

- An Oracle Turing machine ((N)OTM) is a Turing machine (DTM, NDTM) with the possibility to query an oracle (i. e., a different Turing machine without resource restrictions) whether it accepts or rejects a given string.

Computation by the oracle does not cost anything!
Formalization:

Usage of OTMs answers what-if questions: What if we could solve the oracle-problem efficiently?

Oracle Turing machines

- An Oracle Turing machine ((N)OTM) is a Turing machine (DTM, NDTM) with the possibility to query an oracle (i. e., a different Turing machine without resource restrictions) whether it accepts or rejects a given string.

■ Computation by the oracle does not cost anything!
Formalization:

Usage of OTMs answers what-if questions: What if we could solve the oracle-nroblem efficiently?

Oracle Turing machines

- An Oracle Turing machine ((N)OTM) is a Turing machine (DTM, NDTM) with the possibility to query an oracle (i. e., a different Turing machine without resource restrictions) whether it accepts or rejects a given string.
- Computation by the oracle does not cost anything!
- Formalization:
a tape onto which strings for the oracle are written
a yes/no answer from the oracle depending on whether it accepts or rejects the input string

Usage of ОTMs answers what-if questions: What if we could solve the oracle-problem efficiently?

Oracle Turing machines

- An Oracle Turing machine ((N)OTM) is a Turing machine (DTM, NDTM) with the possibility to query an oracle (i. e., a different Turing machine without resource restrictions) whether it accepts or rejects a given string.
- Computation by the oracle does not cost anything!
- Formalization:
- a tape onto which strings for the oracle are written,
a yes/no answer from the oracle depending on whether it accepts or rejects the input string

Usage of OTMs answers what-if questions: What if we could solve the oracle-problem efficiently?

Oracle Turing machines

- An Oracle Turing machine ((N)OTM) is a Turing machine (DTM, NDTM) with the possibility to query an oracle (i. e., a different Turing machine without resource restrictions) whether it accepts or rejects a given string.

■ Computation by the oracle does not cost anything!

- Formalization:
\square a tape onto which strings for the oracle are written,
- a yes/no answer from the oracle depending on whether it accepts or rejects the input string.

Usage of OTMs answers what-if questions: What if we could solve the oracle-problem efficiently?

Oracle Turing machines

- An Oracle Turing machine ((N)OTM) is a Turing machine (DTM, NDTM) with the possibility to query an oracle (i. e., a different Turing machine without resource restrictions) whether it accepts or rejects a given string.
- Computation by the oracle does not cost anything!
- Formalization:
- a tape onto which strings for the oracle are written,
- a yes/no answer from the oracle depending on whether it accepts or rejects the input string.

Reminder:
Basic Notions
Beyond NP
Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing machines

Turing reduction
Complexity classes based on OTMs

- Usage of OTMs answers what-if questions: What if we could solve the oracle-problem efficiently?

Turing reductions

- OTMs allow us to define a more general type of reduction
OTMs allow us to define a more general type of reductionIdea: The "classical" reduction can be seen as calling asubroutine once.
L_{1} is Turing-reducible to L_{2}, symbolically $L_{1} \leq_{T} L_{2}$, if thereexists a poly-time OTM that decides L_{1} by using an oraclefor L_{2}.Polynomial reducibility implies Turing reducibility, but notvice versa!NP-hardness and co-NP-hardness with respect to Turing

Motivation
Reminder:
Basic Notions
Beyond NP
Oracle TMs and the
Polynomial
Hierarchy
Oracle Turing
machines
Turing reduction
Complexity classes based on OTMs

Turing reductions

- OTMs allow us to define a more general type of reduction
- Idea: The "classical" reduction can be seen as calling a subroutine once.
L_{1} is Turing-reducible to L_{2}, symbolically $L_{1} \leq_{T} L_{2}$, if there exists a poly-time OTM that decides L_{1} by using an oracle for L_{2}.
Polynomial reducibility implies Turing reducibility, but not vice versa! NP-hardness and co-NP-hardness with respect to Turing

Motivation
Reminder:
Basic Notions
Beyond NP
Oracle TMs and the
Polynomial
Hierarchy
Oracle Turing
machines
Turing reduction
Complexity classes based on OTMs

Literature reducibility are equivalent!
Turing reducibility can also be applied to general search problems!

Turing reductions

- OTMs allow us to define a more general type of reduction
- Idea: The "classical" reduction can be seen as calling a subroutine once.
- L_{1} is Turing-reducible to L_{2}, symbolically $L_{1} \leq_{T} L_{2}$, if there exists a poly-time OTM that decides L_{1} by using an oracle for L_{2}.
Polynomial reducibility implies Turing reducibility, but not
vice versa!
NP-hardness and co-NP-hardness with respect to Turing

Motivation
Reminder:
Basic Notions
Beyond NP
Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines
Turing reduction
Complexity classes based on OTMs reducibility are equivalent!
Turing reducibility can also be applied to general search problems!

Turing reductions

- OTMs allow us to define a more general type of reduction
- Idea: The "classical" reduction can be seen as calling a subroutine once.
- L_{1} is Turing-reducible to L_{2}, symbolically $L_{1} \leq_{T} L_{2}$, if there exists a poly-time OTM that decides L_{1} by using an oracle for L_{2}.
- Polynomial reducibility implies Turing reducibility, but not vice versa!
NP-hardness and co-NP-hardness with respect to Turing

Motivation
Reminder:
Basic Notions
Beyond NP
Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines
Turing reduction
Complexity classes based on OTMs reducibility are equivalent!

Turing reducibility can also be applied to general search problems!

Turing reductions

- OTMs allow us to define a more general type of reduction
- Idea: The "classical" reduction can be seen as calling a subroutine once.
- L_{1} is Turing-reducible to L_{2}, symbolically $L_{1} \leq_{T} L_{2}$, if there exists a poly-time OTM that decides L_{1} by using an oracle for L_{2}.
- Polynomial reducibility implies Turing reducibility, but not vice versa!
- NP-hardness and co-NP-hardness with respect to Turing

Motivation
Reminder:
Basic Notions
Beyond NP
Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines
Turing reduction
Complexity classes based on OTMs reducibility are equivalent!
Turing reducibility can also be applied to general search problems!

Turing reductions

- OTMs allow us to define a more general type of reduction
- Idea: The "classical" reduction can be seen as calling a subroutine once.
- L_{1} is Turing-reducible to L_{2}, symbolically $L_{1} \leq_{T} L_{2}$, if there exists a poly-time OTM that decides L_{1} by using an oracle for L_{2}.
- Polynomial reducibility implies Turing reducibility, but not vice versa!
- NP-hardness and co-NP-hardness with respect to Turing

Motivation
Reminder:
Basic Notions
Beyond NP
Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing machines
Turing reduction reducibility are equivalent!

- Turing reducibility can also be applied to general search problems!

Complexity classes based on Oracle TMs

$1 P^{N P}=$ decision problems solved by poly-time DTMs with an oracle for a decision problem in NP.

```
= decision problems solved by poly-time NDTMs with
an oracle for a decision problem in NP.
co-NDNP = complements of decision problems solved by
poly-time NDTMs with an oracle for a decision problem in
```

Reminder:
Basic Notions
Beyond NP
Oracle TMs and the
Polynomial
Hierarchy
Oracle Turing
machines
Turing reduction
Complexity classes based on OTMs
... and so on

Complexity classes based on Oracle TMs

1 PNP = decision problems solved by poly-time DTMs with an oracle for a decision problem in NP.
2 NPNP = decision problems solved by poly-time NDTMs with an oracle for a decision problem in NP.
co-NPNP = complements of decision problems solved by
poly-time NDTMs with an oracle for a decision problem in

Reminder:
Basic Notions
Beyond NP
Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines
Turing reduction
Complexity classes based on OTMs
... and so on

Complexity classes based on Oracle TMs

1 PNP = decision problems solved by poly-time DTMs with an oracle for a decision problem in NP.
2 NPNP = decision problems solved by poly-time NDTMs with an oracle for a decision problem in NP.
3 co-NPNP = complements of decision problems solved by poly-time NDTMs with an oracle for a decision problem in NP.
... and so on

Complexity classes based on Oracle TMs

1 PNP = decision problems solved by poly-time DTMs with an oracle for a decision problem in NP.
2 NPNP = decision problems solved by poly-time NDTMs with an oracle for a decision problem in NP.
3 co-NPNP = complements of decision problems solved by poly-time NDTMs with an oracle for a decision problem in

Reminder:
Basic Notions
Beyond NP
Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines
Turing reduction
Complexity classes based on OTMs
... and so on

Consider the Minimum Equivalent Expression (MEE) problem:
Instance: A well-formed Boolean formula φ using the standard connectives (not \leftrightarrow) and a non-negative integer k.
Question: Is there a well-formed Boolean formula φ^{\prime} that contains k or fewer literal occurrences and that is logically equivalent to φ ?

Consider the Minimum Equivalent Expression (MEE) problem:
Instance: A well-formed Boolean formula φ using the standard connectives (not \leftrightarrow) and a non-negative integer k.
Question: Is there a well-formed Boolean formula φ^{\prime} that contains k or fewer literal occurrences and that is logically equivalent to φ ?

- This problem is NP-hard (wrt. to Turing reductions).

Motivation
Reminder:
Basic Notions
Beyond NP
Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing machines
Turing reduction
Complexity classes based on OTMs

It does not appear to be NP-complete
We could guess a formula and then use a SAT-oracle
$M E E \in N P N$

Consider the Minimum Equivalent Expression (MEE) problem:
Instance: A well-formed Boolean formula φ using the standard connectives (not \leftrightarrow) and a non-negative integer k.
Question: Is there a well-formed Boolean formula φ^{\prime} that contains k or fewer literal occurrences and that is logically equivalent to φ ?

- This problem is NP-hard (wrt. to Turing reductions).

Motivation
Reminder:
Basic Notions
Beyond NP
Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing machines
Turing reduction
Complexity classes based on OTMs

- It does not appear to be NP-complete.

We could guess a formula and then use a SAT-oracle MEE $\in N P^{N P}$

Consider the Minimum Equivalent Expression (MEE) problem:
Instance: A well-formed Boolean formula φ using the standard connectives (not \leftrightarrow) and a non-negative integer k.
Question: Is there a well-formed Boolean formula φ^{\prime} that contains k or fewer literal occurrences and that is logically equivalent to φ ?

- This problem is NP-hard (wrt. to Turing reductions).
- It does not appear to be NP-complete.
- We could guess a formula and then use a SAT-oracle ...

MEE $\in N P$ NP

Consider the Minimum Equivalent Expression (MEE) problem:
Instance: A well-formed Boolean formula φ using the standard connectives (not \leftrightarrow) and a non-negative integer k.
Question: Is there a well-formed Boolean formula φ^{\prime} that contains k or fewer literal occurrences and that is logically equivalent to φ ?

- This problem is NP-hard (wrt. to Turing reductions).

Motivation
Reminder:
Basic Notions
Beyond NP
Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing machines
Turing reduction
Complexity classes based on OTMs

- It does not appear to be NP-complete.
- We could guess a formula and then use a SAT-oracle ...
- MEE $\in N P^{N P}$.

The polynomial hierarchy

The complexity classes based on OTMs form an infinite hierarchy.

The polynomial hierarchy PH

$$
\mathrm{PH}=\bigcup_{i \geq 0}\left(\Sigma_{i}^{p} \cup \Pi_{i}^{p} \cup \Delta_{i}^{p}\right) \subseteq \text { PSPACE }
$$

$$
N P=\Sigma_{1}^{p}
$$

$$
\text { co-NP }=\Pi_{1}^{p}
$$

The polynomial hierarchy

The complexity classes based on OTMs form an infinite hierarchy.

The polynomial hierarchy PH

$$
\begin{aligned}
\Sigma_{0}^{p} & =\mathrm{P} & \Pi_{0}^{p} & =\mathrm{P} & \Delta_{0}^{p} & =\mathrm{P} \\
\Sigma_{i+1}^{p} & =\mathrm{NP}^{\Sigma_{i}^{p}} & \Pi_{i+1}^{p} & =\operatorname{co}-\Sigma_{i+1}^{p} & \Delta_{i+1}^{p} & =\mathrm{P}^{\Sigma_{i}^{p}}
\end{aligned}
$$

$$
\mathrm{PH}=\bigcup_{i \geq 0}\left(\Sigma_{i}^{p} \cup \Pi_{i}^{p} \cup \Delta_{i}^{p}\right) \subseteq \text { PSPACE }
$$

$$
N P=\Sigma_{1}^{p}
$$

$$
\mathrm{co}-\mathrm{NP}=\Pi_{1}^{p}
$$

The polynomial hierarchy

The complexity classes based on OTMs form an infinite hierarchy.

The polynomial hierarchy PH

$$
\begin{aligned}
\Sigma_{0}^{p} & =\mathrm{P} & \Pi_{0}^{p} & =\mathrm{P} & \Delta_{0}^{p} & =\mathrm{P} \\
\Sigma_{i+1}^{p} & =\mathrm{NP}^{\Sigma_{i}^{p}} & \Pi_{i+1}^{p} & =\operatorname{co}-\Sigma_{i+1}^{p} & \Delta_{i+1}^{p} & =\mathrm{P}^{\Sigma_{i}^{p}}
\end{aligned}
$$

- PH $=\bigcup_{i \geq 0}\left(\Sigma_{i}^{p} \cup \Pi_{i}^{p} \cup \Delta_{i}^{p}\right) \subseteq$ PSPACE
- $\mathrm{NP}=\Sigma_{1}^{p}$
- co-NP $=\Pi_{1}^{p}$

Quantified Boolean formulae: definition

Motivation

- If φ is a propositional formula, P is the set of Boolean variables used in φ and σ is a sequence of $\exists p$ and $\forall p$, one for every $p \in P$, then $\sigma \varphi$ is a QBF.

A formula $\exists x \varphi$ is true if and only if $\varphi[x / \top] \vee \varphi[x / \perp]$ is true (equivalently, $\varphi[x / \top]$ is true or $\varphi[x / \perp]$ is true).

A formula $\forall x \varphi$ is true if and only if $\varphi[x / T] \wedge \omega^{[x / L} / \perp$ is true (equivalently, $\varphi[x / \top]$ is true and $\varphi[x / \perp]$ is true).

Reminder:
Basic Notions
Beyond NP
Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines
Turing reduction
Complexity classes based on OTMs
QBF
Literature
This definition directly leads to an AND/OR tree traversal algorithm for evaluating QBF.

Quantified Boolean formulae: definition

- If φ is a propositional formula, P is the set of Boolean variables used in φ and σ is a sequence of $\exists p$ and $\forall p$, one for every $p \in P$, then $\sigma \varphi$ is a QBF.
- A formula $\exists x \varphi$ is true if and only if $\varphi[x / \top] \vee \varphi[x / \perp]$ is true (equivalently, $\varphi[x / T]$ is true or $\varphi[x / \perp]$ is true).
A formula $\forall x \varphi$ is true if and only if $\varphi[x / \top] \wedge \varphi[x / \perp]$ is true (equivalently, $\varphi[x / T]$ is true and $\varphi[x / \perp]$ is true).

Reminder:
Basic Notions
Beyond NP
Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines
Turing reduction
Complexity classes based on OTMs QBF

Literature

This definition directly leads to an AND/OR tree traversal algorithm for evaluating QBF.

Quantified Boolean formulae: definition

- If φ is a propositional formula, P is the set of Boolean variables used in φ and σ is a sequence of $\exists p$ and $\forall p$, one for every $p \in P$, then $\sigma \varphi$ is a QBF.
- A formula $\exists x \varphi$ is true if and only if $\varphi[x / \top] \vee \varphi[x / \perp]$ is true (equivalently, $\varphi[x / T]$ is true or $\varphi[x / \perp]$ is true).
- A formula $\forall x \varphi$ is true if and only if $\varphi[x / \top] \wedge \varphi[x / \perp]$ is true (equivalently, $\varphi[x / \top]$ is true and $\varphi[x / \perp]$ is true).

Reminder:
Basic Notions
Beyond NP
Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing machines
Turing reduction
Complexity classes based on OTMs QBF

Literature

This definition directly leads to an AND/OR tree traversal algorithm for evaluating QBF.

Quantified Boolean formulae: definition

- If φ is a propositional formula, P is the set of Boolean variables used in φ and σ is a sequence of $\exists p$ and $\forall p$, one for every $p \in P$, then $\sigma \varphi$ is a QBF.
- A formula $\exists x \varphi$ is true if and only if $\varphi[x / \top] \vee \varphi[x / \perp]$ is true (equivalently, $\varphi[x / T]$ is true or $\varphi[x / \perp]$ is true).
- A formula $\forall x \varphi$ is true if and only if $\varphi[x / \top] \wedge \varphi[x / \perp]$ is true (equivalently, $\varphi[x / \top]$ is true and $\varphi[x / \perp]$ is true).

Reminder:
Basic Notions
Beyond NP
Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing machines
Turing reduction
Complexity classes based on OTMs

- This definition directly leads to an AND/OR tree traversal algorithm for evaluating QBF.

Quantified Boolean formulae: definition

The evaluation problem of QBF generalizes both the satisfiability and validity/tautology problems of propositional logic.

The latter are NP-complete and co-NP-complete, resp., whereas
the former is PSPACE-complete.

Example
 The formulae $\forall x \exists y(x \leftrightarrow y)$ and $\exists x \exists y(x \wedge y)$ are true.

Example

Reminder:
Basic Notions
Beyond NP
Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines
Turing reduction
Complexity classe based on OTMs

QBF
Literature

The formulas $\exists x \forall y(x \leftrightarrow y)$ and $\forall x \forall y(x \vee y)$ are false.

Quantified Boolean formulae: definition

The evaluation problem of QBF generalizes both the satisfiability and validity/tautology problems of propositional logic. The latter are NP-complete and co-NP-complete, resp., whereas the former is PSPACE-complete.

Motivation

Reminder:
Basic Notions
Beyond NP
Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines
Turing reduction
Complexity classes based on OTMs
QBF
Literature

The formulae $\exists x \forall y(x \leftrightarrow y)$ and $\forall x \forall y(x \vee y)$ are false.

Quantified Boolean formulae: definition

The evaluation problem of QBF generalizes both the satisfiability and validity/tautology problems of propositional logic. The latter are NP-complete and co-NP-complete, resp., whereas the former is PSPACE-complete.

Reminder:
Basic Notions
Beyond NP
Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines
Turing reduction
Complexity classes based on OTMs
QBF
Literature

Quantified Boolean formulae: definition

The evaluation problem of QBF generalizes both the satisfiability and validity/tautology problems of propositional logic.
The latter are NP-complete and co-NP-complete, resp., whereas the former is PSPACE-complete.

Reminder:
Basic Notions
Beyond NP
Oracle TMs
and the
Polynomial
Hierarchy
Oracle Turing
machines
Turing reduction
Complexity classes based on OTMs
QBF
Literature

Example

The formulae $\exists x \forall y(x \leftrightarrow y)$ and $\forall x \forall y(x \vee y)$ are false.

The Polynomial Hierarchy: connection to QBF

Truth of QBFs with prefix $\overbrace{\forall \exists \forall \ldots}^{i}$ is Π_{i}^{p}-complete.
Truth of QBFs with prefix $\exists \forall \exists \ldots$ is Σ_{i}^{p}-complete.

Special cases corresponding to SAT and TAUT:
The truith of QBFs with prefix $\exists x_{1}^{1} \ldots x_{n}^{1}$ is
$N P=\Sigma_{1}^{p}$-complete.
The truth of QBFs with prefix $\forall x_{1}^{1} \ldots x_{n}^{1}$ is co-NP $=\Pi_{1}^{p}$-complete.

The Polynomial Hierarchy: connection to QBF

Truth of QBFs with prefix $\overbrace{\forall \exists \forall \ldots}^{i}$ is Π_{i}^{p}-complete.
Truth of QBFs with prefix $\overbrace{\exists \exists \exists \ldots}^{i}$ is Σ_{i}^{p}-complete.

Special cases corresponding to SAT and TAUT:
The truth of QBFs with prefix $\exists x_{1}^{1} \ldots x_{n}^{1}$ is
$\mathrm{NP}=\sum_{1}^{P}$-complete.
The truth of QBFs with prefix $\forall x_{1}^{1} \ldots x_{n}^{1}$ is $\mathrm{co}-\mathrm{NP}=\Pi_{1}^{p}$-complete.

The Polynomial Hierarchy: connection to QBF

Truth of QBFs with prefix $\overbrace{\forall \exists \forall \ldots}^{i}$ is Π_{i}^{p}-complete.
Truth of QBFs with prefix $\overbrace{\exists \exists \exists \ldots}^{i}$ is Σ_{i}^{p}-complete.

Special cases corresponding to SAT and TAUT:
The truth of QBFs with prefix $\exists x_{1}^{1} \ldots x_{n}^{1}$ is
$\mathrm{NP}=\sum_{1}^{p}$-complete.
The truth of QBFs with prefix $\forall x_{1}^{1} \ldots x_{n}^{1}$ is $\mathrm{co}-\mathrm{NP}=\Pi_{1}^{p}$-complete.

The Polynomial Hierarchy: connection to QBF

Truth of QBFs with prefix $\overbrace{\forall \exists \forall \ldots}^{i}$ is Π_{i}^{p}-complete.
Truth of QBFs with prefix $\overbrace{\exists \forall \exists \ldots}$ is Σ_{i}^{p}-complete.

Special cases corresponding to SAT and TAUT:

- The truth of QBFs with prefix $\exists x_{1}^{1} \ldots x_{n}^{1}$ is $\mathrm{NP}=\Sigma_{1}^{p}$-complete.
- The truth of QBFs with prefix $\forall x_{1}^{1} \ldots x_{n}^{1}$ is co-NP $=\Pi_{1}^{p}$-complete.

Literature

Reminder:
Basic Notions
國 M. R. Garey and D. S. Johnson.
Computers and Intractability - A Guide to the Theory of NP-Completeness.
Freeman and Company, San Francisco, 1979.
C. H. Papadimitriou.

Computational Complexity.
Addison-Wesley,Reading, MA, 1994.

Beyond NP
Oracle TMs
and the
Polynomial
Hierarchy
Literature

[^0]: It is unknown whether NP $=$ PSPACE, but it is believed that

