Principles of Knowledge Representation and Reasoning Complexity Theory

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel, Stefan Wölfl, and Julien Hué October 31, 2012

Why complexity theory?

Motivation

Reminder:

Basic Notion

Beyond NP

Oracle TMs

Polynomial Hierarchy

Literature

and the

- Complexity theory can answer questions on how easy or hard a problem is
- Gives hints on what algorithms could be appropriate, e.g.:
 - algorithms for polynomial-time problems are usually easy to design
 - for NP-complete problems, backtracking and local search
- Gives hints on what type of algorithm will (most probably) not work
 - for problems that are believed to be harder than NP-complete ones, simple backtracking will not work
- Gives hint on what sub-problems might be interesting

1 Motivation

Motivation

Reminder

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Literature

October 31, 2012

Nebel, Wölfl, Hué - KRR

2 Reminder: Basic Notions

3 / 29

- Algorithms and Turing machines
- Problems, solutions, and complexity
- Complexity classes P and NP
- Upper and lower bounds
- Polynomial reductions
- NP-completeness

Motivation

Reminder Basic Notions

solutions and complexity

Upper and low bounds

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Literature

October 31, 2012 Nebel, Wölfl, Hué - KRR 4 / 29 October 31, 2012 Nebel, Wölfl, Hué - KRR

Algorithms and Turing machines

NE NE

7 / 29

- We use Turing machines as formal models of algorithms
- This is justified, because:
 - we assume that Turing machines can compute all computable functions
 - the resource requirements (in term of time and memory) of a Turing machine are only polynomially worse than other models
- The regular type of Turing machine is the deterministic one: DTM (or simply TM)
- Often, however, we use the notion of nondeterministic TMs: **NDTM**

Motivation

BURG

Turing machines

Complexity cl P and NP

Upper and lov bounds Polynomial reductions

NP-complete

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Literature

October 31, 2012

Nebel, Wölfl, Hué - KRR

Complexity classes P and NP

Problems are categorized into complexity classes according to the requirements of computational resources:

- The class of problems decidable on deterministic Turing machines in polynomial time: P
 - Problems in P are assumed to be efficiently solvable (although this might not be true if the exponent is very large)
 - In practice, this notion appears to be more often reasonable than not
- The class of problems decidable on non-deterministic Turing machines in polynomial time: NP
- More classes are definable using other resource bounds on time and memory

Motivation

UNI FREIBURG

Reminder

Complexity cla P and NP

Upper and lov bounds Polynomial reductions

Beyond NP

Oracle TMs and the Hierarchy

Literature

Problems, solutions, and complexity

UNI FREIBURG

■ A problem is a set of pairs (I,A) of strings in $\{0,1\}^*$. I: instance; A: answer

If all answers $A \in \{0,1\}$: decision problem

- A decision problem is the same as a formal language: the set of strings formed by the instances with answer 1
- An algorithm decides (or solves) a problem if it computes the right answer for all instances.
- Complexity of an algorithm: function

 $T\colon \mathbb{N}\to\mathbb{N}$,

measuring the number of basic steps (or memory requirement) the algorithm needs to compute an answer depending on the size of the instance

Complexity of a problem: complexity of the most efficient algorithm that solves this problem.

October 31, 2012

Motivation

Basic Notion

solutions and

complexity Complexity (

Upper and lo bounds

Polynomial reductions

Bevond NP

Oracle TMs and the Hierarchy

Literature

Upper and lower bounds

8 / 29

- Upper bounds (membership in a class) are usually easy to prove:
 - provide an algorithm
 - show that the resource bounds are respected
- Lower bounds (hardness for a class) are usually difficult to show:
 - the technical tool here is the polynomial reduction (or any other appropriate reduction)
 - show that some hard problem can be reduced to the problem at hand

Motivation

Basic Notion

complexity

Upper and lowe

Beyond NP

Oracle TMs and the Hierarchy

Literature

October 31, 2012 Nebel, Wölfl, Hué - KRR 9 / 29 October 31, 2012 Nebel, Wölfl, Hué - KRR

Polynomial reduction

■ Given languages L_1 and L_2 , L_1 can be polynomially reduced to L_2 , written $L_1 \leq_D L_2$, if there exists a polynomially computable function f such that

$$x \in L_1 \iff f(x) \in L_2$$
.

Rationale: it cannot be harder to decide L_1 than L_2

- L is hard for a class C (C-hard) if all languages of this class can be reduced to L.
- *L* is complete for *C* (*C*-complete) if *L* is *C*-hard and $L \in C$.

Motivation

BURG

Complexity cla P and NP Upper and low bounds

NP-complete

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Literature

October 31, 2012

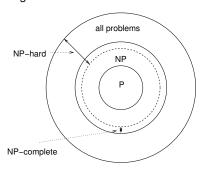
Nebel, Wölfl, Hué - KRR

11 / 29

NP-complete problems

BURG PRE E

- A problem is NP-complete iff it is NP-hard and in NP.
- Example: SAT (the satisfiability problem for propositional logic) is NP-complete (Cook/Karp)
 - Membership is obvious, hardness follows because computations on a NDTM correspond to satisfying truth-assignments of certain formulae



Motivation

Reminder Basic Notion

Turing machines complexity

Upper and low bounds

Polynomial reductions

NP-completene Bevond NP

> Oracle TMs and the Polynomial Hierarchy

Literature

Nebel, Wölfl, Hué - KRR October 31, 2012

3 Beyond NP

- The class co-NP
- The class PSPACE
- Other classes

UNI FREIBURG Motivation

Reminder:

Beyond NP

Oracle TMs and the Polynomial

Hierarchy Literature

The complexity class co-NP

12 / 29

- Note that there is some asymmetry in the definition of NP:
 - It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
 - There exists an accepting computation of polynomial length iff the formula is satisfiable
 - What if we want to solve UNSAT, the complementary problem?
 - It seems necessary to check all possible truth-assignments!
- Define co- $C = \{\Sigma^* \setminus L : L \subseteq \Sigma^* \text{ and } L \in C\}$ (Σ ranges over alphabets)
- co-NP = $\{\Sigma^* \setminus L : L \subseteq \Sigma^* \text{ and } L \in NP\}$
- Examples: UNSAT, TAUT ∈ co-NP!
- *Note:* P is closed under complement, in particular,

 $P \subseteq NP \cap co-NP$

Motivation

Beyond NP

The class co-NF

Oracle TMs and the

Literature

October 31, 2012 Nebel, Wölfl, Hué - KRR 14 / 29 October 31, 2012 Nebel, Wölfl, Hué - KRR

PSPACE

There are problems even more difficult than NP and co-NP...

Definition ((N)PSPACE)

PSPACE (NPSPACE) is the class of decision problems that can be decided on deterministic (non-deterministic) Turing machines using only polynomially many tape cells.

Some facts about PSPACE:

Other complexity classes ...

- PSPACE is closed under complements (... as all other deterministic classes)
- PSPACE is identical to NPSPACE (because non-deterministic Turing machines can be simulated on deterministic TMs using only quadratic space)
- NP⊆PSPACE (because in polynomial time one can "visit" only polynomial space, i.e., NP⊆NPSPACE)
- It is unknown whether NP≠PSPACE, but it is believed that

ctober 31, 2012 Nebel, Wölfl, Hué – KRR

Motivation

Basic Notions

Beyond NP The class co-NP The class PSPACE

Oracle TMs and the Polynomial

Hierarchy

■ There are complexity classes above PSPACE (EXPTIME, EXPSPACE, NEXPTIME, DEXPTIME ...)

- There are (infinitely many) classes between NP and PSPACE (the polynomial hierarchy defined by oracle machines)
- There are (infinitely many) classes inside P (circuit classes with different depths)
- ... and for most of the classes we do not know whether the containment relationships are strict

Motivation

UNI FREIBURG

> Reminder: Basic Notions

Beyond NP
The class co-NP

The class PSPA

Oracle TMs and the Polynomial Hierarchy

Literature

PSPACE-completeness

reduced to it.

of view.

Definition (PSPACE-completeness)

Motivation

Reminder:

Beyond NP

The class PSPACE

Oracle TMs and the Polynomial

Literature

An example for a PSPACE-complete problem is the NDFA equivalence problem:

Intuitively, PSPACE-complete problems are the "hardest"

A decision problem (or language) is PSPACE-complete if it is in PSPACE and all other problems in PSPACE can be polynomially

problems in PSPACE (similar to NP-completeness). They appear

to be "harder" than NP-complete problems from a practical point

Instance: Two non-deterministic finite state automata A_1 and

 A_2 .

Question: Are the languages accepted by A_1 and A_2

identical?

October 31, 2012 Nebel, Wölfl, Hué – KRR

17 / 29

4 Oracle TMs and the Polynomial Hierarchy

- Oracle Turing machines
- Turing reduction
- Complexity classes based on OTMs
- QBF

Motivation

Reminder:

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turin

Turing reduction

Complexity classe
based on OTMs

Literature

October 31, 2012 Nebel, Wölfl, Hué – KRR 18 / 29 October 31, 2012 Nebel, Wölfl, Hué – KRR 20

Oracle Turing machines

- UNI FREIBURG
- An Oracle Turing machine ((N)OTM) is a Turing machine (DTM, NDTM) with the possibility to query an oracle (i. e., a different Turing machine without resource restrictions) whether it accepts or rejects a given string.
- Computation by the oracle does not cost anything!
- Formalization:
 - a tape onto which strings for the oracle are written,
 - a yes/no answer from the oracle depending on whether it accepts or rejects the input string.
- Usage of OTMs answers what-if questions: What if we could solve the oracle-problem efficiently?

Motivation

Basic Notions

Beyond NP

Oracle TMs and the Polynomial

Hierarchy Oracle Turing machines

Complexity classe based on OTMs

Literature

October 31, 2012

Nebel, Wölfl, Hué - KRR

21 / 29

Turing reductions

subroutine once.

for L_2 .

Motivation

Reminder:

Oracle TMs and the Polynomial Hierarchy Oracle Turing

Turing reduction

Complexity classes based on OTMs

Literature

Polynomial reducibility implies Turing reducibility, but not vice versa!

OTMs allow us to define a more general type of reduction

■ L_1 is Turing-reducible to L_2 , symbolically $L_1 \leq_T L_2$, if there

exists a poly-time OTM that decides L_1 by using an oracle

■ Idea: The "classical" reduction can be seen as calling a

- NP-hardness and co-NP-hardness with respect to Turing reducibility are equivalent!
- Turing reducibility can also be applied to general search problems!

October 31, 2012 Nebel, Wölfl, Hué – KRR 22 / 29

Complexity classes based on Oracle TMs

- P^{NP} = decision problems solved by poly-time DTMs with an oracle for a decision problem in NP.
- NP^{NP} = decision problems solved by poly-time NDTMs with an oracle for a decision problem in NP.
- co-NP^{NP} = complements of decision problems solved by poly-time NDTMs with an oracle for a decision problem in NP.
- 4 NP^{NP} = ...

... and so on

Motivation

Reminder:

Beyond NP

Oracle TMs and the Polynomial Hierarchy Oracle Turing machines Turing reduction Complexity classes based on OTMs

Literature

Example

Consider the Minimum Equivalent Expression (MEE) problem:

Instance: A well-formed Boolean formula φ using the standard connectives (not \leftrightarrow) and a non-negative

integer k.

Question: Is there a well-formed Boolean formula φ' that contains k or fewer literal occurrences and that is

logically equivalent to φ ?

■ This problem is NP-hard (wrt. to Turing reductions).

- It does not appear to be NP-complete.
- We could guess a formula and then use a SAT-oracle . . .
- MEE \in NP^{NP}.

Motivation

Reminder: Basic Notion

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines Turing reduction

Complexity classe based on OTMs

Literature

October 31, 2012 Nebel, Wölfl, Hué – KRR 23 / 29

October 31, 2012 Nebel, Wölfl, Hué – KRR

The polynomial hierarchy

UNI FREIBURG

The complexity classes based on OTMs form an infinite hierarchy.

The polynomial hierarchy PH

- PH = $\bigcup_{i>0} (\Sigma_i^p \cup \Pi_i^p \cup \Delta_i^p) \subseteq PSPACE$
- \blacksquare NP = Σ_1^p
- \blacksquare co-NP = Π_1^p

October 31, 2012

Nebel, Wölfl, Hué - KRR

25 / 29

Motivation

Beyond NP

Oracle TMs and the Polynomial Hierarchy Oracle Turing

Complexity class

Literature

Quantified Boolean formulae: definition

The evaluation problem of QBF generalizes both the satisfiability and validity/tautology problems of propositional logic.

The latter are NP-complete and co-NP-complete, resp., whereas the former is PSPACE-complete.

Example

The formulae $\forall x \exists y (x \leftrightarrow y)$ and $\exists x \exists y (x \land y)$ are true.

Example

October 31, 2012

The formulae $\exists x \forall y (x \leftrightarrow y)$ and $\forall x \forall y (x \lor y)$ are false.

Motivation

UNI FREIBURG

Reminder

Beyond NP Oracle TMs

and the Polynomial Hierarchy Oracle Turing machines

Complexity class

Literature

Ouantified Boolean formulae: definition

for every $p \in P$, then $\sigma \varphi$ is a QBF.

Motivation

Reminder

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Complexity class

Literature

■ A formula $\forall x \varphi$ is true if and only if $\varphi[x/\top] \land \varphi[x/\bot]$ is true (equivalently, $\varphi[x/\top]$ is true and $\varphi[x/\bot]$ is true).

■ A formula $\exists x \varphi$ is true if and only if $\varphi[x/\top] \vee \varphi[x/\bot]$ is true

■ If φ is a propositional formula, P is the set of Boolean

(equivalently, $\varphi[x/\top]$ is true or $\varphi[x/\bot]$ is true).

variables used in φ and σ is a sequence of $\exists p$ and $\forall p$, one

■ This definition directly leads to an AND/OR tree traversal algorithm for evaluating QBF.

Nebel, Wölfl, Hué - KRR October 31, 2012

The Polynomial Hierarchy: connection to **OBF**

Truth of QBFs with prefix $\forall \exists \forall \dots$ is $\prod_{i=1}^{p}$ -complete.

Truth of QBFs with prefix $\exists \forall \exists \dots$ is $\sum_{i=1}^{p}$ -complete.

Special cases corresponding to SAT and TAUT:

- The truth of QBFs with prefix $\exists x_1^1 ... x_n^1$ is NP= Σ_1^p -complete.
- The truth of QBFs with prefix $\forall x_1^1 ... x_n^1$ is co-NP= Π_1^p -complete.

Motivation

Beyond NP

Oracle TMs and the Hierarchy

Complexity clas

Literature

Nebel, Wölfl, Hué - KRR 27 / 29 October 31, 2012 Nebel, Wölfl, Hué - KRR

Literature

Motivation

Reminder: Basic Notions

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Literature

M. R. Garey and D. S. Johnson. Computers and Intractability - A Guide to the Theory of NP-Completeness. Freeman and Company, San Francisco, 1979.

C. H. Papadimitriou. Computational Complexity.
Addison-Wesley,Reading, MA, 1994.

October 31, 2012 Nebel, Wölfl, Hué – KRR 29 / 29