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Why first-order logic (FOL)?

In propositional logic, the only building blocks are atomic
propositions.
We cannot talk about the internal structures of these
propositions.
Example:

All CS students know formal logic
Peter is a CS student
Therefore, Peter knows formal logic
Not possible in propositional logic

Idea: We introduce predicates, functions, object variables
and quantifiers.
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Syntax

variable symbols: x,y,z, . . .
n-ary function symbols: f ,g, . . .
constant symbols: a,b,c, . . .
n-ary predicate symbols: P,Q, . . .
logical symbols: ∀, ∃, =, ¬, ∧, . . .

Terms t −→ x variable
| f(t1, . . . , tn) function application
| a constant

Formulae ϕ −→ P(t1, . . . , tn)atomic formulae
| t = t′ identity formulae
| . . . propositional connectives
| ∀xϕ ′ universal quantification
| ∃xϕ ′ existential quantification

ground term, etc.: term, etc. without variable occurrences
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Semantics: idea

In FOL, the universe of discourse consists of objects,
functions over these objects, and relations over these
objects.
Function symbols are mapped to functions, predicate
symbols are mapped to relations, and terms to objects.
Notation: Instead of I(x) we write xI .
Note: Usually one considers all possible non-empty
universes. (However, sometimes the interpretations are
restricted to particular domains, e.g. integers or real
numbers.)
Satisfiability and validity is then considered wrt all these
universes.
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Formal semantics: interpretations

Interpretations: I = 〈D, ·I〉 with D being an arbitrary non-empty
set and ·I being a function which maps

n-ary function symbols f to n-ary functions fI ∈ [Dn→D],
constant symbols a to objects aI ∈ D, and
n-ary predicates P to n-ary relations PI ⊆Dn.

Interpretation of ground terms:

(f(t1, . . . , tn))I = fI(t1I , . . . , tnI) (∈ D)

Truth of ground atoms:

I |= P(t1, . . . , tn) iff 〈t1I , . . . , tnI〉 ∈ PI
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Examples

D = {d1, . . . ,dn},n≥ 2
aI = d1
bI = d2

eyeI = {d1}
redI = D
I |= red(b)
I 6|= eye(b)

D = {1,2,3, . . .}
1I = 1
2I = 2

...
evenI = {2,4,6, . . .}
succI = {(1 7→ 2),(2 7→ 3), . . .}
I 6|= even(3)

I |= even(succ(3))
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Formal semantics: variable maps

V is the set of variables. Function α : V →D is a variable map.
Notation: α[x/d] is identical to α except for x where
α[x/d](x) = d.
Interpretation of terms under I,α :

xI,α = α(x)

aI,α = aI

(f(t1, . . . , tn))I,α = fI(t1I,α , . . . , tnI,α )

Truth of atomic formulae:

I,α |= P(t1, . . . , tn) iff 〈t1I,α , . . . , tnI,α〉 ∈ PI

Example (cont’d):
α = {x 7→ d1,y 7→ d2} I,α |= red(x) I,α[y/d1] |= eye(y)
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Formal semantics: truth

Truth of ϕ by I under α (I,α |= ϕ) is defined as follows.

I,α |= P(t1, . . . , tn) iff 〈t1I,α , . . . , tnI,α〉 ∈ PI

I,α |= t1 = t2 iff t1I,α = t2I,α

I,α |= ¬ϕ iff I,α 6|= ϕ

I,α |= ϕ ∧ψ iff I,α |= ϕ andI,α |= ψ

I,α |= ϕ ∨ψ iff I,α |= ϕ orI,α |= ψ

I,α |= ϕ → ψ iff ifI,α |= ϕ, thenI,α |= ψ

I,α |= ϕ ↔ ψ iff I,α |= ϕ, iffI,α |= ψ

I,α |= ∀x ϕ iff I,α[x/d] |= ϕ for all d ∈ D
I,α |= ∃x ϕ iff I,α[x/d] |= ϕ for some d ∈ D
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Examples

Θ =

{
eye(a),eye(b)
∀x(eye(x)→ red(x))

}
D = {d1, . . . ,dn}, n> 1
aI = d1
bI = d1

eyeI = {d1}
redI = D

α = {(x 7→ d1),(y 7→ d2)}

Questions:

I,α |= eye(b)∨¬eye(b)?
Yes
I,α |= eye(x)→
eye(x)∨eye(y)? Yes
I,α |= eye(x)→ eye(y)?
No
I,α |= eye(a)∧eye(b)?
Yes
I,α |= ∀x(eye(x)→
red(x))? Yes
I,α |= Θ? Yes
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Terminology

I,α is a model of ϕ iff
I,α |= ϕ.

A formula can be satisfiable, unsatisfiable, falsifiable, valid, . . .
Two formulae ϕ and ψ are logically equivalent (symb.: ϕ ≡ ψ) iff
for all I,α :

I,α |= ϕ iff I,α |= ψ.

Note: P(x) 6≡ P(y)!
Logical implication is also analogous to propositional logic:

Θ |= ϕ iff for all I,α s.t. I,α |= Θ also I,α |= ϕ.
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Free and bound variables

Variables can be free or bound (by a quantifier) in a formula:

free(x) = {x}
free(f(t1, . . . , tn)) = free(t1)∪·· ·∪ free(tn)

free(t1 = t2) = free(t1)∪ free(t2)

free(P(t1, . . . , tn)) = free(t1)∪·· ·∪ free(tn)

free(¬ϕ) = free(ϕ)

free(ϕ ∗ψ) = free(ϕ)∪ free(ψ), for ∗= ∨,∧,→,↔
free(Ξxϕ) = free(ϕ)\{x}, for Ξ = ∀,∃

Example: ∀x (R( y , z ) ∧ ∃y (¬P(y,x) ∨ R(y, z )))
Framed occurrences are free, all others are bound.
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Open & closed formulae

Formulae without free variables are called closed formulae
or sentences. Formulae with free variables are called open
formulae.
Closed formulae are all we need when we want to state
something about the world. Open formulae (and variable
maps) are only necessary for technical reasons (semantics
of ∀ and ∃).
Note that logical equivalence, satisfiability, and entailment
are independent from variable maps if we consider only
closed formulae.
For closed formulae, we omit α in connection with |=:

I |= ϕ.
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Important theorems

Theorem (Compactness)
Let Φ∪{ψ} be a set of closed formulae.
(a) Φ |= ψ iff there exists a finite subset Φ′ ⊆ Φ s. t. Φ′ |= ψ .
(b) Φ is satisfiable iff each finite subset Φ′ ⊆ Φ is satisfiable.

Theorem (Löwenheim-Skolem)
Each countable set of closed formulae that is satisfiable is
satisfiable on a countable domain.
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