Principles of Knowledge Representation and Reasoning Predicate logic

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel, Stefan Wölfl, and Julien Hué October 26, 2012

Motivation

Syntax

Semantics

Literature

Motivation

Why first-order logic (FOL)?

- In propositional logic, the only building blocks are atomic propositions.
- We cannot talk about the internal structures of these propositions.
- Example:
 - All CS students know formal logic
 - Peter is a CS student
 - Therefore, Peter knows formal logic
 - Not possible in propositional logic
- Idea: We introduce predicates, functions, object variables and quantifiers.

Motivation

Syntax

Semantics

Motivation

Syntax

Semantics

Literature

Syntax

Syntax

- *n*-ary function symbols: f, g, ...
- constant symbols: a,b,c,...
- *n*-ary predicate symbols: P,Q,...

logical symbols:
$$\forall$$
, \exists , =, \neg , \land , ...

Termst $\rightarrow x$ variable| $f(t_1, \dots, t_n)$ function applicationaconstantFormulae ϕ $\rightarrow P(t_1, \dots, t_n)$ atomic formulae|t = t'| \dots ϕ' universal quantification $\exists x \phi'$ existential quantificationground term, etc.: term, etc. without variable occurrences

UNI FREIBURG

> Motivation Syntax

Semantics

Syntax

 variab <i>n</i>-ary constant 	le sym functio ant syr	nbols: <i>x</i> , <i>y</i> , <i>z</i> , on symbols: <i>f</i> , <i>g</i> , nbols: <i>a</i> , <i>b</i> , <i>c</i> ,		Motivatic
∎ <i>n</i> -ary	Semanti			
logica	Literatur			
Terms	t	$ \xrightarrow{\longrightarrow} x \\ f(t_1, \dots, t_n) \\ a $	variable (n) function application constant	
Formulae	φ		<i>t_n</i>)atomic formulae identity formulae propositional connectives universal quantification existential quantification	
ground terr	n, etc.	: term, etc. with	out variable occurrences	

BURG

UNI FREIBURG

Motivation

Syntax

Semantics

Interpretations

Variable Maps

Definition of Truth

Terminology

Free and Bound Variables

Open and Closed Formulae

Literature

Semantics

Semantics: idea

- In FOL, the universe of discourse consists of objects, functions over these objects, and relations over these objects.
- Function symbols are mapped to functions, predicate symbols are mapped to relations, and terms to objects.
- Notation: Instead of $\mathcal{I}(x)$ we write $x^{\mathcal{I}}$.
- Note: Usually one considers all possible non-empty universes. (However, sometimes the interpretations are restricted to particular domains, e.g. integers or real numbers.)
- Satisfiability and validity is then considered wrt all these universes.

Motivation

Syntax

Semantics

Interpretations Variable Maps

Definition of Trut

erminology

Free and Bound Variables

Open and Closed Formulae

Interpretations: $\mathcal{I} = \langle \mathcal{D}, \cdot^{\mathcal{I}} \rangle$ with \mathcal{D} being an arbitrary non-empty set and $\cdot^{\mathcal{I}}$ being a function which maps

- *n*-ary function symbols *f* to *n*-ary functions $f^{\mathcal{I}} \in [\mathcal{D}^n \to \mathcal{D}]$,
- constant symbols *a* to objects $a^{\mathcal{I}} \in \mathcal{D}$, and
- *n*-ary predicates *P* to *n*-ary relations $P^{\mathcal{I}} \subseteq \mathcal{D}^n$.

Interpretation of ground terms:

$$(f(t_1,\ldots,t_n))^{\mathcal{I}} = f^{\mathcal{I}}(t_1^{\mathcal{I}},\ldots,t_n^{\mathcal{I}}) (\in \mathcal{D})$$

Truth of ground atoms:

$$\mathcal{I} \models P(t_1, \dots, t_n) \quad \text{iff} \quad \langle t_1^{\mathcal{I}}, \dots, t_n^{\mathcal{I}} \rangle \in P^{\mathcal{I}}$$

Motivation

Syntax

Semantics

Interpretations

Variable Maps Definition of Truth Terminology Free and Bound Variables Open and Closed

Motivation

Syntax

Semantics

Interpretations Variable Maps Definition of Truth Terminology Free and Bound Variables Open and Closed Formulae

\mathcal{D}	=	$\{d_1,\ldots,d_n\},n\geq 2$	\mathcal{D}	=	$\{1, 2, 3, \dots\}$
$a^{\mathcal{I}}$	=	<i>d</i> ₁	$1^{\mathcal{I}}$	=	1
$\boldsymbol{b}^{\mathcal{I}}$	=	d ₂	$2^{\mathcal{I}}$	=	2
$eye^{\mathcal{I}}$	=	$\{d_1\}$		÷	
$red^\mathcal{I}$	=	\mathcal{D}	$\text{even}^{\mathcal{I}}$	=	{ 2 , 4 , 6 ,}
\mathcal{I}	Þ	red(b)	$\text{succ}^{\mathcal{I}}$	=	$\{(1 \mapsto 2), (2 \mapsto 3), \dots\}$
\mathcal{I}	¥	eye(b)	${\mathcal I}$	¥	even(3)
			${\mathcal I}$	Þ	even(succ(3))

V is the set of variables. Function $\alpha : V \to D$ is a variable map. Notation: $\alpha[x/d]$ is identical to α except for *x* where $\alpha[x/d](x) = d$.

Interpretation of terms under \mathcal{I}, α :

$$\begin{aligned} x^{\mathcal{I},\alpha} &= \alpha(x) \\ a^{\mathcal{I},\alpha} &= a^{\mathcal{I}} \\ (f(t_1,\ldots,t_n))^{\mathcal{I},\alpha} &= f^{\mathcal{I}}(t_1^{\mathcal{I},\alpha},\ldots,t_n^{\mathcal{I},\alpha}) \end{aligned}$$

Truth of atomic formulae:

$$\mathcal{I}, \alpha \models \mathcal{P}(t_1, \dots, t_n) \quad \text{iff} \quad \langle t_1^{\mathcal{I}, \alpha}, \dots, t_n^{\mathcal{I}, \alpha} \rangle \in \mathcal{P}^{\mathcal{I}}$$

Example (cont'd): $\alpha = \{x \mapsto d_1, y \mapsto d_2\}$ $\mathcal{I}, \alpha \models \operatorname{red}(x)$ $\mathcal{I}, \alpha[y/d_1] \models \operatorname{eye}(y)$

-

Syntax

Semantics

Interpretations

Variable Maps

Definition of Trut

Free and Bound

Variables Open and Closed

Truth of φ by \mathcal{I} under α ($\mathcal{I}, \alpha \models \varphi$) is defined as follows.

$\mathcal{I}, \alpha \models \mathcal{P}(t_1, \ldots, t_n)$	iff $\langle t_1^{\mathcal{I},\alpha},\ldots,t_n^{\mathcal{I},\alpha}\rangle \in P^{\mathcal{I}}$	Syntax
$\mathcal{I}, \alpha \models t_1 = t_2$	iff $t_1^{\mathcal{I},\alpha} = t_2^{\mathcal{I},\alpha}$	Semantics Interpretations Variable Maps
$\mathcal{I}, \alpha \models \neg \phi$	iff $\mathcal{I}, \alpha \not\models \phi$	Definition of Truth
$\mathcal{I}, \alpha \models \phi \land \psi$	iff $\mathcal{I}, \alpha \models \varphi$ and $\mathcal{I}, \alpha \models \psi$	Free and Bound Variables
$\mathcal{I}, \pmb{\alpha} \models \pmb{\varphi} \lor \pmb{\psi}$	$iff \ \mathcal{I}, \alpha \models \varphi or \mathcal{I}, \alpha \models \psi$	Open and Closed Formulae
$\mathcal{I}, \pmb{lpha} \models \pmb{\varphi} ightarrow \pmb{\psi}$	iff if $\mathcal{I}, \alpha \models arphi,$ then $\mathcal{I}, lpha \models \psi$	Eloraturo
$\mathcal{I}, \alpha \models \varphi \leftrightarrow \psi$	$iff \ \mathcal{I}, \alpha \models \varphi, iff \mathcal{I}, \alpha \models \psi$	
$\mathcal{I}, \alpha \models \forall x \varphi$	iff $\mathcal{I}, lpha[x/d] \models arphi$ for all $d \in \mathcal{D}$	
$\mathcal{I}, \alpha \models \exists x \varphi$	iff $\mathcal{I}, lpha[x/d] \models arphi$ for some $\mathit{d} \in \mathcal{D}$	

BURG

_ _ ZW

Motivation

UNI FREIBURG

Questions:

$$\Theta = \left\{ egin{array}{l} {
m eye}(a), {
m eye}(b) \ orall x({
m eye}(x)
ightarrow {
m red}(x)) \end{array}
ight\}$$

$$\mathcal{D} = \{d_1,\ldots,d_n\}, n > 1$$

$$a^{\mathcal{I}} = d_1$$

$$b^{\mathcal{I}} = d_1$$

$$eye^{\mathcal{I}} = \{d_1\}$$

 $\mathsf{red}^\mathcal{I} \ = \ \mathcal{D}$

$$\alpha = \{(x \mapsto d_1), (y \mapsto d_2)\}$$

$$\mathcal{I}, \alpha \models \mathsf{eye}(b) \lor \neg \mathsf{eye}(b)?$$

Yes

 $\mathcal{I}, \alpha \models eye(x) \rightarrow eye(x) \lor eye(y)$? Yes $\mathcal{I}, \alpha \models eye(x) \rightarrow eye(y)$? No

 $\mathcal{I}, \alpha \models \mathsf{eye}(a) \land \mathsf{eye}(b)$? Yes

 $\mathcal{I}, \alpha \models \forall x (\operatorname{eye}(x) \rightarrow \operatorname{red}(x))$? Yes $\mathcal{I}, \alpha \models \Theta$? Yes

Motivation

Syntax

Semantics

Interpretations

Variable Maps

Definition of Truth

Terminology

Free and Bound Variables

Open and Closed Formulae

UNI FREIBURG

Questions:

$$\Theta = \left\{ egin{array}{l} {
m eye}(a), {
m eye}(b) \ orall x({
m eye}(x)
ightarrow {
m red}(x)) \end{array}
ight\}$$

$$\mathcal{D} = \{d_1,\ldots,d_n\}, n > 1$$

$$a^{\mathcal{I}} = d_1$$

$$b^{\mathcal{I}} = d_1$$

$$eye^{\mathcal{I}} = \{d_1\}$$

 $\mathsf{red}^\mathcal{I} \ = \ \mathcal{D}$

$$\alpha = \{(x \mapsto d_1), (y \mapsto d_2)\}$$

$$\mathcal{I}, \alpha \models \mathsf{eye}(b) \lor \neg \mathsf{eye}(b)$$
?
Yes

 $\mathcal{I}, \alpha \models eye(x) \rightarrow eye(x) \lor eye(y)$? Yes $\mathcal{I}, \alpha \models eye(x) \rightarrow eye(y)$? No

 $\mathcal{I}, \alpha \models \mathsf{eye}(a) \land \mathsf{eye}(b)$? Yes

 $\mathcal{I}, \alpha \models \forall x (\operatorname{eye}(x) \rightarrow \operatorname{red}(x))$? Yes $\mathcal{I}, \alpha \models \Theta$? Yes

Motivation

Syntax

Semantics

Interpretations

Variable Maps

Definition of Truth

Terminology

Free and Bound Variables

Open and Closed Formulae

Questions:

$$\Theta = \left\{ egin{array}{l} {
m eye}(a), {
m eye}(b) \ orall x({
m eye}(x)
ightarrow {
m red}(x)) \end{array}
ight\}$$

$$\mathcal{D} = \{d_1,\ldots,d_n\}, n > 1$$

$$a^{\mathcal{I}} = d_1$$

$$b^{\mathcal{I}} = d_1$$

$$eye^{\mathcal{I}} = \{d_1\}$$

$$\mathsf{red}^\mathcal{I} = \mathcal{D}$$

$$\alpha = \{(x \mapsto d_1), (y \mapsto d_2)\}$$

 $\mathcal{I}, \alpha \models \mathsf{eye}(b) \lor \neg \mathsf{eye}(b)$? Yes

 $\mathcal{I}, \alpha \models eye(x) \rightarrow eye(x) \lor eye(y)$? Yes $\mathcal{I}, \alpha \models eye(x) \rightarrow eye(y)$? No

 $\mathcal{I}, \alpha \models \mathsf{eye}(a) \land \mathsf{eye}(b)$? Yes

 $\mathcal{I}, \alpha \models \forall x (\operatorname{eye}(x) \rightarrow \operatorname{red}(x))$? Yes $\mathcal{I}, \alpha \models \Theta$? Yes

Motivation

Syntax

Semantics

Interpretations

Variable Maps

Definition of Truth

Terminology

Free and Bound Variables

Open and Closed Formulae

Questions:

$$\Theta = \left\{ \begin{array}{l} \operatorname{eye}(a), \operatorname{eye}(b) \\ \forall x(\operatorname{eye}(x) \to \operatorname{red}(x)) \end{array} \right\}$$

$$\mathcal{D} = \{d_1,\ldots,d_n\}, n > 1$$

$$a^{\mathcal{I}} = d_1$$

$$b^{\mathcal{I}} = d_1$$

$$eye^{\mathcal{I}} = \{d_1\}$$

 $\mathsf{red}^\mathcal{I} = \mathcal{D}$

$$\alpha = \{(x \mapsto d_1), (y \mapsto d_2)\}$$

 $\mathcal{I}, \alpha \models \mathsf{eye}(b) \lor \neg \mathsf{eye}(b)$? Yes

 $\mathcal{I}, \alpha \models eye(x) \rightarrow eye(x) \lor eye(y)$? Yes $\mathcal{I}, \alpha \models eye(x) \rightarrow eye(y)$? No

 $\mathcal{I}, \alpha \models \mathsf{eye}(a) \land \mathsf{eye}(b)$? Yes

 $\mathcal{I}, \alpha \models \forall x (\operatorname{eye}(x) \rightarrow \operatorname{red}(x))$? Yes $\mathcal{I}, \alpha \models \Theta$? Yes

Motivation

Syntax

Semantics

Interpretations

Variable Maps

Definition of Truth

Terminology

Free and Bound Variables

Open and Closed Formulae

Questions:

$$\Theta = \left\{ egin{array}{l} {
m eye}(a), {
m eye}(b) \ orall x({
m eye}(x)
ightarrow {
m red}(x)) \end{array}
ight\}$$

$$\mathcal{D} = \{d_1,\ldots,d_n\}, n > 1$$

$$a^{\mathcal{I}} = d_1$$

$$b^{\mathcal{I}} = d_1$$

$$eye^{\mathcal{I}} = \{d_1\}$$

$$\mathsf{red}^\mathcal{I} = \mathcal{D}$$

$$\alpha = \{(x \mapsto d_1), (y \mapsto d_2)\}$$

$$\mathcal{I}, \alpha \models \mathsf{eye}(b) \lor \neg \mathsf{eye}(b)$$
?
Yes

$$\mathcal{I}, \alpha \models \operatorname{eye}(x) \rightarrow \\ \operatorname{eye}(x) \lor \operatorname{eye}(y)$$
? Yes
 $\mathcal{I}, \alpha \models \operatorname{eye}(x) \rightarrow \operatorname{eye}(y)$?
No

 $\mathcal{I}, \alpha \models eye(a) \land eye(b)$? Yes

 $\mathcal{I}, \alpha \models \forall x (\operatorname{eye}(x) \rightarrow \operatorname{red}(x))$? Yes $\mathcal{I}, \alpha \models \Theta$? Yes

Motivation

Syntax

Semantics

Interpretations

Variable Maps

Definition of Truth

Terminology

Free and Bound Variables

Open and Closed Formulae

Questions:

$$\Theta = \left\{ egin{array}{l} {
m eye}(a), {
m eye}(b) \ orall x({
m eye}(x)
ightarrow {
m red}(x)) \end{array}
ight\}$$

$$\mathcal{D} = \{d_1,\ldots,d_n\}, n > 1$$

$$a^{\mathcal{I}} = d_1$$

$$b^{\mathcal{I}} = d_1$$

$$eye^{\mathcal{I}} = \{d_1\}$$

$$\mathsf{red}^\mathcal{I} = \mathcal{D}$$

$$\alpha = \{(x \mapsto d_1), (y \mapsto d_2)\}$$

$$\mathcal{I}, \alpha \models \mathsf{eye}(b) \lor \neg \mathsf{eye}(b)$$
?
Yes

$$\mathcal{I}, \alpha \models \operatorname{eye}(x) \rightarrow \\ \operatorname{eye}(x) \lor \operatorname{eye}(y)$$
? Yes
 $\mathcal{I}, \alpha \models \operatorname{eye}(x) \rightarrow \operatorname{eye}(y)$?
No

 $\mathcal{I}, \alpha \models \mathsf{eye}(a) \land \mathsf{eye}(b)$? Yes

 $\mathcal{I}, \alpha \models \forall x (\operatorname{eye}(x) \rightarrow \operatorname{red}(x))$? Yes $\mathcal{I}, \alpha \models \Theta$? Yes

Motivation

Syntax

Semantics

Interpretations

Variable Maps

Definition of Truth

Terminology

Free and Bound Variables

Open and Closed Formulae

Questions:

$$\Theta = \left\{ egin{array}{l} {
m eye}(a), {
m eye}(b) \ orall x({
m eye}(x)
ightarrow {
m red}(x)) \end{array}
ight\}$$

$$\mathcal{D} = \{d_1,\ldots,d_n\}, n > 1$$

$$a^{\mathcal{I}} = d_1$$

$$b^{\mathcal{I}} = d_1$$

$$eye^{\mathcal{I}} = \{d_1\}$$

$$\mathsf{red}^\mathcal{I} = \mathcal{D}$$

$$\alpha = \{(x \mapsto d_1), (y \mapsto d_2)\}$$

$$\mathcal{I}, \alpha \models \mathsf{eye}(b) \lor \neg \mathsf{eye}(b)$$
?
Yes

$$\mathcal{I}, \alpha \models \operatorname{eye}(x) \rightarrow \\ \operatorname{eye}(x) \lor \operatorname{eye}(y)$$
? Yes
 $\mathcal{I}, \alpha \models \operatorname{eye}(x) \rightarrow \operatorname{eye}(y)$?
No

$$\mathcal{I}, \alpha \models \mathsf{eye}(a) \land \mathsf{eye}(b)$$
?
Yes

 $\mathcal{I}, \alpha \models \forall x (eye(x) \rightarrow red(x))$? Yes $\mathcal{I}, \alpha \models \Theta$? Yes

Motivation

Syntax

Semantics

Interpretations

Variable Maps

Definition of Truth

Terminology

Free and Bound Variables

Open and Closed Formulae

Questions:

$$\Theta = \left\{ egin{array}{l} {
m eye}(a), {
m eye}(b) \ orall x({
m eye}(x)
ightarrow {
m red}(x)) \end{array}
ight\}$$

$$\mathcal{D} = \{d_1,\ldots,d_n\}, n > 1$$

$$a^{\mathcal{I}} = d_1$$

$$b^{\mathcal{I}} = d_1$$

$$eye^{\mathcal{I}} = \{d_1\}$$

$$\mathsf{red}^\mathcal{I} \ = \ \mathcal{D}$$

$$\alpha = \{(x \mapsto d_1), (y \mapsto d_2)\}$$

$$\mathcal{I}, \alpha \models \mathsf{eye}(b) \lor \neg \mathsf{eye}(b)$$
?
Yes

$$\mathcal{I}, \alpha \models \operatorname{eye}(x) \rightarrow \\ \operatorname{eye}(x) \lor \operatorname{eye}(y)$$
? Yes
 $\mathcal{I}, \alpha \models \operatorname{eye}(x) \rightarrow \operatorname{eye}(y)$?
No

$$\mathcal{I}, \alpha \models \mathsf{eye}(a) \land \mathsf{eye}(b)$$
?
Yes

 $\mathcal{I}, \alpha \models \forall x (eye(x) \rightarrow red(x))$? Yes $\mathcal{I}, \alpha \models \Theta$? Yes

Motivation

Syntax

Semantics

Interpretations

Variable Maps

Definition of Truth

Terminology

Free and Bound Variables

Open and Closed Formulae

REIBURG

Questions:

$$\Theta = \left\{ \begin{array}{l} \mathsf{eye}(a), \mathsf{eye}(b) \\ \forall x(\mathsf{eye}(x) \to \mathsf{red}(x)) \end{array} \right\}$$

$$\mathcal{D} = \{d_1,\ldots,d_n\}, n > 1$$

$$a^{\mathcal{I}} = d_1$$

$$b^{\mathcal{I}} = d_1$$

$$eye^{\mathcal{I}} = \{d_1\}$$

$$\mathsf{red}^\mathcal{I} = \mathcal{D}$$

$$\alpha = \{(x \mapsto d_1), (y \mapsto d_2)\}$$

$$\mathcal{I}, \alpha \models \mathsf{eye}(b) \lor \neg \mathsf{eye}(b)$$
?
Yes

$$\mathcal{I}, \alpha \models \operatorname{eye}(x) \rightarrow \\ \operatorname{eye}(x) \lor \operatorname{eye}(y)$$
? Yes
 $\mathcal{I}, \alpha \models \operatorname{eye}(x) \rightarrow \operatorname{eye}(y)$?
No

$$\mathcal{I}, \alpha \models \mathsf{eye}(a) \land \mathsf{eye}(b)$$
?
Yes

 $\mathcal{I}, \alpha \models \forall x (eye(x) \rightarrow red(x))$? Yes $\mathcal{I}, \alpha \models \Theta$? Yes

Motivation

Syntax

Semantics

Interpretations

Variable Maps

Definition of Truth

Terminology

Free and Bound Variables

Open and Closed Formulae

REIBURG

Questions:

$$\Theta = \left\{ egin{array}{l} {
m eye}(a), {
m eye}(b) \ orall x({
m eye}(x)
ightarrow {
m red}(x)) \end{array}
ight\}$$

$$\mathcal{D} = \{d_1,\ldots,d_n\}, n > 1$$

$$a^{\mathcal{I}} = d_1$$

$$b^{\mathcal{I}} = d_1$$

$$eye^{\mathcal{I}} = \{d_1\}$$

$$\mathsf{red}^\mathcal{I} = \mathcal{D}$$

$$\alpha = \{(x \mapsto d_1), (y \mapsto d_2)\}$$

$$\mathcal{I}, \alpha \models \mathsf{eye}(b) \lor \neg \mathsf{eye}(b)$$
?
Yes

$$\mathcal{I}, \alpha \models \operatorname{eye}(x) \rightarrow \\ \operatorname{eye}(x) \lor \operatorname{eye}(y)$$
? Yes
 $\mathcal{I}, \alpha \models \operatorname{eye}(x) \rightarrow \operatorname{eye}(y)$?
No

$$\mathcal{I}, \alpha \models \mathsf{eye}(a) \land \mathsf{eye}(b)$$
?
Yes

 $\mathcal{I}, \alpha \models \forall x (eye(x) \rightarrow red(x))?$ Yes

Motivation

Syntax

Semantics

Interpretations

Variable Maps

Definition of Truth

Terminology

Free and Bound Variables

Open and Closed Formulae

Questions:

$$\Theta = \left\{ egin{array}{l} {
m eye}(a), {
m eye}(b) \ orall x({
m eye}(x)
ightarrow {
m red}(x)) \end{array}
ight\}$$

$$\mathcal{D} = \{d_1,\ldots,d_n\}, n > 1$$

$$a^{\mathcal{I}} = d_1$$

$$b^{\mathcal{I}} = d_1$$

$$eye^{\mathcal{I}} = \{d_1\}$$

$$\mathsf{red}^\mathcal{I} = \mathcal{D}$$

$$\alpha = \{(x \mapsto d_1), (y \mapsto d_2)\}$$

$$\mathcal{I}, \alpha \models \mathsf{eye}(b) \lor \neg \mathsf{eye}(b)$$
?
Yes

$$\mathcal{I}, \alpha \models \operatorname{eye}(x) \rightarrow \\ \operatorname{eye}(x) \lor \operatorname{eye}(y)$$
? Yes
 $\mathcal{I}, \alpha \models \operatorname{eye}(x) \rightarrow \operatorname{eye}(y)$?
No

$$\mathcal{I}, \alpha \models \mathsf{eye}(a) \land \mathsf{eye}(b)$$
?
Yes

$$\mathcal{I}, \alpha \models \forall x (eye(x) \rightarrow red(x))$$
? Yes
 $\mathcal{I}, \alpha \models \Theta$? Yes

Motivation

Syntax

Semantics

Interpretations

Variable Maps

Definition of Truth

Terminology

Free and Bound Variables

Open and Closed Formulae

Questions:

$$\Theta = \left\{ \begin{array}{l} \operatorname{eye}(a), \operatorname{eye}(b) \\ \forall x(\operatorname{eye}(x) \to \operatorname{red}(x)) \end{array} \right\}$$

$$\mathcal{D} = \{d_1,\ldots,d_n\}, n > 1$$

$$a^{\mathcal{I}} = d_1$$

$$b^{\mathcal{I}} = d_1$$

$$eye^{\mathcal{I}} = \{d_1\}$$

$$\mathsf{red}^\mathcal{I} = \mathcal{D}$$

$$\alpha = \{(x \mapsto d_1), (y \mapsto d_2)\}$$

$$\mathcal{I}, \alpha \models \mathsf{eye}(b) \lor \neg \mathsf{eye}(b)$$
?
Yes

$$\mathcal{I}, \alpha \models \operatorname{eye}(x) \rightarrow \\ \operatorname{eye}(x) \lor \operatorname{eye}(y)$$
? Yes
 $\mathcal{I}, \alpha \models \operatorname{eye}(x) \rightarrow \operatorname{eye}(y)$?
No

$$\mathcal{I}, \alpha \models \mathsf{eye}(a) \land \mathsf{eye}(b)$$
?
Yes

 $\mathcal{I}, \alpha \models \forall x (eye(x) \rightarrow red(x))$? Yes $\mathcal{I}, \alpha \models \Theta$? Yes

Motivation

Syntax

Semantics

Interpretations

Variable Maps

Definition of Truth

Terminology

Free and Bound Variables

Open and Closed Formulae

$\mathcal{I}, \alpha \text{ is a model of } \phi \text{ iff}$

$$\mathcal{I}, \alpha \models \varphi.$$

A formula can be satisfiable, unsatisfiable, falsifiable, valid, ...

Two formulae φ and ψ are logically equivalent (symb.: $\varphi \equiv \psi$) iff for all \mathcal{I}, α :

$$\mathcal{I}, \alpha \models \varphi \text{ iff } \mathcal{I}, \alpha \models \psi.$$

Note: $P(x) \not\equiv P(y)!$

Logical implication is also analogous to propositional logic:

 $\Theta \models \varphi$ iff for all \mathcal{I}, α s.t. $\mathcal{I}, \alpha \models \Theta$ also $\mathcal{I}, \alpha \models \varphi$.

Motivation

Syntax

2

Semantics

Interpretations

Variable Maps Definition of Truth

Delinition of the

Terminology

Free and Bound Variables

Open and Closed Formulae

\mathcal{I}, α is a model of ϕ iff

$$\mathcal{I}, \alpha \models \varphi.$$

A formula can be satisfiable, unsatisfiable, falsifiable, valid, ... Two formulae φ and ψ are logically equivalent (symb.: $\varphi \equiv \psi$) iff for all \mathcal{I}, α :

$$\mathcal{I}, \alpha \models \varphi \text{ iff } \mathcal{I}, \alpha \models \psi.$$

Note: $P(x) \not\equiv P(y)!$

Logical implication is also analogous to propositional logic:

 $\Theta \models \varphi$ iff for all \mathcal{I}, α s.t. $\mathcal{I}, \alpha \models \Theta$ also $\mathcal{I}, \alpha \models \varphi$.

Nebel, Wölfl, Hué - KRR

8

Motivation

Syntax

Semantics

Interpretations

Variable Maps

Terminology

Free and Bound Variables

Open and Closed Formulae

\mathcal{I}, α is a model of ϕ iff

$$\mathcal{I}, \alpha \models \varphi.$$

A formula can be satisfiable, unsatisfiable, falsifiable, valid, ... Two formulae φ and ψ are logically equivalent (symb.: $\varphi \equiv \psi$) iff for all \mathcal{I}, α :

$$\mathcal{I}, \alpha \models \varphi \text{ iff } \mathcal{I}, \alpha \models \psi.$$

Note: $P(x) \not\equiv P(y)!$

Logical implication is also analogous to propositional logic:

 $\Theta \models \varphi$ iff for all \mathcal{I}, α s.t. $\mathcal{I}, \alpha \models \Theta$ also $\mathcal{I}, \alpha \models \varphi$.

Nebel, Wölfl, Hué - KRR

Motivation

2

Syntax

Semantics

Interpretations

Variable Maps

Terminology

Free and Bound Variables

Open and Closed Formulae

$\mathcal{I}, \alpha \text{ is a model of } \phi \text{ iff}$

$$\mathcal{I}, \alpha \models \varphi.$$

A formula can be satisfiable, unsatisfiable, falsifiable, valid, ... Two formulae φ and ψ are logically equivalent (symb.: $\varphi \equiv \psi$) iff for all \mathcal{I}, α :

$$\mathcal{I}, \alpha \models \varphi \text{ iff } \mathcal{I}, \alpha \models \psi.$$

Note: $P(x) \not\equiv P(y)!$

Logical implication is also analogous to propositional logic:

$$\Theta \models \varphi \text{ iff for all } \mathcal{I}, \alpha \text{ s.t. } \mathcal{I}, \alpha \models \Theta \text{ also } \mathcal{I}, \alpha \models \varphi.$$

그造

Motivation

Syntax

Semantics

Interpretations

Variable Maps

Terminology

Free and Bound Variables

Open and Closed Formulae

Variables can be free or bound (by a quantifier) in a formula:

$$\begin{aligned} & \text{free}(x) = \{x\} \\ & \text{free}(f(t_1, \dots, t_n)) = \text{free}(t_1) \cup \dots \cup \text{free}(t_n) \\ & \text{free}(t_1 = t_2) = \text{free}(t_1) \cup \text{free}(t_2) \\ & \text{free}(P(t_1, \dots, t_n)) = \text{free}(t_1) \cup \dots \cup \text{free}(t_n) \\ & \text{free}(\neg \varphi) = \text{free}(\varphi) \\ & \text{free}(\varphi * \psi) = \text{free}(\varphi) \cup \text{free}(\psi), \text{ for } x = \lor, \land, \rightarrow, \leftrightarrow \\ & \text{free}(\Xi x \varphi) = \text{free}(\varphi) \setminus \{x\}, \text{ for } \Xi = \forall, \exists \end{aligned}$$

Example: $\forall x \ (R(y,z)) \land \exists y \ (\neg P(y,x) \lor R(y,z)))$ Framed occurrences are free, all others are bound.

Motivation

Syntax

M

Semantics

Interpretations

Variable Maps

Definition of Trut

Terminology

Free and Bound Variables

Open and Closed Formulae

Variables can be free or bound (by a quantifier) in a formula:

$$\begin{array}{rcl} \operatorname{free}(x) &=& \{x\} \\ \operatorname{free}(f(t_1,\ldots,t_n)) &=& \operatorname{free}(t_1)\cup\cdots\cup\operatorname{free}(t_n) \\ \operatorname{free}(t_1=t_2) &=& \operatorname{free}(t_1)\cup\operatorname{free}(t_2) \\ \operatorname{free}(P(t_1,\ldots,t_n)) &=& \operatorname{free}(t_1)\cup\cdots\cup\operatorname{free}(t_n) \\ \operatorname{free}(\neg\varphi) &=& \operatorname{free}(\varphi) \\ \operatorname{free}(\varphi*\psi) &=& \operatorname{free}(\varphi) \cup\operatorname{free}(\psi), \text{ for } *=\vee,\wedge,\rightarrow,\leftrightarrow \\ \operatorname{free}(\Xi x \varphi) &=& \operatorname{free}(\varphi) \setminus \{x\}, \text{ for } \Xi=\forall,\exists \end{array}$$

Example: $\forall x \ (R(y,z)) \land \exists y \ (\neg P(y,x) \lor R(y,z)))$ Framed occurrences are free, all others are bound. **D**RG

8

Motivation

Interpretations Variable Maps Definition of Truth Terminology Free and Bound Variables Open and Closed

- Formulae without free variables are called closed formulae or sentences. Formulae with free variables are called open formulae.
- Closed formulae are all we need when we want to state something about the world. Open formulae (and variable maps) are only necessary for technical reasons (semantics of ∀ and ∃).
- Note that logical equivalence, satisfiability, and entailment are independent from variable maps if we consider only closed formulae.
- For closed formulae, we omit α in connection with \models :

$$\mathcal{I} \models \varphi$$
.

8

```
Definition of Trut
```

```
Terminology
```

Free and Bound Variables

Open and Closed Formulae

- Formulae without free variables are called closed formulae or sentences. Formulae with free variables are called open formulae.
- Closed formulae are all we need when we want to state something about the world. Open formulae (and variable maps) are only necessary for technical reasons (semantics of ∀ and ∃).
- Note that logical equivalence, satisfiability, and entailment are independent from variable maps if we consider only closed formulae.
- For closed formulae, we omit α in connection with \models :

$$\mathcal{I} \models \varphi$$
.

Motivation

2

Syntax

Semantics

Interpretations Variable Maps Definition of Truth Terminology Free and Bound Variables

Open and Closed Formulae

- Formulae without free variables are called closed formulae or sentences. Formulae with free variables are called open formulae.
- Closed formulae are all we need when we want to state something about the world. Open formulae (and variable maps) are only necessary for technical reasons (semantics of ∀ and ∃).
- Note that logical equivalence, satisfiability, and entailment are independent from variable maps if we consider only closed formulae.
- For closed formulae, we omit α in connection with \models :

$$\mathcal{I} \models \varphi$$
.

Motivation

2

Syntax

Semantics

Interpretations Variable Maps Definition of Truth Terminology Free and Bound Variables

Open and Closed Formulae

- Formulae without free variables are called closed formulae or sentences. Formulae with free variables are called open formulae.
- Closed formulae are all we need when we want to state something about the world. Open formulae (and variable maps) are only necessary for technical reasons (semantics of ∀ and ∃).
- Note that logical equivalence, satisfiability, and entailment are independent from variable maps if we consider only closed formulae.
- For closed formulae, we omit α in connection with \models :

$$\mathcal{I} \models \varphi.$$

Motivatior

2

Syntax

Semantics

Interpretations Variable Maps Definition of Truth Terminology Free and Bound Variables

Open and Closed Formulae

Important theorems

Theorem (Compactness)

Let $\Phi \cup \{\psi\}$ be a set of closed formulae.

- (a) $\Phi \models \psi$ iff there exists a finite subset $\Phi' \subseteq \Phi$ s.t. $\Phi' \models \psi$.
 - b) Φ is satisfiable iff each finite subset $\Phi' \subseteq \Phi$ is satisfiable.

Theorem (Löwenheim-Skolem)

Each countable set of closed formulae that is satisfiable is satisfiable on a countable domain.

Motivation

Syntax

Semantics

Interpretations

variable iviaps

Terminology

Free and Bound Variables

Open and Closed Formulae

Important theorems

Theorem (Compactness)

Let $\Phi \cup \{\psi\}$ be a set of closed formulae.

- (a) $\Phi \models \psi$ iff there exists a finite subset $\Phi' \subseteq \Phi$ s.t. $\Phi' \models \psi$.
 - b) Φ is satisfiable iff each finite subset $\Phi' \subseteq \Phi$ is satisfiable.

Theorem (Löwenheim-Skolem)

Each countable set of closed formulae that is satisfiable is satisfiable on a countable domain.

Motivation

Syntax

Semantics

Interpretations

variable iviaps

Terminology

Free and Bound Variables

Open and Closed Formulae

Motivation

Syntax

Semantics

Literature

Literature

Motivation Semantics

DRD

2

Literature

Spektrum-Verlag.