Principles of
 Knowledge Representation and Reasoning
 Predicate logic

Bernhard Nebel, Stefan Wölfl, and Julien Hué October 26, 2012

Motivation

Why first-order logic (FOL)?

- In propositional logic, the only building blocks are atomic propositions.
- We cannot talk about the internal structures of these propositions.
- Example:
- All CS students know formal logic
- Peter is a CS student
- Therefore, Peter knows formal logic
- Not possible in propositional logic
- Idea: We introduce predicates, functions, object variables and quantifiers.

Motivation
Syntax
Semantics

Literature

Syntax

Syntax

- variable symbols: x, y, z, \ldots
- n-ary function symbols: f, g, \ldots
- constant symbols: a, b, c, \ldots

Motivation
Syntax
Semantics
Literature

- variable symbols: x, y, z, \ldots
$\square n$-ary function symbols: f, g, \ldots
- constant symbols: a, b, c, \ldots

Motivation
Syntax

Formulae $\varphi \underset{ }{\longrightarrow} P\left(t_{1}, \ldots, t_{n}\right)$ atomic formulae
ground term, etc.: term, etc. without variable occurrences

Motivation
Syntax
Semantics
Interpretations
Variable Maps

Semantics

Definition of Truth
Terminology
Free and Bound
Variables
Open and Closed Formulae

Semantics: idea

- In FOL, the universe of discourse consists of objects, functions over these objects, and relations over these objects.
- Function symbols are mapped to functions, predicate symbols are mapped to relations, and terms to objects.
- Notation: Instead of $\mathcal{I}(x)$ we write $x^{\mathcal{I}}$.

■ Note: Usually one considers all possible non-empty universes. (However, sometimes the interpretations are restricted to particular domains, e.g. integers or real numbers.)

- Satisfiability and validity is then considered wrt all these universes.

Formal semantics: interpretations

Interpretations: $\mathcal{I}=\left\langle\mathcal{D}, \cdot^{\mathcal{I}}\right\rangle$ with \mathcal{D} being an arbitrary non-empty set and ${ }^{\mathcal{I}}$ being a function which maps

- n-ary function symbols f to n-ary functions $f^{\mathcal{I}} \in\left[\mathcal{D}^{n} \rightarrow \mathcal{D}\right]$,
- constant symbols a to objects $a^{\mathcal{I}} \in \mathcal{D}$, and
- n-ary predicates P to n-ary relations $P^{\mathcal{I}} \subseteq \mathcal{D}^{n}$.

Interpretation of ground terms:

Motivation
Syntax
Semantics
Interpretations
Variable Maps
Definition of Truth
Terminology
Free and Bound
Variables
Open and Closed Formulae

$$
\left(f\left(t_{1}, \ldots, t_{n}\right)\right)^{\mathcal{I}}=f^{\mathcal{I}}\left(t_{1}{ }^{\mathcal{I}}, \ldots, t_{n}^{\mathcal{I}}\right)(\in \mathcal{D})
$$

Truth of ground atoms:

$$
\mathcal{I} \models P\left(t_{1}, \ldots, t_{n}\right) \quad \text { iff } \quad\left\langle t_{1}{ }^{\mathcal{I}}, \ldots, t_{n}{ }^{\mathcal{I}}\right\rangle \in P^{\mathcal{I}}
$$

Examples

Motivation
Syntax
Semantics
Interpretations

Definition of Truth
Terminology
Free and Bound
Variables
Open and Closed Formulae

Literature

Formal semantics: variable maps

V is the set of variables. Function $\alpha: V \rightarrow \mathcal{D}$ is a variable map. Notation: $\alpha[x / d]$ is identical to α except for x where $\alpha[x / d](x)=d$. Interpretation of terms under \mathcal{I}, α :

$$
\begin{aligned}
x^{\mathcal{I}, \alpha} & =\alpha(x) \\
a^{\mathcal{I}, \alpha} & =a^{\mathcal{I}} \\
\left(f\left(t_{1}, \ldots, t_{n}\right)\right)^{\mathcal{I}, \alpha} & =f^{\mathcal{I}}\left(t_{1}{ }^{\mathcal{I}, \alpha}, \ldots, t_{n}^{\mathcal{I}, \alpha}\right)
\end{aligned}
$$

Truth of atomic formulae:

$$
\mathcal{I}, \alpha \models P\left(t_{1}, \ldots, t_{n}\right) \quad \text { iff } \quad\left\langle t_{1}{ }^{\mathcal{I}, \alpha}, \ldots, t_{n}^{\mathcal{I}, \alpha}\right\rangle \in P^{\mathcal{I}}
$$

Example (cont'd):
$\alpha=\left\{x \mapsto d_{1}, y \mapsto d_{2}\right\} \quad \mathcal{I}, \alpha \models \operatorname{red}(x) \quad \mathcal{I}, \alpha\left[y / d_{1}\right] \models \operatorname{eye}(y)$

Truth of φ by \mathcal{I} under $\alpha(\mathcal{I}, \alpha \models \varphi)$ is defined as follows.

Motivation

$$
\begin{array}{ll}
\mathcal{I}, \alpha \models P\left(t_{1}, \ldots, t_{n}\right) & \text { iff }\left\langle t_{1} \mathcal{I}, \alpha\right. \\
\left.\mathcal{I}, \alpha \models t_{1}=t_{n}{ }^{\mathcal{I}, \alpha}\right\rangle \in P^{\mathcal{I}} & \text { iff } t_{1} \text { I, } \alpha=t_{2}{ }^{\mathcal{I}, \alpha} \\
\mathcal{I}, \alpha \models \neg \varphi & \text { iff } \mathcal{I}, \alpha \not \models \varphi \\
\mathcal{I}, \alpha \models \varphi \wedge \psi & \text { iff } \mathcal{I}, \alpha \models \varphi \text { and } \mathcal{I}, \alpha \models \psi \\
\mathcal{I}, \alpha \models \varphi \vee \psi & \text { iff } \mathcal{I}, \alpha \models \varphi \text { or } \mathcal{I}, \alpha \models \psi \\
\mathcal{I}, \alpha \models \varphi \rightarrow \psi & \text { iff if } \mathcal{I}, \alpha \models \varphi, \text { then } \mathcal{I}, \alpha \models \psi \\
\mathcal{I}, \alpha \models \varphi \leftrightarrow \psi & \text { iff } \mathcal{I}, \alpha \models \varphi, \text { iff } \mathcal{I}, \alpha \models \psi \\
\mathcal{I}, \alpha \models \forall x \varphi & \text { iff } \mathcal{I}, \alpha[x / d]=\varphi \text { for all } d \in \mathcal{D} \\
\mathcal{I}, \alpha \models \exists x \varphi & \text { iff } \mathcal{I}, \alpha[x / d]=\varphi \text { for some } d \in \mathcal{D}
\end{array}
$$

Syntax
Semantics
Interpretations
Variable Maps
Definition of Truth
Terminology
Free and Bound
Variables
Open and Closed Formulae

Literature

Examples

Questions:

Motivation
Syntax
Semantics
Interpretations
Variable Maps Definition of Truth

Terminology
Free and Bound
Variables
Open and Closed Formulae

Examples

Questions:

Motivation
Syntax
Semantics
Interpretations
Variable Maps Definition of Truth

Terminology
Free and Bound
Variables
Open and Closed Formulae

Examples

Questions:

Motivation
Syntax
Semantics
Interpretations
Variable Maps
Definition of Truth
Terminology
Free and Bound
Variables
Open and Closed Formulae

Examples

Questions:

Motivation
Syntax
Semantics
Interpretations
Variable Maps
Definition of Truth
Terminology
Free and Bound
Variables
Open and Closed Formulae

Examples

Questions:

$$
\begin{aligned}
\Theta & =\left\{\begin{array}{l}
\text { eye }(a), \text { eye }(b) \\
\forall x(\operatorname{eye}(x) \rightarrow \operatorname{red}(x))
\end{array}\right\} \\
\mathcal{D} & =\left\{d_{1}, \ldots, d_{n}\right\}, n>1 \\
\mathrm{a}^{\mathcal{I}} & =d_{1} \\
\mathrm{~b}^{\mathcal{I}} & =d_{1} \\
\text { eye }^{\mathcal{I}} & =\left\{d_{1}\right\} \\
\operatorname{red}^{\mathcal{I}} & =\mathcal{D} \\
\alpha & =\left\{\left(x \mapsto d_{1}\right),\left(y \mapsto d_{2}\right)\right\}
\end{aligned}
$$

Motivation
Syntax
Semantics
Interpretations
Variable Maps
Definition of Truth
Terminology
Free and Bound
Variables
Open and Closed Formulae

Examples

Questions:

Motivation
Syntax
Semantics
Interpretations
Variable Maps
Definition of Truth
Terminology
Free and Bound
Variables
Open and Closed Formulae

Examples

Questions:

$$
\begin{aligned}
\Theta & =\left\{\begin{array}{l}
\operatorname{eye}(a), \text { eye }(b) \\
\forall x(\operatorname{eye}(x) \rightarrow \operatorname{red}(x))
\end{array}\right\} \\
\mathcal{D} & =\left\{d_{1}, \ldots, d_{n}\right\}, n>1 \\
\mathrm{a}^{\mathcal{I}} & =d_{1} \\
\mathrm{~b}^{\mathcal{I}} & =d_{1} \\
\operatorname{eye}^{\mathcal{I}} & =\left\{d_{1}\right\} \\
\operatorname{red}^{\mathcal{I}} & =\mathcal{D} \\
\alpha & =\left\{\left(x \mapsto d_{1}\right),\left(y \mapsto d_{2}\right)\right\}
\end{aligned}
$$

Motivation
Syntax
Semantics
Interpretations
Variable Maps
Definition of Truth
Terminology
Free and Bound
Variables
Open and Closed Formulae

Examples

Questions:

Motivation
Syntax
Semantics
Interpretations
Variable Maps
Definition of Truth
Terminology
Free and Bound
Variables
Open and Closed Formulae

Examples

Questions:

$$
\begin{aligned}
& \Theta=\left\{\begin{array}{l}
\text { eye }(a), \text { eye }(b) \\
\forall x(\operatorname{eye}(x) \rightarrow \operatorname{red}(x))
\end{array}\right\} \\
& \mathcal{D}=\left\{d_{1}, \ldots, d_{n}\right\}, n>1 \\
& \mathrm{a}^{\mathcal{I}}=d_{1} \\
& \mathrm{~b}^{\mathcal{I}}=d_{1} \\
& \text { eye }^{\mathcal{I}}=\left\{d_{1}\right\} \\
& \operatorname{red}^{\mathcal{I}}=\mathcal{D} \\
& \alpha=\left\{\left(x \mapsto d_{1}\right),\left(y \mapsto d_{2}\right)\right\} \\
& \text { Motivation } \\
& \text { Syntax } \\
& \text { Semantics } \\
& \text { Interpretations } \\
& \text { Variable Maps } \\
& \text { Definition of Truth } \\
& \text { Terminology } \\
& \text { Free and Bound } \\
& \text { Variables } \\
& \text { Open and Closed } \\
& \text { Formulae }
\end{aligned}
$$

Examples

Questions:

$$
\begin{aligned}
& \Theta=\left\{\begin{array}{l}
\text { eye }(a), \text { eye }(b) \\
\forall x(\operatorname{eye}(x) \rightarrow \operatorname{red}(x))
\end{array}\right\} \\
& \mathcal{D}=\left\{d_{1}, \ldots, d_{n}\right\}, n>1 \\
& \mathrm{a}^{\mathcal{I}}=d_{1} \\
& \mathrm{~b}^{\mathcal{I}}=d_{1} \\
& \text { eye }^{\mathcal{I}}=\left\{d_{1}\right\} \\
& \operatorname{red}^{\mathcal{I}}=\mathcal{D} \\
& \alpha=\left\{\left(x \mapsto d_{1}\right),\left(y \mapsto d_{2}\right)\right\} \\
& \mathcal{I}, \alpha \models \operatorname{eye}(b) \vee \neg \operatorname{eye}(b) ? \\
& \text { Yes } \\
& \mathcal{I}, \alpha \models \operatorname{eye}(x) \rightarrow \\
& \text { eye }(x) \vee \text { eye }(y) \text { ? Yes } \\
& \mathcal{I}, \alpha \models \operatorname{eye}(x) \rightarrow \text { eye }(y) \text { ? } \\
& \text { No } \\
& \mathcal{I}, \alpha \models \operatorname{eye}(a) \wedge \operatorname{eye}(b) \text { ? } \\
& \text { Yes } \\
& \mathcal{I}, \alpha \models \forall x(\operatorname{eye}(x) \rightarrow \\
& \operatorname{red}(x)) \text { ? Yes } \\
& \text { Motivation } \\
& \text { Syntax } \\
& \text { Semantics } \\
& \text { Interpretations } \\
& \text { Variable Maps } \\
& \text { Definition of Truth } \\
& \text { Terminology } \\
& \text { Free and Bound } \\
& \text { Variables } \\
& \text { Open and Closed } \\
& \text { Formulae }
\end{aligned}
$$

Examples

Questions:

$$
\begin{aligned}
\Theta & =\left\{\begin{array}{l}
\operatorname{eye}(a), \text { eye }(b) \\
\forall x(\operatorname{eye}(x) \rightarrow \operatorname{red}(x))
\end{array}\right\} \\
\mathcal{D} & =\left\{d_{1}, \ldots, d_{n}\right\}, n>1 \\
\mathrm{a}^{\mathcal{I}} & =d_{1} \\
\mathrm{~b}^{\mathcal{I}} & =d_{1} \\
\text { eye }^{\mathcal{I}} & =\left\{d_{1}\right\} \\
\operatorname{red}^{\mathcal{I}} & =\mathcal{D} \\
\alpha & =\left\{\left(x \mapsto d_{1}\right),\left(y \mapsto d_{2}\right)\right\}
\end{aligned}
$$

Motivation
Syntax
Semantics
Interpretations
Variable Maps
Definition of Truth
Terminology
Free and Bound Variables
Open and Closed Formulae

Examples

Questions:

$$
\begin{aligned}
\Theta & =\left\{\begin{array}{l}
\text { eye }(a), \text { eye }(b) \\
\forall x(\operatorname{eye}(x) \rightarrow \operatorname{red}(x))
\end{array}\right\} \\
\mathcal{D} & =\left\{d_{1}, \ldots, d_{n}\right\}, n>1 \\
\mathrm{a}^{\mathcal{I}} & =d_{1} \\
\mathbf{b}^{\mathcal{I}} & =d_{1} \\
\operatorname{eye}^{\mathcal{I}} & =\left\{d_{1}\right\} \\
\operatorname{red}^{\mathcal{I}} & =\mathcal{D} \\
\alpha & =\left\{\left(x \mapsto d_{1}\right),\left(y \mapsto d_{2}\right)\right\}
\end{aligned}
$$

Motivation
Syntax
Semantics
Interpretations
Variable Maps
Definition of Truth
Terminology
Free and Bound
Variables
Open and Closed Formulae

Terminology

\mathcal{I}, α is a model of φ iff

$$
\mathcal{I}, \alpha \models \varphi .
$$

A formula can be satisfiable, unsatisfiable, falsifiable, valid, ...
Two formulae φ and ψ are logically equivalent (symb.: $\varphi \equiv \psi$) iff for all \mathcal{I}, α :

$$
\mathcal{I}, \alpha \models \varphi \text { iff } \mathcal{I}, \alpha \models \psi .
$$

Note: $\mathrm{P}(\mathrm{x}) \not \equiv \mathrm{P}(\mathrm{y})$!
Semantics
Interpretations
Variable Maps
Definition of Truth
Terminology
Free and Bound
Variables
Open and Closed Formulae

Logical implication is also analogous to propositional logic:

$$
\Theta \models \varphi \text { iff for all } \mathcal{I}, \alpha \text { s.t. } \mathcal{I}, \alpha \models \Theta \text { also } \mathcal{I}, \alpha \models \varphi \text {. }
$$

Terminology

\mathcal{I}, α is a model of φ iff

$$
\mathcal{I}, \alpha \models \varphi .
$$

A formula can be satisfiable, unsatisfiable, falsifiable, valid, ... Two formulae φ and ψ are logically equivalent (symb.: $\varphi \equiv \psi$) iff for all \mathcal{I}, α :

$$
\mathcal{I}, \alpha \models \varphi \text { iff } \mathcal{I}, \alpha \models \psi .
$$

Motivation
Syntax
Semantics
Interpretations
Variable Maps Definition of Truth

Terminology
Free and Bound
Variables
Open and Closed Formulae

Terminology

\mathcal{I}, α is a model of φ iff

$$
\mathcal{I}, \alpha \models \varphi .
$$

A formula can be satisfiable, unsatisfiable, falsifiable, valid, ...
Two formulae φ and ψ are logically equivalent (symb.: $\varphi \equiv \psi$) iff for all \mathcal{I}, α :

$$
\mathcal{I}, \alpha \models \varphi \text { iff } \mathcal{I}, \alpha \models \psi .
$$

Note: $\mathrm{P}(\mathrm{x}) \not \equiv \mathrm{P}(\mathrm{y})$!
Logical implication is also analogous to propositional logic:

$$
\Theta \models \varphi \text { iff for all } \mathcal{I}, \alpha \text { s.t. } \mathcal{I}, \alpha \models \Theta \text { also } \mathcal{I}, \alpha \models \varphi \text {. }
$$

Terminology

\mathcal{I}, α is a model of φ iff

$$
\mathcal{I}, \alpha \models \varphi .
$$

A formula can be satisfiable, unsatisfiable, falsifiable, valid, ...
Two formulae φ and ψ are logically equivalent (symb.: $\varphi \equiv \psi$) iff for all \mathcal{I}, α :

$$
\mathcal{I}, \alpha \models \varphi \text { iff } \mathcal{I}, \alpha \models \psi .
$$

Note: $\mathrm{P}(\mathrm{x}) \not \equiv \mathrm{P}(\mathrm{y})$!
Logical implication is also analogous to propositional logic:

$$
\Theta \models \varphi \text { iff for all } \mathcal{I}, \alpha \text { s.t. } \mathcal{I}, \alpha \models \Theta \text { also } \mathcal{I}, \alpha \models \varphi \text {. }
$$

Free and bound variables

Variables can be free or bound (by a quantifier) in a formula:

$$
\begin{aligned}
\text { free }(x) & =\{x\} \\
\text { free }\left(f\left(t_{1}, \ldots, t_{n}\right)\right) & =\text { free }\left(t_{1}\right) \cup \cdots \cup \text { free }\left(t_{n}\right) \\
\operatorname{free}\left(t_{1}=t_{2}\right) & =\text { free }\left(t_{1}\right) \cup \text { free }\left(t_{2}\right) \\
\text { free }\left(P\left(t_{1}, \ldots, t_{n}\right)\right) & =\text { free }\left(t_{1}\right) \cup \cdots \cup \text { free }\left(t_{n}\right) \\
\text { free }(\neg \varphi) & =\text { free }(\varphi) \\
\operatorname{free}(\varphi * \psi) & =\operatorname{free}(\varphi) \cup \text { free }(\psi), \text { for } *=\vee, \wedge, \rightarrow, \leftrightarrow \\
\text { free }(\Xi x \varphi) & =\operatorname{free}(\varphi) \backslash\{x\}, \text { for } \equiv=\forall, \exists
\end{aligned}
$$

Example: $\forall \mathrm{x}(\mathrm{R}(\mathrm{y}, \mathrm{z}) \wedge \exists \mathrm{y}(\neg \mathrm{P}(\mathrm{y}, \mathrm{x}) \vee \mathrm{R}(\mathrm{y}, \mathrm{z})))$ Framed occurrences are free, all others are bound.

Free and bound variables

Variables can be free or bound (by a quantifier) in a formula:

$$
\begin{aligned}
\text { free }(x) & =\{x\} \\
\text { free }\left(f\left(t_{1}, \ldots, t_{n}\right)\right) & =\text { free }\left(t_{1}\right) \cup \cdots \cup \text { free }\left(t_{n}\right) \\
\operatorname{free}\left(t_{1}=t_{2}\right) & =\text { free }\left(t_{1}\right) \cup \text { free }\left(t_{2}\right) \\
\text { free }\left(P\left(t_{1}, \ldots, t_{n}\right)\right) & =\text { free }\left(t_{1}\right) \cup \cdots \cup \text { free }\left(t_{n}\right) \\
\text { free }(\neg \varphi) & =\text { free }(\varphi) \\
\operatorname{free}(\varphi * \psi) & =\operatorname{free}(\varphi) \cup \text { free }(\psi), \text { for } *=\vee, \wedge, \rightarrow, \leftrightarrow \\
\text { free }(\Xi x \varphi) & =\operatorname{free}(\varphi) \backslash\{x\}, \text { for } \equiv=\forall, \exists
\end{aligned}
$$

Example: $\forall \mathrm{x}(\mathrm{R}(\sqrt[\mathrm{y}]{\mathrm{y}}, \overline{\mathrm{z}}) \wedge \exists \mathrm{y}(\neg \mathrm{P}(\mathrm{y}, \mathrm{x}) \vee \mathrm{R}(\mathrm{y}, \mathrm{z})))$
Framed occurrences are free, all others are bound.

Open \& closed formulae

- Formulae without free variables are called closed formulae or sentences. Formulae with free variables are called open formulae.

Closed formulae are all we need when we want to state something about the world. Open formulae (and variable maps) are only necessary for technical reasons (semantics of \forall and \exists).

Note that logical equivalence, satisfiability, and entailment are independent from variable maps if we consider only closed formulae.

For closed formulae, we omit α in connection with \equiv :

Open \& closed formulae

- Formulae without free variables are called closed formulae or sentences. Formulae with free variables are called open formulae.
- Closed formulae are all we need when we want to state something about the world. Open formulae (and variable maps) are only necessary for technical reasons (semantics of \forall and \exists).

Note that logical equivalence, satisfiability, and entailment are independent from variable maps if we consider only closed formulae.

For closed formulae, we omit α in connection with $=$:

Open \& closed formulae

- Formulae without free variables are called closed formulae or sentences. Formulae with free variables are called open formulae.
- Closed formulae are all we need when we want to state something about the world. Open formulae (and variable maps) are only necessary for technical reasons (semantics of \forall and \exists).
- Note that logical equivalence, satisfiability, and entailment are independent from variable maps if we consider only closed formulae.

For closed formulae, we omit α in connection with $=$:

Open \& closed formulae

- Formulae without free variables are called closed formulae or sentences. Formulae with free variables are called open formulae.
- Closed formulae are all we need when we want to state something about the world. Open formulae (and variable maps) are only necessary for technical reasons (semantics of \forall and \exists).
- Note that logical equivalence, satisfiability, and entailment are independent from variable maps if we consider only closed formulae.
- For closed formulae, we omit α in connection with \models :

$$
\mathcal{I} \models \varphi .
$$

Important theorems

Theorem (Compactness)

Syntax

Semantics
Interpretations
Variable Maps
Definition of Truth
Terminology
Free and Bound
Variables
Open and Closed Formulae

Literature

Theorem (Löwenheim-Skolem)
Each countable set of closed formule that is satisfiable is
satisfiable on a countable domain.

Important theorems

Motivation

Theorem (Compactness)

Syntax
Semantics
Interpretations
Variable Maps
Definition of Truth
Terminology
Free and Bound
Variables
Open and Closed Formulae

Literature

Theorem (Löwenheim-Skolem)

Each countable set of closed formulae that is satisfiable is satisfiable on a countable domain.

Motivation
Syntax
Semantics
Literature

Literature

Literature

Harry R. Lewis and Christos H. Papadimitriou.
Elements of the Theory of Computation.
Prentice-Hall, Englewood Cliffs, NJ, 1981 (Chapters 8 \& 9).

Syntax
Semantics

Literature

Volker Sperschneider and Grigorios Antoniou.
Logic - A Foundation for Computer Science.
Addison-Wesley, Reading, MA, 1991 (Chapters 1-3).
H.-P. Ebbinghaus, J. Flum, and W. Thomas.

Einführung in die mathematische Logik.
Wissenschaftliche Buchgesellschaft, Darmstadt, 1986.
嘈
U. Schöning.

Logik für Informatiker.
Spektrum-Verlag.

