Principles of Knowledge Representation and Reasoning Predicate logic

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel, Stefan Wölfl, and Julien Hué October 26, 2012

Why first-order logic (FOL)?

4 / 22

Motivation

Syntax

Literature

- In propositional logic, the only building blocks are atomic propositions.
- We cannot talk about the internal structures of these propositions.
- Example:

October 26, 2012

- All CS students know formal logic
- Peter is a CS student
- Therefore, Peter knows formal logic
- Not possible in propositional logic
- Idea: We introduce predicates, functions, object variables and quantifiers.

Nebel, Wölfl, Hué - KRR

1 Motivation Motivation Syntax Semantics Literature October 26, 2012 Nebel, Wölfl, Hué - KRR 3 / 22

2 Syntax Motivation Syntax Semantics Literature October 26, 2012 Nebel, Wölfl, Hué - KRR

Syntax

- \blacksquare variable symbols: x, y, z, ...
- \blacksquare *n*-ary function symbols: f, g, ...
- \blacksquare constant symbols: a, b, c, ...
- \blacksquare *n*-ary predicate symbols: P, Q, ...
- \blacksquare logical symbols: \forall , \exists , =, \neg , \land , ...

Terms

- $t \longrightarrow x$ variable $f(t_1, \dots, t_n)$ function application a constant
- Formulae
- $\varphi \longrightarrow P(t_1, \dots, t_n)$ atomic formulae t = t' identity formulae t = t' propositional connectives t' = t' = t' universal quantification t' = t' = t' existential quantification

ground term, etc.: term, etc. without variable occurrences

October 26, 2012

October 26, 2012

Nebel, Wölfl, Hué – KRR

7 / 22

Motivation

Syntax

Literature

Motivation

Semantics

Variable Maps

Definition of Truth

Free and Bound

Open and Close

Literature

10 / 22

Syntax

Semantics: idea

- In FOL, the universe of discourse consists of objects, functions over these objects, and relations over these objects.
- Function symbols are mapped to functions, predicate symbols are mapped to relations, and terms to objects.
- Notation: Instead of $\mathcal{I}(x)$ we write $x^{\mathcal{I}}$.
- Note: Usually one considers all possible non-empty universes. (However, sometimes the interpretations are restricted to particular domains, e.g. integers or real numbers.)
- Satisfiability and validity is then considered wrt all these universes.

Nebel, Wölfl, Hué - KRR

3 Semantics

- Interpretations
- Variable Maps
- Definition of Truth
- Terminology
- Free and Bound Variables
- Open and Closed Formulae

Motivation

Syntax

Semantics

Variable Maps

Definition of Trut

Terminology

Variables

Literature

October 26, 2012 Nebel, Wölfl, Hué – KRR

Formal semantics: interpretations

9 / 22

Interpretations: $\mathcal{I} = \langle \mathcal{D}, \cdot^{\mathcal{I}} \rangle$ with \mathcal{D} being an arbitrary non-empty set and $\cdot^{\mathcal{I}}$ being a function which maps

- *n*-ary function symbols *f* to *n*-ary functions $f^{\mathcal{I}} \in [\mathcal{D}^n \to \mathcal{D}]$,
- \blacksquare constant symbols a to objects $a^{\mathcal{I}} \in \mathcal{D}$, and
- *n*-ary predicates *P* to *n*-ary relations $P^{\mathcal{I}} \subseteq \mathcal{D}^n$.

Interpretation of ground terms:

$$(f(t_1,\ldots,t_n))^{\mathcal{I}} = f^{\mathcal{I}}(t_1^{\mathcal{I}},\ldots,t_n^{\mathcal{I}}) \in \mathcal{D})$$

Truth of ground atoms:

$$\mathcal{I} \models P(t_1, \ldots, t_n) \quad \text{iff} \quad \langle t_1^{\mathcal{I}}, \ldots, t_n^{\mathcal{I}} \rangle \in P^{\mathcal{I}}$$

October 26, 2012 Nebel, Wölfl, Hué – KRR

Motivation Syntax

Semantics

Interpretations

Variable Maps Definition of Truth

Free and Bound Variables

Open and Closed Formulae

Literature

Examples

Motivation

Syntax

Semantics

Interpretations Variable Maps

Definition of Trut Terminology Free and Bound

Variables Open and Closed

Literature

$$b = d_2$$
 $2 = 2$
 $eye^{\mathcal{I}} = \{d_1\}$ \vdots
 $red^{\mathcal{I}} = \mathcal{D}$ $even^{\mathcal{I}} = \{2,4,6,...\}$
 $\mathcal{I} \models red(b)$ $succ^{\mathcal{I}} = \{(1 \mapsto 2), (2 \mapsto 2), (2 \mapsto 2), (2 \mapsto 2)\}$

 $D = \{d_1,...,d_n\}, n \ge 2$ $D = \{1,2,3,...\}$

$$\operatorname{succ}^{\mathcal{I}} = \{(1 \mapsto 2), (2 \mapsto 3), \ldots\}$$

$$\mathcal{I} \not\models \operatorname{eye}(b)$$
 $\mathcal{I} \not\models \operatorname{even}(3)$

 $\mathcal{I} \models \text{even}(\text{succ}(3))$

October 26, 2012

Nebel, Wölfl, Hué - KRR

12 / 22

UNI FREIBURG

Motivation

Variable Maps

Definition of Truth

Free and Bound

Open and Closed

Variables

Literature

Syntax

Formal semantics: variable maps

Motivation

BURG

Free and Bound Variables Open and Close

Literature

V is the set of variables. Function $\alpha: V \to \mathcal{D}$ is a variable map. Notation: $\alpha[x/d]$ is identical to α except for x where $\alpha[x/d](x) = d.$

Interpretation of terms under \mathcal{I}, α :

$$x^{\mathcal{I},\alpha} = \alpha(x)$$

$$a^{\mathcal{I},\alpha} = a^{\mathcal{I}}$$

$$(f(t_1,\ldots,t_n))^{\mathcal{I},\alpha} = f^{\mathcal{I}}(t_1^{\mathcal{I},\alpha},\ldots,t_n^{\mathcal{I},\alpha})$$

Truth of atomic formulae:

$$\mathcal{I}, \alpha \models P(t_1, \dots, t_n) \quad \text{iff} \quad \langle t_1^{\mathcal{I}, \alpha}, \dots, t_n^{\mathcal{I}, \alpha} \rangle \in P^{\mathcal{I}}$$

Example (cont'd):

$$\alpha = \{x \mapsto d_1, y \mapsto d_2\}$$
 $\mathcal{I}, \alpha \models \operatorname{red}(x)$ $\mathcal{I}, \alpha[y/d_1] \models \operatorname{eye}(y)$

October 26, 2012

Nebel, Wölfl, Hué - KRR

Formal semantics: truth

Truth of φ by \mathcal{I} under α ($\mathcal{I}, \alpha \models \varphi$) is defined as follows.

$$\mathcal{I}, \alpha \models P(t_1, \dots, t_n)$$
 iff $\langle t_1^{\mathcal{I}, \alpha}, \dots, t_n^{\mathcal{I}, \alpha} \rangle \in P^{\mathcal{I}}$

$$\mathcal{I}, \alpha \models t_1 = t_2$$
 iff $t_1^{\mathcal{I}, \alpha} = t_2^{\mathcal{I}, \alpha}$

$$\mathcal{I}, \alpha \models \neg \varphi$$
 iff $\mathcal{I}, \alpha \not\models \varphi$

$$\mathcal{I}, \alpha \models \varphi \land \psi$$
 iff $\mathcal{I}, \alpha \models \varphi$ and $\mathcal{I}, \alpha \models \psi$

$$\mathcal{I}, \alpha \models \varphi \lor \psi$$
 iff $\mathcal{I}, \alpha \models \varphi \text{ or } \mathcal{I}, \alpha \models \psi$

$$\mathcal{I}, \alpha \models \varphi \rightarrow \psi$$
 iff if $\mathcal{I}, \alpha \models \varphi$, then $\mathcal{I}, \alpha \models \psi$

$$\mathcal{I}, \alpha \models \varphi \leftrightarrow \psi$$
 iff $\mathcal{I}, \alpha \models \varphi$, iff $\mathcal{I}, \alpha \models \psi$

$$\mathcal{I}, \alpha \models \forall x \, \phi$$
 iff $\mathcal{I}, \alpha[x/d] \models \phi$ for all $d \in \mathcal{D}$

$$\mathcal{I}, \alpha \models \exists x \, \phi$$
 iff $\mathcal{I}, \alpha[x/d] \models \phi$ for some $d \in \mathcal{D}$

Examples

Questions:

$\Theta = \left\{ \begin{array}{ll} \mathsf{eye}(a), \mathsf{eye}(b) \\ \forall x (\mathsf{eye}(x) \to \mathsf{red}(x)) \end{array} \right\}$ $\mathcal{D} = \{d_1, \ldots, d_n\}, n > 1$

$$\operatorname{\mathsf{eye}}^{\mathcal{I}} = \{d_1\}$$

$$\alpha = \{(x \mapsto d_1), (y \mapsto d_2)\}$$

$\mathcal{I}, \alpha \models \mathsf{eye}(b) \lor \neg \mathsf{eye}(b)$?

$$\mathcal{I}, \alpha \models \mathsf{eye}(x) \rightarrow \mathsf{eye}(x) \lor \mathsf{eye}(y)$$
? Yes

$$\mathcal{I}, \alpha \models \mathsf{eye}(x) \rightarrow \mathsf{eye}(y)$$
?

$$\mathcal{I}, \alpha \models \mathsf{eye}(a) \land \mathsf{eye}(b)$$
?

$$\mathcal{I}, \alpha \models \forall x (eye(x) \rightarrow red(x))$$
? Yes

$$\mathcal{I}, \alpha \models \Theta$$
? Yes

Syntax

Variable Maps

UNI FREIBURG

Motivation Syntax

Variable Maps

Definition of Truth Terminology Free and Bound Variables

Open and Close Formulae

Literature

October 26, 2012 Nebel, Wölfl, Hué - KRR 15 / 22

Terminology

Motivation

Variable Maps

Terminology

Definition of Trut

Open and Close

Literature

Syntax

 \mathcal{I}, α is a model of φ iff

$$\mathcal{I}, \alpha \models \varphi$$
.

A formula can be satisfiable, unsatisfiable, falsifiable, valid, ... Two formulae φ and ψ are logically equivalent (symb.: $\varphi \equiv \psi$) iff for all \mathcal{I}, α :

$$\mathcal{I}, \alpha \models \varphi \text{ iff } \mathcal{I}, \alpha \models \psi.$$

Note: $P(x) \not\equiv P(y)!$

Logical implication is also analogous to propositional logic:

$$\Theta \models \varphi$$
 iff for all \mathcal{I}, α s.t. $\mathcal{I}, \alpha \models \Theta$ also $\mathcal{I}, \alpha \models \varphi$.

October 26, 2012

October 26, 2012

Nebel, Wölfl, Hué - KRR

16 / 22

UNI FREIBURG

Motivation

Variable Maps

Definition of Truth

Free and Bound

Open and Close

Literature

Syntax

Free and bound variables

Motivation

Literature

Variables can be free or bound (by a quantifier) in a formula:

$$\begin{array}{rcl} \operatorname{free}(x) & = & \{x\} \\ \operatorname{free}(f(t_1,\ldots,t_n)) & = & \operatorname{free}(t_1) \cup \cdots \cup \operatorname{free}(t_n) \\ \operatorname{free}(t_1 = t_2) & = & \operatorname{free}(t_1) \cup \operatorname{free}(t_2) \\ \operatorname{free}(P(t_1,\ldots,t_n)) & = & \operatorname{free}(t_1) \cup \cdots \cup \operatorname{free}(t_n) \\ \operatorname{free}(\neg \varphi) & = & \operatorname{free}(\varphi) \end{array}$$

 $free(\phi * \psi) = free(\phi) \cup free(\psi), for * = \lor, \land, \rightarrow, \leftrightarrow$ $free(\Xi x \varphi) = free(\varphi) \setminus \{x\}, for \Xi = \forall, \exists$

Example: $\forall x (R(y,z) \land \exists y (\neg P(y,x) \lor R(y,z)))$ Framed occurrences are free, all others are bound.

October 26, 2012

Nebel, Wölfl, Hué - KRR

17 / 22

Open & closed formulae

- Formulae without free variables are called closed formulae or sentences. Formulae with free variables are called open formulae
- Closed formulae are all we need when we want to state something about the world. Open formulae (and variable maps) are only necessary for technical reasons (semantics of \forall and \exists).
- Note that logical equivalence, satisfiability, and entailment are independent from variable maps if we consider only closed formulae.
- For closed formulae, we omit α in connection with \models :

$$\mathcal{I} \models \varphi$$
.

Important theorems

Theorem (Compactness)

Let $\Phi \cup \{\psi\}$ be a set of closed formulae.

- (a) $\Phi \models \psi$ iff there exists a finite subset $\Phi' \subseteq \Phi$ s. t. $\Phi' \models \psi$.
- (b) Φ is satisfiable iff each finite subset $\Phi' \subset \Phi$ is satisfiable.

Theorem (Löwenheim-Skolem)

Each countable set of closed formulae that is satisfiable is satisfiable on a countable domain.

Motivation

Free and Bound

Open and Closed Formulae

Literature

October 26, 2012 Nebel, Wölfl, Hué - KRR

Nebel, Wölfl, Hué - KRR

18 / 22

4 Literature

Motivation

Syntax

Semantics

Literature

October 26, 2012 Nebel, Wölfl, Hué – KRR 21 / 22

Literature

22 / 22

Motivation

Syntax

Semantics

Literature

Harry R. Lewis and Christos H. Papadimitriou. Elements of the Theory of Computation.

Prentice-Hall, Englewood Cliffs, NJ, 1981 (Chapters 8 & 9).

Volker Sperschneider and Grigorios Antoniou.

Logic – A Foundation for Computer Science.

Addison-Wesley, Reading, MA, 1991 (Chapters 1–3).

H.-P. Ebbinghaus, J. Flum, and W. Thomas.

Einführung in die mathematische Logik.

Wissenschaftliche Buchgesellschaft, Darmstadt, 1986.

U. Schöning.
Logik für Informatiker.
Spektrum-Verlag.

October 26, 2012 Nebel, Wölfl, Hué – KRR