# Principles of Knowledge Representation and Reasoning Predicate logic

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel, Stefan Wölfl, and Julien Hué October 26, 2012



EREIBL

### Motivation

Syntax

Semantics



We cannot talk about the internal structures of these propositions.

■ Example:

- All CS students know formal logic
- Peter is a CS student
- Therefore, Peter knows formal logic
- Not possible in propositional logic
- Idea: We introduce predicates, functions, object variables and quantifiers.

Motivation

Syntax

Semantics



Motivation

Syntax

Semantics

# **Syntax**

Terms



- variable symbols: x, y, z, ...
- *n*-ary function symbols:  $f, g, \dots$
- constant symbols: a,b,c,...
- n-ary predicate symbols:  $P, Q, \dots$
- logical symbols:  $\forall$ ,  $\exists$ , =,  $\neg$ ,  $\wedge$ , ...

 $\longrightarrow x$  variable  $f(t_1, \dots, t_n)$  function application a constant

Formulae

 $\varphi \longrightarrow P(t_1,\ldots,t_n)$ atomic formulae |t=t'| identity formulae |t=t'| propositional connectives  $|\forall x \varphi'|$  universal quantification  $\exists x \phi'$  existential quantification

ground term, etc.: term, etc. without variable occurrences

Motivation

Syntax

Semantics



- Interpretations
- Variable Maps
- Definition of Truth
- Terminology
- Free and Bound Variables
- Open and Closed Formulae

### Motivation

### Syntax

### Semantics

Interpretations

Variable Maps

Definition of Truth

Terminology

Free and Bound

Open and Closed

Formulae

### Semantics: idea



TREE E

- In FOL, the universe of discourse consists of objects, functions over these objects, and relations over these objects.
- Function symbols are mapped to functions, predicate symbols are mapped to relations, and terms to objects.
- Notation: Instead of  $\mathcal{I}(x)$  we write  $x^{\mathcal{I}}$ .
- Note: Usually one considers all possible non-empty universes. (However, sometimes the interpretations are restricted to particular domains, e.g. integers or real numbers.)
- Satisfiability and validity is then considered wrt all these universes.

Motivation

Syntax

### Semantics

Interpretation

interpretations

Definition of Truth

Terminology

Variables

Open and Closed

Literature

# Formal semantics: interpretations



FREIBUR

Interpretations:  $\mathcal{I} = \langle \mathcal{D}, \cdot^{\mathcal{I}} \rangle$  with  $\mathcal{D}$  being an arbitrary non-empty set and  $\cdot^{\mathcal{I}}$  being a function which maps

- *n*-ary function symbols *f* to *n*-ary functions  $f^{\mathcal{I}} \in [\mathcal{D}^n \to \mathcal{D}]$ ,
- $\blacksquare$  constant symbols a to objects  $a^{\mathcal{I}} \in \mathcal{D}$ , and
- *n*-ary predicates *P* to *n*-ary relations  $P^{\mathcal{I}} \subseteq \mathcal{D}^n$ .

Interpretation of ground terms:

$$(f(t_1,\ldots,t_n))^{\mathcal{I}} = f^{\mathcal{I}}(t_1^{\mathcal{I}},\ldots,t_n^{\mathcal{I}}) (\in \mathcal{D})$$

Truth of ground atoms:

$$\mathcal{I} \models P(t_1, \dots, t_n) \quad \text{iff} \quad \langle t_1^{\mathcal{I}}, \dots, t_n^{\mathcal{I}} \rangle \in P^{\mathcal{I}}$$

Motivation

Syntax

Semantics

### Interpretations

Variable Maps

Terminology

Free and Bound

Open and Closed

Formulae

# Examples



### Motivation

### Interpretations

Definition of Truth

Terminology

Open and Closed

$$\mathcal{D} = \{d_1, \dots, d_n\}, n \geq 2 \qquad \mathcal{D} = \{1, 2, 3, \dots\}$$

$$\mathbf{a}^{\mathcal{I}} = d_1 \qquad \mathbf{1}^{\mathcal{I}} = \mathbf{1}$$

$$\mathbf{b}^{\mathcal{I}} = d_2 \qquad \mathbf{2}^{\mathcal{I}} = \mathbf{2}$$

$$\mathbf{e} \mathbf{y} \mathbf{e}^{\mathcal{I}} = \{d_1\} \qquad \vdots$$

$$\mathbf{r} \mathbf{e} \mathbf{d}^{\mathcal{I}} = \mathcal{D} \qquad \mathbf{e} \mathbf{v} \mathbf{e} \mathbf{n}^{\mathcal{I}} = \{2, 4, 6, \dots\}$$

$$\mathcal{I} \models \mathbf{r} \mathbf{e} \mathbf{d} (\mathbf{b}) \qquad \mathbf{s} \mathbf{u} \mathbf{c} \mathbf{c}^{\mathcal{I}} = \{(1 \mapsto 2), (2 \mapsto 3), \dots\}$$

$$\mathcal{I} \not\models \mathbf{e} \mathbf{y} \mathbf{e} (\mathbf{b}) \qquad \mathcal{I} \not\models \mathbf{e} \mathbf{v} \mathbf{e} \mathbf{n} (\mathbf{s} \mathbf{u} \mathbf{c} \mathbf{c} (\mathbf{3}))$$

# Formal semantics: variable maps



V is the set of variables. Function  $\alpha: V \to \mathcal{D}$  is a variable map. Notation:  $\alpha[x/d]$  is identical to  $\alpha$  except for x where

 $\alpha[x/d](x) = d.$ 

Interpretation of terms under  $\mathcal{I}, \alpha$ :

$$x^{\mathcal{I},\alpha} = \alpha(x)$$

$$a^{\mathcal{I},\alpha} = a^{\mathcal{I}}$$

$$(f(t_1,\ldots,t_n))^{\mathcal{I},\alpha} = f^{\mathcal{I}}(t_1^{\mathcal{I},\alpha},\ldots,t_n^{\mathcal{I},\alpha})$$

Truth of atomic formulae:

$$\mathcal{I}, \alpha \models P(t_1, \dots, t_n)$$
 iff  $\langle t_1^{\mathcal{I}, \alpha}, \dots, t_n^{\mathcal{I}, \alpha} \rangle \in P^{\mathcal{I}}$ 

Example (cont'd):

$$\alpha = \{x \mapsto d_1, v \mapsto d_2\}$$

$$\mathcal{I}, \alpha \models \operatorname{red}(x)$$

$$\alpha = \{x \mapsto d_1, y \mapsto d_2\}$$
  $\mathcal{I}, \alpha \models \operatorname{red}(x)$   $\mathcal{I}, \alpha[y/d_1] \models \operatorname{eye}(y)$ 

Motivation

Variable Mans

Free and Bound

### Formal semantics: truth



# UNI FREIBURG

Truth of  $\varphi$  by  $\mathcal{I}$  under  $\alpha$  ( $\mathcal{I}, \alpha \models \varphi$ ) is defined as follows.

$$\mathcal{I}, \alpha \models P(t_1, \ldots, t_n)$$

iff 
$$\langle t_1^{\mathcal{I},\alpha},\ldots,t_n^{\mathcal{I},\alpha}\rangle\in P^{\mathcal{I}}$$

$$\mathcal{I}, \alpha \models t_1 = t_2$$

iff 
$$t_1^{\mathcal{I},\alpha} = t_2^{\mathcal{I},\alpha}$$

$$\mathcal{I}, \alpha \models \neg \varphi$$

iff 
$$\mathcal{I}, \alpha \not\models \varphi$$

$$\mathcal{I}, \alpha \models \varphi \wedge \psi$$

iff 
$$\mathcal{I}, \alpha \models \varphi$$
 and  $\mathcal{I}, \alpha \models \psi$ 

$$\mathcal{I}, \alpha \models \varphi \lor \psi$$

iff 
$$\mathcal{I}, \alpha \models \varphi \text{ or } \mathcal{I}, \alpha \models \psi$$

$$\mathcal{I},\alpha\models\phi\rightarrow\psi$$

iff if 
$$\mathcal{I}, \pmb{lpha} \models \pmb{arphi},$$
 then  $\mathcal{I}, \pmb{lpha} \models \pmb{\psi}$ 

$$\mathcal{I}, \alpha \models \varphi \leftrightarrow \psi$$

iff 
$$\mathcal{I}, \alpha \models \varphi$$
, iff  $\mathcal{I}, \alpha \models \psi$ 

$$\mathcal{I}, \alpha \models \forall x \, \varphi$$

iff 
$$\mathcal{I}, \alpha[x/d] \models \varphi$$
 for all  $d \in \mathcal{D}$ 

$$\mathcal{I}, \boldsymbol{\alpha} \models \exists x \, \boldsymbol{\varphi}$$

$$\mathsf{iff}\ \mathcal{I}, \alpha[\mathsf{x}/\mathsf{d}] \models \varphi \ \mathsf{for \ \mathsf{some}}\ \mathsf{d} \in \mathcal{D}$$

Motivation

Syntax

Semantics

Interpretations

Definition of Truth

Terminology Free and Bound

Open and Closed

Horoturo

# Examples



### Questions:

$$\Theta = \begin{cases} \operatorname{eye}(a), \operatorname{eye}(b) \\ \forall x (\operatorname{eye}(x) \to \operatorname{red}(x)) \end{cases}$$

$$\mathcal{D} = \{d_1, \dots, d_n\}, \ n > 1$$

$$\mathbf{a}^{\mathcal{I}} = d_1$$

$$\mathbf{b}^{\mathcal{I}} = d_1$$

$$\operatorname{eye}^{\mathcal{I}} = \{d_1\}$$

$$\operatorname{red}^{\mathcal{I}} = \mathcal{D}$$

$$\alpha = \{(x \mapsto d_1), (y \mapsto d_2)\}$$

$$\begin{array}{l} \mathcal{I}, \alpha \models \operatorname{eye}(b) \vee \neg \operatorname{eye}(b)? \\ \text{Yes} \\ \mathcal{I}, \alpha \models \operatorname{eye}(x) \to \\ \operatorname{eye}(x) \vee \operatorname{eye}(y)? \text{ Yes} \\ \mathcal{I}, \alpha \models \operatorname{eye}(x) \to \operatorname{eye}(y)? \\ \text{No} \\ \mathcal{I}, \alpha \models \operatorname{eye}(a) \wedge \operatorname{eye}(b)? \\ \text{Yes} \\ \mathcal{I}, \alpha \models \forall x (\operatorname{eye}(x) \to \operatorname{red}(x))? \text{ Yes} \\ \end{array}$$

 $\mathcal{I}, \alpha \models \Theta$ ? Yes

Motivation

Definition of Truth

Free and Bound

Open and Closed

# Terminology



FREIBU

 $\mathcal{I}, \alpha$  is a model of  $\varphi$  iff

$$\mathcal{I}, \alpha \models \varphi$$
.

A formula can be satisfiable, unsatisfiable, falsifiable, valid, ... Two formulae  $\varphi$  and  $\psi$  are logically equivalent (symb.:  $\varphi \equiv \psi$ ) iff for all  $\mathcal{I}, \alpha$ :

$$\mathcal{I}, \alpha \models \varphi \text{ iff } \mathcal{I}, \alpha \models \psi.$$

Note:  $P(x) \not\equiv P(y)!$ 

Logical implication is also analogous to propositional logic:

$$\Theta \models \varphi$$
 iff for all  $\mathcal{I}, \alpha$  s.t.  $\mathcal{I}, \alpha \models \Theta$  also  $\mathcal{I}, \alpha \models \varphi$ .

Motivation

Syntax

Semantics

Variable Mass

variable iviaps

Terminology Free and Bound

Variables

Open and Closed

### Free and bound variables



ERES

Variables can be free or bound (by a quantifier) in a formula:

$$\begin{array}{rcl} & & \text{free}(x) & = & \{x\} \\ & & \text{free}(f(t_1,\ldots,t_n)) & = & \text{free}(t_1)\cup\cdots\cup\text{free}(t_n) \\ & & \text{free}(t_1=t_2) & = & \text{free}(t_1)\cup\text{free}(t_2) \\ & & \text{free}(P(t_1,\ldots,t_n)) & = & \text{free}(t_1)\cup\cdots\cup\text{free}(t_n) \\ & & \text{free}(\neg\varphi) & = & \text{free}(\varphi) \\ & & \text{free}(\varphi*\psi) & = & \text{free}(\varphi)\cup\text{free}(\psi), \text{ for } *=\vee,\wedge,\rightarrow,\leftrightarrow \\ & & \text{free}(\Xi x\varphi) & = & \text{free}(\varphi)\setminus\{x\}, \text{ for } \Xi = \forall,\exists \end{array}$$

Example:  $\forall x \ (R(y,z) \land \exists y \ (\neg P(y,x) \lor R(y,z)))$  Framed occurrences are free, all others are bound.

Motivation

Syntax

Samantice

Interpretations

Variable Maps

Torminology

Free and Bound

Variables

Open and Closed

# Open & closed formulae



- FREBU
- Formulae without free variables are called closed formulae or sentences. Formulae with free variables are called open formulae.
- Closed formulae are all we need when we want to state something about the world. Open formulae (and variable maps) are only necessary for technical reasons (semantics of  $\forall$  and  $\exists$ ).
- Note that logical equivalence, satisfiability, and entailment are independent from variable maps if we consider only closed formulae.
- For closed formulae, we omit  $\alpha$  in connection with  $\models$ :

 $\mathcal{I} \models \varphi$ .

Motivation

Syntax

Semantics

Interpretations

Variable Maps

Terminology

Variables

Open and Closed Formulae

# Important theorems



### Theorem (Compactness)

Let  $\Phi \cup \{\psi\}$  be a set of closed formulae.

- (a)  $\Phi \models \psi$  iff there exists a finite subset  $\Phi' \subseteq \Phi$  s. t.  $\Phi' \models \psi$ .
- (b)  $\Phi$  is satisfiable iff each finite subset  $\Phi' \subseteq \Phi$  is satisfiable.

### Theorem (Löwenheim-Skolem)

Fach countable set of closed formulae that is satisfiable is satisfiable on a countable domain.

Free and Bound

Open and Closed

Formulae



H.

Motivation

Syntax Semantics

### Literature





Harry R. Lewis and Christos H. Papadimitriou. Elements of the Theory of Computation. Prentice-Hall, Englewood Cliffs, NJ, 1981 (Chapters 8 & 9).



Volker Sperschneider and Grigorios Antoniou. Logic – A Foundation for Computer Science. Addison-Wesley, Reading, MA, 1991 (Chapters 1–3).



H.-P. Ebbinghaus, J. Flum, and W. Thomas. **Einführung in die mathematische Logik.**Wissenschaftliche Buchgesellschaft, Darmstadt, 1986.



U. Schöning. Logik für Informatiker. Spektrum-Verlag. Motivation

Syntax

Semantics