Principles of
 Knowledge Representation and Reasoning

Propositional Logic

Bernhard Nebel, Stefan Wölfl, and Julien Hué October 24, 2012

Why Logic?
Propositio-
nal Logic
Syntax

Why Logic?

Terminology
Decision
Problems and
Resolution

Why logic?

- Logic is one of the best developed systems for representing knowledge.
- Can be used for analysis, design and specification.
- Understanding formal logic is a prerequisite for understanding most research papers in KRR.

The right logic...

Logics of different orders (1st, 2nd, ...)
Modal logics

- epistemic
- temporal
- dynamic (program)
- multi-modal logics

Why Logic?
Propositio-
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and
Resolution

Many-valued logics

Nonmonotonic logics
Intuitionistic logics

The right logic...

■ Logics of different orders (1st, 2nd, ...)

- Modal logics

- epistemic
 - temporal
 - dynamic (program)
 - multi-modal logics

Why Logic?
Propositio-
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and
Resolution

Many-valued logics

Nonmonotonic logics

Intuitionistic logics

The right logic...

■ Logics of different orders (1st, 2nd, ...)

- Modal logics
- epistemic
- temporal
- dynamic (program)
- multi-modal logics
- ...

Many-valued logics
Nonmonotonic logics
Intuitionistic loaics

The right logic...

- Logics of different orders (1st, 2nd, ...)
- Modal logics
- epistemic
- temporal
- dynamic (program)
- multi-modal logics
- ...

■ Many-valued logics
Nonmonotonic logics
Intuitionistic logics

The right logic...

- Logics of different orders (1st, 2nd, ...)
- Modal logics
- epistemic
- temporal
- dynamic (program)
- multi-modal logics
- ...
- Many-valued logics
- Nonmonotonic logics

Intuitionistic logics

The right logic...

- Logics of different orders (1st, 2nd, ...)
- Modal logics
- epistemic
- temporal
- dynamic (program)
- multi-modal logics
- ...
- Many-valued logics
- Nonmonotonic logics
- Intuitionistic logics

The right logic...

- Logics of different orders (1st, 2nd, ...)
- Modal logics
- epistemic
- temporal
- dynamic (program)
- multi-modal logics
- ...
- Many-valued logics
- Nonmonotonic logics
- Intuitionistic logics

The logical approach

- Define a formal language: logical \& non-logical symbols, syntax rules

Provide language with compositional semantics

> Fix universe of discourse
> Specify how the non-logical symbols can be interpreted: interpretation
> Rules how to combine interpretation of single symbols Satisfying interpretation = model
> Semantics often entails concept of logical
> implication/entailment

Specify a calculus that allows to derive new formulae from old ones - according to the entailment relation

The logical approach

- Define a formal language: logical \& non-logical symbols, syntax rules
- Provide language with compositional semantics

> Fix universe of discourse
> Specify how the non-logical symbols can be interpreted: interpretation
> Rules how to combine interpretation of single symbols Satisfying interpretation = model Semantics often entails concept of logical implication/entailment

Specify a calculus that allows to derive new formulae from old ones - according to the entailment relation

The logical approach

- Define a formal language: logical \& non-logical symbols, syntax rules
- Provide language with compositional semantics
- Fix universe of discourse
- Specify how the non-logical symbols can be interpreted: interpretation
- Rules how to combine interpretation of single symbols
- Satisfying interpretation = model
- Semantics often entails concept of logical implication/entailment

Specify a calculus that allows to derive new formulae from old ones - according to the entailment relation

The logical approach

- Define a formal language: logical \& non-logical symbols, syntax rules
- Provide language with compositional semantics
- Fix universe of discourse
- Specify how the non-logical symbols can be interpreted: interpretation
- Rules how to combine interpretation of single symbols
- Satisfying interpretation = model
- Semantics often entails concept of logical implication/entailment
- Specify a calculus that allows to derive new formulae from old ones - according to the entailment relation

Why Logic?
Propositio-
nal Logic
Syntax

Propositional Logic

Terminology
Decision
Problems and
Resolution

Propositional logic: main ideas

- Non-logical symbols: propositional variables or atoms
- representing propositions which cannot be decomposed
- which can be true or false (for example: "Snow is white", "It rains")

Propositio-
nal Logic
Syntax
Semantics

Terminology
Decision
Problems and
Resolution

Propositional logic: main ideas

- Non-logical symbols: propositional variables or atoms
- representing propositions which cannot be decomposed
- which can be true or false (for example: "Snow is white", "It rains")

■ Logical symbols: propositional connectives such as: and (\wedge), or (\vee), and not ($\neg)$

Propositio-
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and
Resolution

Propositional logic: main ideas

- Non-logical symbols: propositional variables or atoms
- representing propositions which cannot be decomposed
- which can be true or false (for example: "Snow is white", "It rains")

■ Logical symbols: propositional connectives such as: and (\wedge), or (\vee), and not ($\neg)$

- Formulae: built out of atoms and connectives

■ Universe of discourse: truth values

Why Logic?
Propositio-
nal Logic
Syntax

Syntax

Terminology
Decision
Problems and
Resolution

Countable alphabet Σ of atomic propositions: a, b, c, \ldots Propositional formulae are built according to the following rule:

Why Logic?
Propositio
nal Logic
atomic formula
falsity
truth
negation
conjunction
disjunction
implication
equivalence

Parentheses can be omitted if no ambiguity arises.

Operator precedence:

Countable alphabet Σ of atomic propositions: a, b, c, \ldots Propositional formulae are built according to the following rule:

Why Logic?
Propositio-
nal Logic

$\varphi \longrightarrow$	a	atomic formula
	\perp	falsity
	\top	truth
	$\neg \varphi^{\prime}$	negation
	$\left(\varphi^{\prime} \wedge \varphi^{\prime \prime}\right)$	conjunction
	$\left(\varphi^{\prime} \vee \varphi^{\prime \prime}\right)$	disjunction
	$\left(\varphi^{\prime} \rightarrow \varphi^{\prime \prime}\right)$	implication
	$\left(\varphi^{\prime} \leftrightarrow \varphi^{\prime \prime}\right)$	equivalence

Syntax
Semantics
Terminology
Decision
Problems and
Resolution

Parentheses can be omitted if no ambiguity arises.
Operator precedence:

Countable alphabet Σ of atomic propositions: a, b, c, \ldots Propositional formulae are built according to the following rule:

Why Logic?
Propositio-
nal Logic

$\varphi \longrightarrow$	a	atomic formula
	\perp	falsity
	\top	truth
	$\neg \varphi^{\prime}$	negation
	$\left(\varphi^{\prime} \wedge \varphi^{\prime \prime}\right)$	conjunction
	$\left(\varphi^{\prime} \vee \varphi^{\prime \prime}\right)$	disjunction
	$\left(\varphi^{\prime} \rightarrow \varphi^{\prime \prime}\right)$	implication
	$\left(\varphi^{\prime} \leftrightarrow \varphi^{\prime \prime}\right)$	equivalence

Syntax
Semantics
Terminology
Decision
Problems and
Resolution

Parentheses can be omitted if no ambiguity arises.
Operator precedence:

Countable alphabet Σ of atomic propositions: a, b, c, \ldots Propositional formulae are built according to the following rule:

Why Logic?
Propositio-
nal Logic

φ	a	atomic formula
	\perp	falsity
	\top	truth
	$\neg \varphi^{\prime}$	negation
	$\left(\varphi^{\prime} \wedge \varphi^{\prime \prime}\right)$	conjunction
	$\left(\varphi^{\prime} \vee \varphi^{\prime \prime}\right)$	disjunction
	$\left(\varphi^{\prime} \rightarrow \varphi^{\prime \prime}\right)$	implication
	$\left(\varphi^{\prime} \leftrightarrow \varphi^{\prime \prime}\right)$	equivalence

Syntax
Semantics
Terminology
Decision
Problems and
Resolution

Parentheses can be omitted if no ambiguity arises.
Operator precedence:

Countable alphabet Σ of atomic propositions: a, b, c, \ldots Propositional formulae are built according to the following rule:

Why Logic?
Propositio-
nal Logic

φ	a	atomic formula
	\perp	falsity
	T	truth
	$\neg \varphi^{\prime}$	negation
	$\left(\varphi^{\prime} \wedge \varphi^{\prime \prime}\right)$	conjunction
	$\left(\varphi^{\prime} \vee \varphi^{\prime \prime}\right)$	disjunction
	$\left(\varphi^{\prime} \rightarrow \varphi^{\prime \prime}\right)$	implication
	$\left(\varphi^{\prime} \leftrightarrow \varphi^{\prime \prime}\right)$	equivalence

Syntax
Semantics
Terminology
Decision
Problems and
Resolution

Parentheses can be omitted if no ambiguity arises.
Operator precedence:

Countable alphabet Σ of atomic propositions: a, b, c, \ldots Propositional formulae are built according to the following rule:

Why Logic?
Propositio-
nal Logic

$\varphi \longrightarrow$	a	atomic formula
	\perp	falsity
	T	truth
	$\neg \varphi^{\prime}$	negation
	$\left(\varphi^{\prime} \wedge \varphi^{\prime \prime}\right)$	conjunction
	$\left(\varphi^{\prime} \vee \varphi^{\prime \prime}\right)$	disjunction
	$\left(\varphi^{\prime} \rightarrow \varphi^{\prime \prime}\right)$	implication
	$\left(\varphi^{\prime} \leftrightarrow \varphi^{\prime \prime}\right)$	equivalence

Syntax
Semantics
Terminology
Decision
Problems and
Resolution

Parentheses can be omitted if no ambiguity arises.
Operator precedence: $\neg>\wedge>\vee>\rightarrow=\leftrightarrow$.

Countable alphabet Σ of atomic propositions: a, b, c, \ldots Propositional formulae are built according to the following rule:

Why Logic?
Propositio-
nal Logic

$\varphi \longrightarrow$	a	atomic formula
	\perp	falsity
	T	truth
	$\neg \varphi^{\prime}$	negation
	$\left(\varphi^{\prime} \wedge \varphi^{\prime \prime}\right)$	conjunction
	$\left(\varphi^{\prime} \vee \varphi^{\prime \prime}\right)$	disjunction
	$\left(\varphi^{\prime} \rightarrow \varphi^{\prime \prime}\right)$	implication
	$\left(\varphi^{\prime} \leftrightarrow \varphi^{\prime \prime}\right)$	equivalence

Syntax
Semantics
Terminology
Decision
Problems and
Resolution

Parentheses can be omitted if no ambiguity arises.
Operator precedence: $\neg>\wedge>\vee>\rightarrow=\leftrightarrow$.

Countable alphabet Σ of atomic propositions: a, b, c, \ldots Propositional formulae are built according to the following rule:

Why Logic?
Propositio-
nal Logic

$\varphi \longrightarrow$	a	atomic formula
	\perp	falsity
	T	truth
	$\neg \varphi^{\prime}$	negation
	$\left(\varphi^{\prime} \wedge \varphi^{\prime \prime}\right)$	conjunction
	$\left(\varphi^{\prime} \vee \varphi^{\prime \prime}\right)$	disjunction
	$\left(\varphi^{\prime} \rightarrow \varphi^{\prime \prime}\right)$	implication
	$\left(\varphi^{\prime} \leftrightarrow \varphi^{\prime \prime}\right)$	equivalence

Syntax
Semantics
Terminology
Decision
Problems and
Resolution

Parentheses can be omitted if no ambiguity arises.
Operator precedence: $\neg>\wedge>\vee>\rightarrow=\leftrightarrow$.

Countable alphabet Σ of atomic propositions: a, b, c, \ldots Propositional formulae are built according to the following rule:

Why Logic?
Propositio-
nal Logic

φ	a	atomic formula
	\perp	falsity
	T	truth
	$\neg \varphi^{\prime}$	negation
	$\left(\varphi^{\prime} \wedge \varphi^{\prime \prime}\right)$	conjunction
	$\left(\varphi^{\prime} \vee \varphi^{\prime \prime}\right)$	disjunction
	$\left(\varphi^{\prime} \rightarrow \varphi^{\prime \prime}\right)$	implication
	$\left(\varphi^{\prime} \leftrightarrow \varphi^{\prime \prime}\right)$	equivalence

Syntax
Semantics
Terminology
Decision
Problems and
Resolution

Parentheses can be omitted if no ambiguity arises.
Operator precedence: $\neg>\wedge>\vee>\rightarrow=\leftrightarrow$.

Countable alphabet Σ of atomic propositions: a, b, c, \ldots Propositional formulae are built according to the following rule:

Why Logic?

$\varphi \longrightarrow$	a	atomic formula
\|	\perp	falsity
\|	T	truth
	$\neg \varphi^{\prime}$	negation
	$\left(\varphi^{\prime} \wedge \varphi^{\prime \prime}\right)$	conjunction
	$\left(\varphi^{\prime} \vee \varphi^{\prime \prime}\right)$	disjunction
	$\left(\varphi^{\prime} \rightarrow \varphi^{\prime \prime}\right)$	implication
	$\left(\varphi^{\prime} \leftrightarrow \varphi^{\prime \prime}\right)$	equivalence

Parentheses can be omitted if no ambiguity arises.
Operator precedence: $\neg>\wedge>\vee>\rightarrow=\leftrightarrow$.

Language and meta-language

$\square(a \vee b)$ is an expression of the language of propositional logic.
$\varphi \longrightarrow a|\ldots|\left(\varphi^{\prime} \leftrightarrow \varphi^{\prime \prime}\right)$ is a statement about how expressions in the language of propositional logic can be formed. It is stated using meta-language.
In order to describe how expressions (in this case formulae) can be formed, we use meta-language.

When we describe how to interpret formulae, we use meta-language expressions.

Propositio
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and Resolution

Language and meta-language

$\square(a \vee b)$ is an expression of the language of propositional logic.
$\square \varphi \longrightarrow a|\ldots|\left(\varphi^{\prime} \leftrightarrow \varphi^{\prime \prime}\right)$ is a statement about how expressions in the language of propositional logic can be formed. It is stated using meta-language.

In order to describe how expressions (in this case formulae) can be formed, we use meta-language.

When we describe how to internret formulae, we use meta-language expressions.

Language and meta-language

$\square(a \vee b)$ is an expression of the language of propositional logic.

- $\varphi \longrightarrow a|\ldots|\left(\varphi^{\prime} \leftrightarrow \varphi^{\prime \prime}\right)$ is a statement about how expressions in the language of propositional logic can be formed. It is stated using meta-language.
- In order to describe how expressions (in this case formulae) can be formed, we use meta-language.
- When we describe how to interpret formulae, we use meta-language expressions.

Why Logic?
Propositio-
nal Logic
Syntax
Semantics

Semantics

Terminology
Decision
Problems and
Resolution

Semantics: idea

- Atomic propositions can be true $(1, T)$ or false $(0, F)$.

Provided the truth values of the atoms have been fixed (truth assignment or interpretation), the truth value of a formula can be computed from the truth values of the atoms and the connectives.

```
Example:
\[
(a \vee b) \wedge c
\]
```

is true iff c is true and, additionally, a or b is true.
Logical implication can then be defined as follows:
φ is implied by a set of formulae Θ iff φ is true for all truth assignments (world states) that make all formulae in Θ true.

Semantics: idea

- Atomic propositions can be true $(1, T)$ or false $(0, F)$.
- Provided the truth values of the atoms have been fixed (truth assignment or interpretation), the truth value of a formula can be computed from the truth values of the atoms and the connectives.

Example:

Why Logic?
Propositio-
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and Resolution
is true iff c is true and, additionally, a or b is true.
Logical implication can then be defined as follows:
φ is implied by a set of formulae Θ iff φ is true for all truth assignments (world states) that make all formulae in Θ true.

Semantics: idea

- Atomic propositions can be true $(1, T)$ or false $(0, F)$.
- Provided the truth values of the atoms have been fixed (truth assignment or interpretation), the truth value of a formula can be computed from the truth values of the atoms and the connectives.
- Example:

$$
(a \vee b) \wedge c
$$

Why Logic?
Propositio-
nal Logic
Syntax
Semantics
Terminology
is true iff c is true and, additionally, a or b is true.
Logical implication can then be defined as follows:
φ is implied by a set of formulae Θ iff φ is true for all truth assignments (world states) that make all formulae in Θ true.

Semantics: idea

- Atomic propositions can be true $(1, T)$ or false $(0, F)$.
- Provided the truth values of the atoms have been fixed (truth assignment or interpretation), the truth value of a formula can be computed from the truth values of the atoms and the connectives.
- Example:

$$
(a \vee b) \wedge c
$$

Why Logic?
Propositio-
nal Logic
Syntax
Semantics
Terminology
is true iff c is true and, additionally, a or b is true.
Logical implication can then be defined as follows:

- φ is implied by a set of formulae Θ iff φ is true for all truth assignments (world states) that make all formulae in Θ true.

Formal semantics

An interpretation or truth assignment over Σ is a function:

$$
\mathcal{I}: \Sigma \rightarrow\{T, F\} .
$$

A formula ψ is true under \mathcal{I} or is satisfied by \mathcal{I} (symb. $\mathcal{I} \models \psi$):

Formal semantics

An interpretation or truth assignment over Σ is a function:
Why Logic?

$$
\mathcal{I}: \Sigma \rightarrow\{T, F\} .
$$

A formula ψ is true under \mathcal{I} or is satisfied by \mathcal{I} (symb. $\mathcal{I} \models \psi$):

Propositio-
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and
Resolution

Example

Given

$$
\mathcal{I}: a \mapsto T, \quad b \mapsto F, c \mapsto F, d \mapsto T,
$$

$$
\text { Is }((a \vee b) \leftrightarrow(c \vee d)) \wedge(\neg(a \wedge c) \vee(c \wedge \neg d)) \text { true or false? }
$$

$$
\begin{aligned}
& ((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d})) \\
& ((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d})) \\
& ((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d})) \\
& ((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d})) \\
& ((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d}))
\end{aligned}
$$

Example

Given

$$
\mathcal{I}: a \mapsto T, \quad b \mapsto F, c \mapsto F, d \mapsto T,
$$

$$
\text { Is }((a \vee b) \leftrightarrow(c \vee d)) \wedge(\neg(a \wedge c) \vee(c \wedge \neg d)) \text { true or false? }
$$

$$
((a \vee b) \leftrightarrow(c \vee d)) \wedge(\neg(a \wedge c) \vee(c \wedge \neg d))
$$

$$
((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d}))
$$

$$
((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d}))
$$

$$
((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d}))
$$

$$
((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d}))
$$

Example

Given

$$
\mathcal{I}: a \mapsto T, \quad b \mapsto F, c \mapsto F, d \mapsto T,
$$

$$
\text { Is }((a \vee b) \leftrightarrow(c \vee d)) \wedge(\neg(a \wedge c) \vee(c \wedge \neg d)) \text { true or false? }
$$

$$
((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(a \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d}))
$$

$$
((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d}))
$$

$$
((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d}))
$$

$((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d}))$
$((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d}))$

Example

Given

$$
\mathcal{I}: a \mapsto T, \quad b \mapsto F, c \mapsto F, d \mapsto T,
$$

$$
\text { Is }((a \vee b) \leftrightarrow(c \vee d)) \wedge(\neg(a \wedge c) \vee(c \wedge \neg d)) \text { true or false? }
$$

$$
((a \vee b) \leftrightarrow(c \vee d)) \wedge(\neg(a \wedge c) \vee(c \wedge \neg d))
$$

$$
((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d}))
$$

$$
((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d}))
$$

$$
((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d}))
$$

$$
((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d}))
$$

Example

Given

$$
\mathcal{I}: a \mapsto T, \quad b \mapsto F, c \mapsto F, d \mapsto T,
$$

$$
\text { Is }((a \vee b) \leftrightarrow(c \vee d)) \wedge(\neg(a \wedge c) \vee(c \wedge \neg d)) \text { true or false? }
$$

$$
\begin{aligned}
& ((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d})) \\
& ((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d}))
\end{aligned}
$$

$$
((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d}))
$$

$$
((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d}))
$$

$$
((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d}))
$$

Example

Given

$$
\mathcal{I}: a \mapsto T, \quad b \mapsto F, c \mapsto F, d \mapsto T,
$$

$$
\text { Is }((a \vee b) \leftrightarrow(c \vee d)) \wedge(\neg(a \wedge c) \vee(c \wedge \neg d)) \text { true or false? }
$$

$$
\begin{aligned}
& ((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d})) \\
& ((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d})) \\
& ((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d})) \\
& ((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d})) \\
& ((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d}))
\end{aligned}
$$

Why Logic?
Propositio-
nal Logic
Syntax

Terminology

Terminology

An interpretation \mathcal{I} is a model of φ iff

$$
\mathcal{I} \models \varphi
$$

A formula φ is

satisfiable if there is an I such that $I=\varphi$;

unsatisfiable, otherwise; and
valid if $\mathcal{I} \models \varphi$ for each \mathcal{I} (or tautology);

Semantics

Terminology
Decision
Problems and
Resolution

- falsifiable, otherwise.

Two formulae φ and ψ are logically equivalent (symb. $\varphi \equiv \psi$) if for all interpretations \mathcal{I},

$$
\mathcal{I} \models \varphi \text { iff } \mathcal{I} \models \psi .
$$

Terminology

An interpretation \mathcal{I} is a model of φ iff
Why Logic?

$$
\mathcal{I} \models \varphi
$$

A formula φ is

- satisfiable if there is an \mathcal{I} such that $\mathcal{I} \models \varphi$;
- unsatisfiable, otherwise; and
valid if $\mathcal{I}=\varphi$ for each \mathcal{I} (or tautology);

Propositio-
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and
Resolution

Two formulae φ and ψ are logically equivalent (symb. $\varphi \equiv \psi$) if for all interpretations \mathcal{I},

$$
\mathcal{I} \models \varphi \text { iff } \mathcal{I} \models \psi .
$$

Terminology

An interpretation \mathcal{I} is a model of φ iff
Why Logic?

$$
\mathcal{I} \models \varphi
$$

Propositio
nal Logic
Syntax
Semantics

Terminology
Decision
Problems and
Resolution

- valid if $\mathcal{I} \models \varphi$ for each \mathcal{I} (or tautology);
- falsifiable, otherwise.

Two formulae φ and ψ are logically equivalent (symb. $\varphi \equiv \psi$) if for all interpretations \mathcal{I},

Terminology

An interpretation \mathcal{I} is a model of φ iff

$$
\mathcal{I} \models \varphi
$$

Propositio-
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and
Resolution

- valid if $\mathcal{I} \models \varphi$ for each \mathcal{I} (or tautology);
- falsifiable, otherwise.

Two formulae φ and ψ are logically equivalent (symb. $\varphi \equiv \psi$) if for all interpretations \mathcal{I},

$$
\mathcal{I} \models \varphi \text { iff } \mathcal{I} \models \psi .
$$

Examples

Satisfiable, unsatisfiable, falsifiable, valid?
$(a \vee b \vee \neg c) \wedge(\neg a \vee \neg b \vee d) \wedge(\neg a \vee b \vee \neg d)$
\rightsquigarrow satisfiable: $a \mapsto T, b \mapsto F, d \mapsto F, \ldots$
\rightsquigarrow falsifiable: $a \mapsto F, b \mapsto F, c \mapsto T, \ldots$

satisfiable: $a \mapsto T, b \mapsto T$
Propositio
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and
Resolution
valid: Consider all interpretations or argue about falsifying ones.

Equivalence? $\neg(a \vee b) \equiv \neg a \wedge \neg b$ Of course, equivalent (de Morgan).

Examples

Satisfiable, unsatisfiable, falsifiable, valid?
$(a \vee b \vee \neg c) \wedge(\neg a \vee \neg b \vee d) \wedge(\neg a \vee b \vee \neg d)$
\rightsquigarrow satisfiable: $a \mapsto T, b \mapsto F, d \mapsto F, \ldots$
\rightsquigarrow falsifiable: $a \mapsto F, b \mapsto F, c \mapsto T, \ldots$
$((\neg a \rightarrow \neg b) \rightarrow(b \rightarrow a))$
\rightsquigarrow satisfiable: $a \mapsto T, b \mapsto T$

Why Logic?
Propositio
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and
Resolution
\rightsquigarrow valid: Consider all interpretations or argue about falsifying ones.
Equivalence? $\neg(a \vee b) \equiv \neg a \wedge \neg b$
Of course, equivalent (de Morgan).

Examples

Satisfiable, unsatisfiable, falsifiable, valid?
$(a \vee b \vee \neg c) \wedge(\neg a \vee \neg b \vee d) \wedge(\neg a \vee b \vee \neg d)$
\rightsquigarrow satisfiable: $a \mapsto T, b \mapsto F, d \mapsto F, \ldots$
\rightsquigarrow falsifiable: $a \mapsto F, b \mapsto F, c \mapsto T, \ldots$
$((\neg a \rightarrow \neg b) \rightarrow(b \rightarrow a))$
\rightsquigarrow satisfiable: $a \mapsto T, b \mapsto T$
\rightsquigarrow valid: Consider all interpretations or argue about falsifying ones.

Equivalence? $\neg(a \vee b) \equiv \neg a \wedge \neg b$
\rightsquigarrow Of course, equivalent (de Morgan).

Some obvious consequences

Proposition

φ is valid iff $\neg \varphi$ is unsatisfiable and φ is satisfiable iff $\neg \varphi$ is falsifiable.

Proposition
$\varphi \equiv \psi$ iff $\varphi \leftrightarrow \psi$ is valid.
Why Logic?

Propositio
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and
Resolution

If $\boldsymbol{\oplus} \equiv \boldsymbol{u}$ anc χ^{\prime} results from substituting φ by ψ in χ, then
\square

Some obvious consequences

2픈

Proposition

φ is valid iff $\neg \varphi$ is unsatisfiable and φ is satisfiable iff $\neg \varphi$ is falsifiable.

Proposition

$\varphi \equiv \psi$ iff $\varphi \leftrightarrow \psi$ is valid.

Propositio-
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and
Resolution

Some obvious consequences

른

Proposition

φ is valid iff $\neg \varphi$ is unsatisfiable and φ is satisfiable iff $\neg \varphi$ is falsifiable.

Propositio-
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and
Resolution

Theorem

If $\varphi \equiv \psi$ and χ^{\prime} results from substituting φ by ψ in χ, then $\chi^{\prime} \equiv \chi$.

Some equivalences

simplifications	$\varphi \rightarrow \psi \equiv$	$\neg \varphi \vee \psi$	$\varphi \leftrightarrow \psi \equiv$	$\begin{aligned} & (\varphi \rightarrow \psi) \wedge \\ & (\psi \rightarrow \varphi) \end{aligned}$
idempotency	$\varphi \vee \varphi \equiv$	φ	$\varphi \wedge \varphi \equiv$	φ
commutativity	$\varphi \vee \psi \equiv$	$\psi \vee \varphi$	$\varphi \wedge \psi \equiv$	$\psi \wedge \varphi$
associativity	$(\varphi \vee \psi) \vee \chi \equiv$	$\varphi \vee(\psi \vee \chi)$	$(\varphi \wedge \psi) \wedge \chi \equiv$	$\varphi \wedge(\psi \wedge \chi)$
absorption	$\varphi \vee(\varphi \wedge \psi) \equiv$	φ	$\varphi \wedge(\varphi \vee \psi) \equiv$	φ
distributivity	$\varphi \wedge(\psi \vee \chi) \equiv$	$\begin{aligned} & (\varphi \wedge \psi) \vee \\ & (\varphi \wedge \chi) \end{aligned}$	$\varphi \vee(\psi \wedge \chi) \equiv$	$\begin{aligned} & (\varphi \vee \psi) \wedge \\ & (\varphi \vee \chi) \end{aligned}$
double negation	$\neg \neg \varphi \equiv$	φ		
constants	\neg T \equiv	\perp	$\neg \perp$	T
De Morgan	$\neg(\varphi \vee \psi) \equiv$	$\neg \varphi \wedge \neg \psi$	$\neg(\varphi \wedge \psi) \equiv$	$\neg \varphi \vee \neg \psi$
truth	$\varphi \vee \top$ 仡	T	$\varphi \wedge T \equiv$	φ
falsity	$\varphi \vee \perp \equiv$	φ	$\varphi \wedge \perp \equiv$	\perp
taut./contrad.	$\varphi \vee \neg \varphi \equiv$	T	$\varphi \wedge \neg \varphi \equiv$	\perp

Why Logic?
Propositio-
nal Logic
Syntax
Semantics

Terminology

Decision

Problems and

How many different formulae are there ...

...for a given finite alphabet Σ ?

```
Infinitely many: a,a\veea,a\wedge a,a\veea\veea,
How many different logically distinguishable (not equivalent)
formulae?
```



```
    - A formula can be characterized by its set of models
    (if two formulae are not logically equivalent, then their sets
    of models differ).
    |}\mathrm{ There are 2 }\mp@subsup{2}{}{(\mp@subsup{2}{}{n})}\mathrm{ different sets of interpretations.
    |}\mathrm{ There are 2 2(2)
```


How many different formulae are there . . .

...for a given finite alphabet Σ ?

- Infinitely many: $a, a \vee a, a \wedge a, a \vee a \vee a, \ldots$

How many different logically distinguishable (not equivalent) formulae?

For Σ with $n=|\Sigma|$, there are 2^{n} different interpretations.
A formula can be characterized by its set of models (if two formulae are not logically equivalent, then their sets of models differ).
There are $2^{\left(2^{n}\right)}$ different sets of interpretations.
There are $2^{\left(2^{n}\right)}$ (logical) equivalence classes of formulae.

How many different formulae are there . . .

...for a given finite alphabet Σ ?
■ Infinitely many: $a, a \vee a, a \wedge a, a \vee a \vee a, \ldots$

- How many different logically distinguishable (not equivalent) formulae?

For Σ with $n=|\Sigma|$, there are 2^{n} different interpretations.
A formula can be characterized by its set of models (if two formulae are not logically equivalent, then their sets of models differ).
There are $2^{\left(2^{n}\right)}$ different sets of interpretations. There are $2^{\left(2^{n}\right)}$ (logical) equivalence classes of formulae.

How many different formulae are there ...

...for a given finite alphabet Σ ?

- Infinitely many: $a, a \vee a, a \wedge a, a \vee a \vee a, \ldots$
- How many different logically distinguishable (not equivalent) formulae?
- For Σ with $n=|\Sigma|$, there are 2^{n} different interpretations.

A formula can be characterized by its set of models (if two formulae are not logically equivalent, then their sets of models differ).
There are $2^{\left(2^{n}\right)}$ different sets of interpretations.
There are $2^{\left(2^{n}\right)}$ (logical) equivalence classes of formulae.

How many different formulae are there ...

...for a given finite alphabet Σ ?

- Infinitely many: $a, a \vee a, a \wedge a, a \vee a \vee a, \ldots$
- How many different logically distinguishable (not equivalent) formulae?
- For Σ with $n=|\Sigma|$, there are 2^{n} different interpretations.
- A formula can be characterized by its set of models (if two formulae are not logically equivalent, then their sets of models differ).
There are $2^{\left(2^{n}\right)}$ different sets of interpretations. There are $2^{\left(2^{n}\right)}$ (logical) equivalence classes of formulae.

How many different formulae are there ...

...for a given finite alphabet Σ ?
\square Infinitely many: $a, a \vee a, a \wedge a, a \vee a \vee a, \ldots$

- How many different logically distinguishable (not equivalent) formulae?
- For Σ with $n=|\Sigma|$, there are 2^{n} different interpretations.
- A formula can be characterized by its set of models (if two formulae are not logically equivalent, then their sets of models differ).
- There are $2^{\left(2^{n}\right)}$ different sets of interpretations.

There are $2^{\left(2^{n \prime}\right)}$ (logical) equivalence classes of formulae.

How many different formulae are there . . .

...for a given finite alphabet Σ ?
■ Infinitely many: $a, a \vee a, a \wedge a, a \vee a \vee a, \ldots$

- How many different logically distinguishable (not equivalent) formulae?
- For Σ with $n=|\Sigma|$, there are 2^{n} different interpretations.
- A formula can be characterized by its set of models (if two formulae are not logically equivalent, then their sets of models differ).
- There are $2^{\left(2^{n}\right)}$ different sets of interpretations.
- There are $2^{\left(2^{n}\right)}$ (logical) equivalence classes of formulae.

Logical implication

Extension of the relation \vDash to sets Θ of formulae:

$$
\mathcal{I} \models \Theta \text { iff } \mathcal{I} \models \varphi \text { for all } \varphi \in \Theta .
$$

φ is logically implied by Θ (symbolically $\Theta \models \varphi$) iff φ is true in all models of Θ :

$$
\Theta \models \varphi \text { iff } \mathcal{I} \models \varphi \text { for all } \mathcal{I} \text { such that } \mathcal{I} \models \Theta
$$

Some consequences:

Logical implication

- Extension of the relation \models to sets Θ of formulae:

$$
\mathcal{I} \models \Theta \text { iff } \mathcal{I} \models \varphi \text { for all } \varphi \in \Theta .
$$

- φ is logically implied by Θ (symbolically $\Theta \models \varphi$) iff φ is true in all models of Θ :

$$
\Theta \models \varphi \text { iff } \mathcal{I} \models \varphi \text { for all } \mathcal{I} \text { such that } \mathcal{I} \models \Theta
$$

Some consequences:

Logical implication

- Extension of the relation \models to sets Θ of formulae:

$$
\mathcal{I} \models \Theta \text { iff } \mathcal{I} \models \varphi \text { for all } \varphi \in \Theta .
$$

Why Logic?

Propositio-
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and
Resolution

$$
\Theta \models \varphi \text { iff } \mathcal{I} \models \varphi \text { for all } \mathcal{I} \text { such that } \mathcal{I} \models \Theta
$$

- Some consequences:
- Deduction theorem: $\Theta \cup\{\varphi\} \models \psi$ iff $\Theta \models \varphi \rightarrow \psi$ Contraposition: $\Theta \cup\{\varphi\}=\neg \psi$ iff $\Theta \cup\{\psi\}=\neg \varphi$
Contradiction: $\Theta \cup\{\varphi\}$ is unsatisfiable iff $\Theta=\neg \varphi$

Logical implication

- Extension of the relation \models to sets Θ of formulae:

$$
\mathcal{I} \models \Theta \text { iff } \mathcal{I} \models \varphi \text { for all } \varphi \in \Theta .
$$

Why Logic?

Propositio-
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and
Resolution

$$
\Theta \models \varphi \text { iff } \mathcal{I} \models \varphi \text { for all } \mathcal{I} \text { such that } \mathcal{I} \models \Theta
$$

- Some consequences:
- Deduction theorem: $\Theta \cup\{\varphi\} \models \psi$ iff $\Theta \models \varphi \rightarrow \psi$
- Contraposition: $\Theta \cup\{\varphi\} \models \neg \psi$ iff $\Theta \cup\{\psi\} \models \neg \varphi$ Contradiction: $\Theta \cup\{\varphi\}$ is unsatisfiable iff $\Theta=\neg \varphi$

Logical implication

- Extension of the relation \models to sets Θ of formulae:

$$
\mathcal{I} \models \Theta \text { iff } \mathcal{I} \models \varphi \text { for all } \varphi \in \Theta .
$$

Propositio-
nal Logic
Syntax

$$
\Theta \models \varphi \text { iff } \mathcal{I} \models \varphi \text { for all } \mathcal{I} \text { such that } \mathcal{I} \models \Theta
$$

- Some consequences:
- Deduction theorem: $\Theta \cup\{\varphi\} \models \psi$ iff $\Theta \models \varphi \rightarrow \psi$
- Contraposition: $\Theta \cup\{\varphi\} \models \neg \psi$ iff $\Theta \cup\{\psi\} \models \neg \varphi$
- Contradiction: $\Theta \cup\{\varphi\}$ is unsatisfiable iff $\Theta \models \neg \varphi$

Normal forms

Terminology:

- Atomic formulae a, negated atomic formulae $\neg a$, truth \top and falsity \perp are literals.
- A disjunction of literals is a clause.

```
If}\neg\mathrm{ only occurs in front of an atom and there are no }->\mathrm{ and
\leftrightarrow , \text { the formula is in negation normal form (NNF).}
Example: }(\nega\vee\negb)\wedgec\mathrm{ , but not: }\neg(a\wedgeb)\wedge
A conjunction of clauses is in conjunctive normal form
(CNF).
Example: (a\veeb)\wedge(\nega\veec)
The dual form (disjunction of conjunctions of literals) is in
disjunctive normal form (DNF)
Example: (a\wedgeb)\vee(\nega\wedgec)
```


Normal forms

Terminology:

- Atomic formulae a, negated atomic formulae $\neg a$, truth \top and falsity \perp are literals.
- A disjunction of literals is a clause.
- If \neg only occurs in front of an atom and there are no \rightarrow and \leftrightarrow, the formula is in negation normal form (NNF). Example: $(\neg a \vee \neg b) \wedge c$, but not: $\neg(a \wedge b) \wedge c$

A conjunction of clauses is in conjunctive normal form
(CNF).
Example: $(a \vee b) \wedge(\neg a \vee c)$
The dual form (disjunction of conjunctions of literals) is in disjunctive normal form (DNF), Example: $(a \wedge b) \vee(\neg a \wedge c)$

Normal forms

Terminology:

- Atomic formulae a, negated atomic formulae $\neg a$, truth \top and falsity \perp are literals.
\square A disjunction of literals is a clause.
- If \neg only occurs in front of an atom and there are no \rightarrow and \leftrightarrow, the formula is in negation normal form (NNF). Example: $(\neg a \vee \neg b) \wedge c$, but not: $\neg(a \wedge b) \wedge c$

Why Logic?
Propositio
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and
Resolution

- A conjunction of clauses is in conjunctive normal form (CNF).
Example: $(a \vee b) \wedge(\neg a \vee c)$
The dual form (disjunction of conjunctions of literals) is in
disjunctive normal form (DNF),
Example: $(a \wedge b) \vee(\neg a \wedge c)$

Normal forms

Terminology:

- Atomic formulae a, negated atomic formulae $\neg a$, truth T and falsity \perp are literals.
\square A disjunction of literals is a clause.
- If \neg only occurs in front of an atom and there are no \rightarrow and \leftrightarrow, the formula is in negation normal form (NNF). Example: $(\neg a \vee \neg b) \wedge c$, but not: $\neg(a \wedge b) \wedge c$

Why Logic?
Propositio
nal Logic

- A conjunction of clauses is in conjunctive normal form (CNF).
Example: $(a \vee b) \wedge(\neg a \vee c)$
- The dual form (disjunction of conjunctions of literals) is in disjunctive normal form (DNF).
Example: $(a \wedge b) \vee(\neg a \wedge c)$

Negation normal form

Theorem

For each propositional formula there is a logically equivalent formula in NNF.

Proof.

First eliminate \rightarrow and \leftrightarrow by the appropriate equivalences
Base case: Claim is true for $a, \neg a, \top, \perp$.
Inductive case: Assume claim is true for all formulae φ (up to a certain number of connectives) and call its $\operatorname{NNF} \operatorname{nnf}(\varphi)$.

Why Logic?
Propositio-
nal Logic
Syntax
Semantics

Terminology
Decision
Problems and Resolution

- $\operatorname{nnf}(\varphi \wedge \psi)=(n n f(\varphi) \wedge n n f(\psi))$
- $\operatorname{nnf}(\varphi \vee \psi)=(\operatorname{nnf}(\varphi) \vee \operatorname{nnf}(\psi))$
$=\operatorname{nnf}(\neg(\varphi \wedge \psi))=(n n f(\neg \varphi) \vee \operatorname{nnf}(-\psi))$
- $\operatorname{nnf}(\neg(\varphi \vee \psi))=(\operatorname{nnf}(\neg \varphi) \wedge \operatorname{nnf}(\neg \psi))$
- $\operatorname{nnf}(\neg \neg \varphi)=\operatorname{nnf}(\varphi)$

Negation normal form

Theorem

For each propositional formula there is a logically equivalent formula in NNF.

Negation normal form

Theorem

For each propositional formula there is a logically equivalent formula in NNF.

Negation normal form

Theorem

For each propositional formula there is a logically equivalent formula in NNF.

Propositio-
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and Resolution

Negation normal form

Theorem

For each propositional formula there is a logically equivalent formula in NNF.

Proof.

First eliminate \rightarrow and \leftrightarrow by the appropriate equivalences.
Base case: Claim is true for $a, \neg a, \top, \perp$.
Inductive case: Assume claim is true for all formulae φ (up to a certain number of connectives) and call its $\operatorname{NNF} \operatorname{nnf}(\varphi)$.

Negation normal form

Theorem

For each propositional formula there is a logically equivalent formula in NNF.

Proof.

First eliminate \rightarrow and \leftrightarrow by the appropriate equivalences.
Base case: Claim is true for $a, \neg a, \top, \perp$.
Inductive case: Assume claim is true for all formulae φ (up to a certain number of connectives) and call its $\operatorname{NNF} \operatorname{nnf}(\varphi)$.

For each propositional formula there is a logically equivalent formula in NNF.

Proof.

First eliminate \rightarrow and \leftrightarrow by the appropriate equivalences.
Base case: Claim is true for $a, \neg a, \top, \perp$.
Inductive case: Assume claim is true for all formulae φ (up to a certain number of connectives) and call its $\operatorname{NNF} \operatorname{nnf}(\varphi)$.

Terminology
Decision
Problems and Resolution

Theorem

For each propositional formula there is a logically equivalent formula in NNF.

Proof.

Base case: Claim is true for $a, \neg a, \top, \perp$. Inductive case: Assume claim is true for all formulae φ (up to a certain number of connectives) and call its $\operatorname{NNF} \operatorname{nnf}(\varphi)$.

Conjunctive normal form

Theorem

For each propositional formula there are logically equivalent formulae in CNF and DNF, respectively.

Beweis.

The claim is true for $a, \neg a, T, \perp$.
Let us assume it is true for all formulae φ (up to a certain number of connectives) and call its $\operatorname{CNF} \operatorname{cnf}(\varphi)$ (and its $\operatorname{DNF} \operatorname{dnf}(\varphi)$).
$■ \operatorname{cnf}(\neg \varphi)=\operatorname{nnf}(\neg \operatorname{dnf}(\varphi))$ and $\operatorname{cnf}(\varphi \wedge \psi)=\operatorname{cnf}(\varphi) \wedge \operatorname{cnf}(\psi)$

- Assume $\operatorname{cnf}(\varphi)=\Lambda_{i} \chi_{i}$ and $\operatorname{cnf}(\psi)=\Lambda_{j} \rho_{j}$ with χ_{i}, ρ_{j} being clauses. Then
$\operatorname{cnf}(\varphi \vee \psi)=\operatorname{cnf}\left(\left(\bigwedge_{i} \chi_{i}\right) \vee\left(\Lambda_{j} \rho_{j}\right)\right)=\Lambda_{i} \wedge_{j}\left(\chi_{i} \vee \rho_{j}\right) \quad$ (by distributivity)

Conjunctive normal form

Theorem

For each propositional formula there are logically equivalent formulae in CNF and DNF, respectively.

Beweis.

The claim is true for $a, \neg a, \top, \perp$.
Let us assume it is true for all formulae φ (up to a certain number of connectives) and call its $\operatorname{CNF} \operatorname{cnf}(\varphi)$ (and its $\operatorname{DNF} \operatorname{dnf}(\varphi)$)
$\operatorname{cnf}(\neg(\Omega)=\operatorname{nnf}(\neg \operatorname{dnf}(\sigma))$ and $\operatorname{cnf}(\sigma \wedge u)=\operatorname{cnf}(\kappa) \wedge \operatorname{cnf}(u)$
Assume $\operatorname{cnf}(\varphi)=\Lambda_{i} \chi_{i}$ and $\operatorname{cnf}(\psi)=\bigwedge_{\rho} \rho_{j}$ with χ_{i}, ρ_{j} being clauses.
Then
$\operatorname{cnf}(\boldsymbol{n} \vee \psi)=\operatorname{cnf}\left(\left(\Lambda_{i} \chi_{i}\right) \vee\left(\Lambda_{i} \rho_{j}\right)\right)=\Lambda_{i} \Lambda_{j}\left(\chi_{i} \vee^{\prime} P_{j}\right) \quad$ (by distributivity)

Conjunctive normal form

Theorem

For each propositional formula there are logically equivalent formulae in CNF and DNF, respectively.

Propositio-
nal Logic
Syntax
Semantics

Terminology
The claim is true for $a, \neg a, \top, \perp$.
Let us assume it is true for all formulae φ (up to a certain number of connectives) and call its $\operatorname{CNF} \operatorname{cnf}(\varphi)$ (and its $\operatorname{DNF} \operatorname{dnf}(\varphi)$).
$\operatorname{cnf}(\neg \varphi)=\operatorname{nnf}(\neg \operatorname{dnf}(\varphi))$ and $\operatorname{cnf}(\varphi \wedge \psi)=\operatorname{cnf}(\varphi) \wedge \operatorname{cnf}(\psi)$
Assume $\operatorname{cnf}(\varphi)=\Lambda_{i} \chi_{i}$ and $\operatorname{cnf}(\psi)=\Lambda_{j} \rho_{j}$ with χ_{i}, ρ_{j} being clauses
Then
$\operatorname{cnf}(\varphi \vee \psi)=\operatorname{cnf}\left(\left(\bigwedge_{i} \chi_{i}\right) \vee\left(\bigwedge_{i} \rho_{j}\right)\right)=\bigwedge_{i} \bigwedge_{i}\left(\chi_{i} \vee \rho_{j}\right) \quad$ (by distributivity)

Conjunctive normal form

Theorem

For each propositional formula there are logically equivalent formulae in CNF and DNF, respectively.

Propositio-
nal Logic
Syntax

The claim is true for $a, \neg a, \top, \perp$.
Let us assume it is true for all formulae φ (up to a certain number of connectives) and call its $\operatorname{CNF} \operatorname{cnf}(\varphi)$ (and its $\operatorname{DNF} \operatorname{dnf}(\varphi)$).
$-\operatorname{cnf}(\neg \varphi)=\operatorname{nnf}(\neg \operatorname{dnf}(\varphi))$ and $\operatorname{cnf}(\varphi \wedge \psi)=\operatorname{cnf}(\varphi) \wedge \operatorname{cnf}(\psi)$.
Assume $\operatorname{cnf}(\varphi)=\Lambda_{i} \chi_{i}$ and $\operatorname{cnf}(\psi)=\Lambda_{i} \rho_{i}$ with χ_{i}, ρ_{i} being clauses.
Then
$\operatorname{cnf}(\varphi$

Conjunctive normal form

Theorem

For each propositional formula there are logically equivalent formulae in CNF and DNF, respectively.

Propositio-
nal Logic
Syntax
Semantics
Terminology
The claim is true for $a, \neg a, \top, \perp$.
Let us assume it is true for all formulae φ (up to a certain number of connectives) and call its $\operatorname{CNF} \operatorname{cnf}(\varphi)$ (and its $\operatorname{DNF} \operatorname{dnf}(\varphi)$).

- $\operatorname{cnf}(\neg \varphi)=\operatorname{nnf}(\neg \operatorname{dnf}(\varphi))$ and $\operatorname{cnf}(\varphi \wedge \psi)=\operatorname{cnf}(\varphi) \wedge \operatorname{cnf}(\psi)$.
- Assume $\operatorname{cnf}(\varphi)=\bigwedge_{i} \chi_{i}$ and $\operatorname{cnf}(\psi)=\bigwedge_{j} \rho_{j}$ with χ_{i}, ρ_{j} being clauses.
$\operatorname{cnf}(\varphi \vee \psi)=\operatorname{cnf}\left(\left(\bigwedge_{i} \chi_{i}\right) \vee\left(\bigwedge_{j} \rho_{j}\right)\right)=\bigwedge_{i} \bigwedge_{j}\left(\chi_{i} \vee \rho_{j}\right) \quad$ (by distributivity)

Conjunctive normal form

Theorem

For each propositional formula there are logically equivalent
formulae in CNF and DNF, respectively.

Propositio-
nal Logic
Syntax

The claim is true for $a, \neg a, \top, \perp$.
Let us assume it is true for all formulae φ (up to a certain number of connectives) and call its $\operatorname{CNF} \operatorname{cnf}(\varphi)$ (and its $\operatorname{DNF} \operatorname{dnf}(\varphi)$).

- $\operatorname{cnf}(\neg \varphi)=\operatorname{nnf}(\neg \operatorname{dnf}(\varphi))$ and $\operatorname{cnf}(\varphi \wedge \psi)=\operatorname{cnf}(\varphi) \wedge \operatorname{cnf}(\psi)$.
- Assume $\operatorname{cnf}(\varphi)=\bigwedge_{i} \chi_{i}$ and $\operatorname{cnf}(\psi)=\bigwedge_{j} \rho_{j}$ with χ_{i}, ρ_{j} being clauses.

Then

$$
\operatorname{cnf}(\varphi \vee \psi)=\operatorname{cnf}\left(\left(\bigwedge_{i} \chi_{i}\right) \vee\left(\bigwedge_{j} \rho_{j}\right)\right)=\bigwedge_{i} \bigwedge_{j}\left(\chi_{i} \vee \rho_{j}\right) \quad \text { (by distributivity) }
$$

Why Logic?
Propositio-
nal Logic
Syntax

Decision Problems and Resolution

How to decide properties of formulae

How do we decide whether a formula is satisfiable, unsatisfiable, valid, or falsifiable?
Note: Satisfiability and falsifiability are NP-complete. Validity and unsatisfiability are co-NP-complete.

```
A CNF formula is valid iff all clauses contain two complementary
literals or T
A DNF formula is satisfiable iff one disjunct does not contain L or
two complementary literals.
However, transformation to CNF or DNF may take exponential
time (and space!).
One can try out all truth assignments.
One can test systematically for satisfying truth assignments
(backtracking) \rightsquigarrow Davis-Putnam-Logemann-Loveland.
```


How to decide properties of formulae

How do we decide whether a formula is satisfiable, unsatisfiable, valid, or falsifiable?
Note: Satisfiability and falsifiability are NP-complete. Validity and unsatisfiability are co-NP-complete.

- A CNF formula is valid iff all clauses contain two complementary literals or T.

A DNF formula is satisfiable iff one disjunct does not contain \perp or two complementary literals.

Howover, transformation to CNF or DNF may take exponential

Why Logic?
Propositio
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and Resolution

Completeness
Resolution
Strategies
Horn Clauses time (and space!).

One can try out all truth assignments.
One can test systematically for satisfying truth assignments (backtracking) \rightsquigarrow Davis-Putnam-Logemann-Loveland.

How to decide properties of formulae

How do we decide whether a formula is satisfiable, unsatisfiable, valid, or falsifiable?
Note: Satisfiability and falsifiability are NP-complete. Validity and unsatisfiability are co-NP-complete.

- A CNF formula is valid iff all clauses contain two complementary literals or T.
- A DNF formula is satisfiable iff one disjunct does not contain \perp or two complementary literals.

> However, transformation to CNF or DNF may take exponential time (and space!)

> One can try out all truth assignments.
> One can test systematically for satisfying truth assignments (backtracking) \rightsquigarrow Davis-Putnam-Logemann-Loveland.

How to decide properties of formulae

How do we decide whether a formula is satisfiable, unsatisfiable, valid, or falsifiable?
Note: Satisfiability and falsifiability are NP-complete. Validity and unsatisfiability are co-NP-complete.

- A CNF formula is valid iff all clauses contain two complementary literals or T.
- A DNF formula is satisfiable iff one disjunct does not contain \perp or two complementary literals.
- However, transformation to CNF or DNF may take exponential time (and space!).

One can try out all truth assignments.
One can test systematically for satisfying truth assignments (backtracking) \rightsquigarrow Davis-Putnam-Logemann-Loveland.

How to decide properties of formulae

How do we decide whether a formula is satisfiable, unsatisfiable, valid, or falsifiable?
Note: Satisfiability and falsifiability are NP-complete. Validity and unsatisfiability are co-NP-complete.

- A CNF formula is valid iff all clauses contain two complementary literals or T.
- A DNF formula is satisfiable iff one disjunct does not contain \perp or two complementary literals.
- However, transformation to CNF or DNF may take exponential

Why Logic?
Propositio-
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and
Resolution
Completeness
Resolution
Strategies
Horn Clauses

- One can try out all truth assignments.

One can test systematically for satisfying truth assignments (backtracking) \rightsquigarrow Davis-Putnam-Logemann-Loveland.

How to decide properties of formulae

How do we decide whether a formula is satisfiable, unsatisfiable, valid, or falsifiable?
Note: Satisfiability and falsifiability are NP-complete. Validity and unsatisfiability are co-NP-complete.

- A CNF formula is valid iff all clauses contain two complementary literals or T.
- A DNF formula is satisfiable iff one disjunct does not contain \perp or two complementary literals.
- However, transformation to CNF or DNF may take exponential

Why Logic?
Propositio-
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and Resolution

Completeness
Resolution
Strategies
Horn Clauses

- One can try out all truth assignments.
- One can test systematically for satisfying truth assignments (backtracking) \rightsquigarrow Davis-Putnam-Logemann-Loveland.

Deciding entailment

- We want to decide $\Theta \models \varphi$. Use deduction theorem and reduce to validity: $\Theta \models \varphi$ iff $\bigwedge \Theta \rightarrow \varphi$ is valid.

Now negate and test for unsatisfiability using DPLL. Different approach: Try to derive φ from Θ - find a proof of φ from Θ.
Use inference rules to derive new formulae from Θ Continue to deduce new formulae until φ can be deduced. One particular calculus: resolution.

Why Logic?
Propositio-
nal Logic
Syntax
Semantics

Terminology
Decision
Problems and Resolution

Completeness
Resolution
Strategies
Horn Clauses

Deciding entailment

- We want to decide $\Theta \models \varphi$.
- Use deduction theorem and reduce to validity:

$$
\Theta \models \varphi \text { iff } \bigwedge \Theta \rightarrow \varphi \text { is valid. }
$$

- Now negate and test for unsatisfiability using DPLL.

Different approach: Try to derive φ from Θ - find a proof of φ from Θ.

Use inference rules to derive new formulae from Θ. Continue to deduce new formulae until φ can be deduced. One particular calculus: resolution.

Deciding entailment

- We want to decide $\Theta \models \varphi$.
- Use deduction theorem and reduce to validity:

$$
\Theta \models \varphi \text { iff } \bigwedge \Theta \rightarrow \varphi \text { is valid. }
$$

- Now negate and test for unsatisfiability using DPLL.
- Different approach: Try to derive φ from Θ - find a proof of φ from Θ.

Use inference rules to derive new formulae from Θ. Continue to deduce new formulae until φ can be deduced. One particular calculus: resolution.

Deciding entailment

- We want to decide $\Theta \models \varphi$.
- Use deduction theorem and reduce to validity:

$$
\Theta \models \varphi \text { iff } \bigwedge \Theta \rightarrow \varphi \text { is valid. }
$$

- Now negate and test for unsatisfiability using DPLL.
- Different approach: Try to derive φ from Θ - find a proof of φ from Θ.
- Use inference rules to derive new formulae from Θ. Continue to deduce new formulae until φ can be deduced.

One particular calculus: resolution.

Deciding entailment

- We want to decide $\Theta \models \varphi$.
- Use deduction theorem and reduce to validity:

$$
\Theta \models \varphi \text { iff } \bigwedge \Theta \rightarrow \varphi \text { is valid. }
$$

- Now negate and test for unsatisfiability using DPLL.
- Different approach: Try to derive φ from Θ - find a proof of φ from Θ.
- Use inference rules to derive new formulae from Θ. Continue to deduce new formulae until φ can be deduced.
- One particular calculus: resolution.

Resolution: representation

- We assume that all formulae are in CNF.
- Can be generated using the described method.
- Often formulae are already close to CNF.
- There is a "cheap" conversion from arbitrary formulae to CNF that preserves satisfiability - which is enough as we will see.

More convenient representation:
CNF formula is represented as a set. Each clause is a set of literals.

Why Logic?
Propositio-
nal Logic
Syntax
Semantics

Terminology
Decision
Problems and
Resolution
Completeness
Resolution
Strategies
Horn Clauses

Empty clause (symbolically \square) and empty set of clauses (symbolically Ø) are different!

Resolution: representation

- We assume that all formulae are in CNF.
- Can be generated using the described method.
- Often formulae are already close to CNF.
- There is a "cheap" conversion from arbitrary formulae to CNF that preserves satisfiability - which is enough as we will see.
- More convenient representation:
- CNF formula is represented as a set.
- Each clause is a set of literals.

Why Logic?
Propositio-
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and
Resolution
Completeness
Resolution
Strategies
Horn Clauses
$\square(a \vee \neg b) \wedge(\neg a \vee c) \rightsquigarrow\{\{a, \neg b\},\{\neg a, c\}\}$
Empty clause (symbolically \square) and empty set of clauses (symbolically Ø) are different!

Resolution: representation

- We assume that all formulae are in CNF.
- Can be generated using the described method.
- Often formulae are already close to CNF.
- There is a "cheap" conversion from arbitrary formulae to CNF that preserves satisfiability - which is enough as we will see.
- More convenient representation:
- CNF formula is represented as a set.
- Each clause is a set of literals.

Why Logic?
Propositio-
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and
Resolution
Completeness
Resolution
Strategies
Horn Clauses
$\square(a \vee \neg b) \wedge(\neg a \vee c) \rightsquigarrow\{\{a, \neg b\},\{\neg a, c\}\}$

- Empty clause (symbolically \square) and empty set of clauses (symbolically Ø) are different!

Resolution: the inference rule

Let / be a literal and \bar{i} its complement.

The resolution rule

$$
\frac{C_{1} \cup \dot{\cup}\{l\}, C_{2} \dot{\cup}\{\bar{T}\}}{C_{1} \cup C_{2}}
$$

$C_{1} \cup C_{2}$ is the resolvent of the parent clauses $C_{1} \cup\{1\}$ and $C_{2} \cup\{\bar{I}\}$. I and \bar{I} are the resolution literals.
Example: $\{a, b, \neg c\}$ resolves with $\{a, d, c\}$ to $\{a, b, d\}$
Note: The resolvent is not logically equivalent to the set of parent

Why Logic?
Propositio
nal Logic
Syntax
Semantics

Terminology
Decision
Problems and
Resolution
Completeness
Resolution
Strategies
Horn Clauses clauses!

Notation:

$$
R(\Delta)=\{C \mid C \text { is resolvent of two clauses in } \Delta\}
$$

Let / be a literal and \bar{i} its complement.

The resolution rule

$$
\frac{C_{1} \cup \dot{\cup}\{ \}, C_{2} \dot{\cup}\{\bar{\jmath}\}}{C_{1} \cup C_{2}}
$$

$C_{1} \cup C_{2}$ is the resolvent of the parent clauses $C_{1} \cup\{l\}$ and $C_{2} \cup\{\bar{\jmath}\}$. I and \bar{I} are the resolution literals.
Example: $\{a, b, \neg c\}$ resolves with $\{a, d, c\}$ to $\{a, b, d\}$.
Note: The resolvent is not logically equivalent to the set of parent

Why Logic?
Propositio-
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and Resolution

Completeness
Resolution
Strategies
Horn Clauses clauses!

Notation:
$R(\Delta)=\{C \mid C$ is resolvent of two clauses in $\Delta\}$

Resolution: the inference rule

Let / be a literal and $\overline{\mathrm{i}}$ its complement.

The resolution rule

$$
\frac{C_{1} \dot{\cup}\{l\}, C_{2} \dot{\cup}\{\bar{T}\}}{C_{1} \cup C_{2}}
$$

$C_{1} \cup C_{2}$ is the resolvent of the parent clauses $C_{1} \cup\{l\}$ and $C_{2} \cup\{\bar{\jmath}\}$. I and \bar{I} are the resolution literals.
Example: $\{a, b, \neg c\}$ resolves with $\{a, d, c\}$ to $\{a, b, d\}$.
Note: The resolvent is not logically equivalent to the set of parent

Why Logic?
Propositio-
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and Resolution

Completeness
Resolution
Strategies
Horn Clauses clauses!

Notation:
$R(\Delta)=\{C \mid C$ is resolvent of two clauses in $\Delta\}$

Resolution: the inference rule

Let / be a literal and \bar{i} its complement.

The resolution rule

$$
\frac{C_{1} \dot{\cup}\{l\}, C_{2} \dot{\cup}\{\bar{T}\}}{C_{1} \cup C_{2}}
$$

Propositio-
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and Resolution

Completeness
Resolution
Strategies
Horn Clauses clauses!

Notation:
$R(\Delta)=\{C \mid C$ is resolvent of two clauses in $\Delta\}$

Resolution: the inference rule

Let / be a literal and \bar{i} its complement.

The resolution rule

$$
\frac{C_{1} \dot{\cup}\{l\}, C_{2} \dot{\cup}\{\bar{T}\}}{C_{1} \cup C_{2}}
$$

$C_{1} \cup C_{2}$ is the resolvent of the parent clauses $C_{1} \cup\{I\}$ and
$C_{2} \cup\{\bar{\jmath}\}$. I and \bar{I} are the resolution literals.
Example: $\{a, b, \neg c\}$ resolves with $\{a, d, c\}$ to $\{a, b, d\}$.
Note: The resolvent is not logically equivalent to the set of parent

Propositio-
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and Resolution

Completeness
Resolution
Strategies
Horn Clauses clauses!

Notation:

$$
R(\Delta)=\{C \mid C \text { is resolvent of two clauses in } \Delta\}
$$

Resolution: derivations

$$
\begin{aligned}
& D \text { can be derived from } \Delta \text { by resolution (symbolically } \Delta \vdash D \text {) if } \\
& \text { there is a sequence } C_{1}, \ldots, C_{n} \text { of clauses such that } \\
& \text { II } C_{n}=D \text { and } \\
& C_{i} \in R\left(\Delta \cup\left\{C_{1}, \ldots, C_{i-1}\right\}\right) \text {, for all } i \in\{1, \ldots, n\} \text {. }
\end{aligned}
$$

$$
\text { Define } R^{*}(\Delta)=\{D \mid \Delta \vdash D\} \text {. }
$$

Theorem (Soundness of resolution)
Let D be a clause. If $\Delta \vdash D$ then $\Delta \models D$.
Proof idea.
Show $\Delta=D$ if $D \in R(\Delta)$ and use induction on proof length.
Let $C_{1} \cup\{I\}$ and $C_{2} \cup\{I\}$ be the parent clauses of $D=C_{1} \cup C_{2}$.
Assume $\mathcal{I} \models \Delta$, we have to show $\mathcal{I} \models D$.
Case 1: $\mathcal{I} \mid=I$ then $\exists m \in C_{2}$ s.t. $\mathcal{I} \mid=m$. This implies $\mathcal{I}=D$
Case $2: \mathcal{I}=I$ similarly, $\exists m \in C_{1}$ s.t. $I=m$.
This means that each model \mathcal{I} of Δ also satisfies D, i.e., $\Delta \models D$.

Why Logic?
Propositio-
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and Resolution

Completeness
Resolution
Strategies
Horn Clauses

Resolution: derivations

D can be derived from Δ by resolution (symbolically $\Delta \vdash D$) if there is a sequence C_{1}, \ldots, C_{n} of clauses such that

$1 C_{n}=D$ and

$$
C_{i} \in R\left(\Delta \cup\left\{C_{1}, \ldots, C_{i-1}\right\}\right), \text { for all } i \in\{1, \ldots, n\}
$$

$$
\text { Define } R^{*}(\Delta)=\{D \mid \Delta \vdash D\} .
$$

Theorem (Soundness of resolution)

Let D be a clause. If $\Delta \vdash D$ then $\Delta \models D$.
Proof idea.
Show $\Delta \models D$ if $D \in R(\Delta)$ and use induction on proof length.
Let $C_{1} \cup\{I\}$ and $C_{2} \cup\{\bar{I}\}$ be the parent clauses of $D=C_{1} \cup C_{2}$
Assume $\mathcal{I}=\Delta$, we have to show $\mathcal{I}=D$.
Case 1: $\mathcal{I} \mid=I$ then $\exists m \in C_{2}$ s.t. $\mathcal{I} \mid=m$. This implies $\mathcal{I} \models D$.
Case 2: $\mathcal{I} \models \bar{l}$ similarly, $\exists m \in C_{1}$ s.t. $\mathcal{I} \models m$.
This means that each model \mathcal{I} of Δ also satisfies D, i.e., $\Delta \models D$.

Propositio-
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and Resolution

Completeness
Resolution
Strategies
Horn Clauses

Resolution: derivations

D can be derived from Δ by resolution (symbolically $\Delta \vdash D$) if there is a sequence C_{1}, \ldots, C_{n} of clauses such that

$1 C_{n}=D$ and

$$
C_{i} \in R\left(\Delta \cup\left\{C_{1}, \ldots, C_{i-1}\right\}\right), \text { for all } i \in\{1, \ldots, n\}
$$

Define $R^{*}(\Delta)=\{D \mid \Delta \vdash D\}$.
Theorem (Soundness of resolution)
Let D be a clause. If $\Delta \vdash D$ then $\Delta \models D$.
Proof idea.
Show $\Delta \models D$ if $D \in R(\Delta)$ and use induction on proof length.

Why Logic?
Propositio-
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and Resolution

Completeness
Resolution
Strategies
Horn Clauses

Resolution: derivations

D can be derived from Δ by resolution (symbolically $\Delta \vdash D$) if there is a sequence C_{1}, \ldots, C_{n} of clauses such that
$1 C_{n}=D$ and

$$
C_{i} \in R\left(\Delta \cup\left\{C_{1}, \ldots, C_{i-1}\right\}\right), \text { for all } i \in\{1, \ldots, n\}
$$

Define $R^{*}(\Delta)=\{D \mid \Delta \vdash D\}$.
Theorem (Soundness of resolution)
Let D be a clause. If $\Delta \vdash D$ then $\Delta \models D$.
Proof idea.
Show $\Delta \models D$ if $D \in R(\Delta)$ and use induction on proof length.
Let $C_{1} \cup\{I\}$ and $C_{2} \cup\{\bar{I}\}$ be the parent clauses of $D=C_{1} \cup C_{2}$.

Resolution: derivations

D can be derived from Δ by resolution (symbolically $\Delta \vdash D$) if there is a sequence C_{1}, \ldots, C_{n} of clauses such that
$1 C_{n}=D$ and

$$
C_{i} \in R\left(\Delta \cup\left\{C_{1}, \ldots, C_{i-1}\right\}\right), \text { for all } i \in\{1, \ldots, n\}
$$

Define $R^{*}(\Delta)=\{D \mid \Delta \vdash D\}$.
Theorem (Soundness of resolution)
Let D be a clause. If $\Delta \vdash D$ then $\Delta \models D$.
Proof idea.
Show $\Delta \models D$ if $D \in R(\Delta)$ and use induction on proof length.
Let $C_{1} \cup\{I\}$ and $C_{2} \cup\{\bar{I}\}$ be the parent clauses of $D=C_{1} \cup C_{2}$.
Assume $\mathcal{I} \models \Delta$, we have to show $\mathcal{I} \models D$.

Resolution: derivations

D can be derived from Δ by resolution (symbolically $\Delta \vdash D$) if there is a sequence C_{1}, \ldots, C_{n} of clauses such that
$1 C_{n}=D$ and

$$
C_{i} \in R\left(\Delta \cup\left\{C_{1}, \ldots, C_{i-1}\right\}\right), \text { for all } i \in\{1, \ldots, n\}
$$

Define $R^{*}(\Delta)=\{D \mid \Delta \vdash D\}$.

Theorem (Soundness of resolution)

Let D be a clause. If $\Delta \vdash D$ then $\Delta \models D$.

Proof idea.

Show $\Delta \models D$ if $D \in R(\Delta)$ and use induction on proof length.
Let $C_{1} \cup\{I\}$ and $C_{2} \cup\{\bar{I}\}$ be the parent clauses of $D=C_{1} \cup C_{2}$.
Assume $\mathcal{I} \models \Delta$, we have to show $\mathcal{I} \models D$.
Case 1: $\mathcal{I} \models I$ then $\exists m \in C_{2}$ s.t. $\mathcal{I} \models m$.

This means that each model \mathcal{I} of Δ also satisfies D, i.e., $\Delta=D$.

Resolution: derivations

D can be derived from Δ by resolution (symbolically $\Delta \vdash D$) if there is a sequence C_{1}, \ldots, C_{n} of clauses such that
$1 C_{n}=D$ and

$$
C_{i} \in R\left(\Delta \cup\left\{C_{1}, \ldots, C_{i-1}\right\}\right), \text { for all } i \in\{1, \ldots, n\}
$$

Define $R^{*}(\Delta)=\{D \mid \Delta \vdash D\}$.

Theorem (Soundness of resolution)

Let D be a clause. If $\Delta \vdash D$ then $\Delta \models D$.

Proof idea.

Show $\Delta \models D$ if $D \in R(\Delta)$ and use induction on proof length.
Let $C_{1} \cup\{I\}$ and $C_{2} \cup\{\bar{I}\}$ be the parent clauses of $D=C_{1} \cup C_{2}$.
Assume $\mathcal{I} \models \Delta$, we have to show $\mathcal{I} \models D$.
Case 1: $\mathcal{I} \models I$ then $\exists m \in C_{2}$ s.t. $\mathcal{I} \models m$. This implies $\mathcal{I} \models D$.

Resolution: derivations

D can be derived from Δ by resolution (symbolically $\Delta \vdash D$) if there is a sequence C_{1}, \ldots, C_{n} of clauses such that
$1 C_{n}=D$ and

$$
C_{i} \in R\left(\Delta \cup\left\{C_{1}, \ldots, C_{i-1}\right\}\right), \text { for all } i \in\{1, \ldots, n\}
$$

Define $R^{*}(\Delta)=\{D \mid \Delta \vdash D\}$.

Theorem (Soundness of resolution)

Let D be a clause. If $\Delta \vdash D$ then $\Delta \models D$.

Proof idea.

Show $\Delta \models D$ if $D \in R(\Delta)$ and use induction on proof length.
Let $C_{1} \cup\{I\}$ and $C_{2} \cup\{\bar{I}\}$ be the parent clauses of $D=C_{1} \cup C_{2}$.
Assume $\mathcal{I} \models \Delta$, we have to show $\mathcal{I} \models D$.
Case 1: $\mathcal{I} \models I$ then $\exists m \in C_{2}$ s.t. $\mathcal{I} \models m$. This implies $\mathcal{I} \models D$.
Case 2: $\mathcal{I} \models \bar{l}$ similarly, $\exists m \in C_{1}$ s.t. $\mathcal{I} \models m$.

Resolution: derivations

D can be derived from Δ by resolution (symbolically $\Delta \vdash D$) if there is a sequence C_{1}, \ldots, C_{n} of clauses such that
$1 C_{n}=D$ and

$$
C_{i} \in R\left(\Delta \cup\left\{C_{1}, \ldots, C_{i-1}\right\}\right), \text { for all } i \in\{1, \ldots, n\}
$$

Define $R^{*}(\Delta)=\{D \mid \Delta \vdash D\}$.

Theorem (Soundness of resolution)

Let D be a clause. If $\Delta \vdash D$ then $\Delta \models D$.

Proof idea.

Show $\Delta \models D$ if $D \in R(\Delta)$ and use induction on proof length.
Let $C_{1} \cup\{I\}$ and $C_{2} \cup\{\bar{I}\}$ be the parent clauses of $D=C_{1} \cup C_{2}$.
Assume $\mathcal{I} \models \Delta$, we have to show $\mathcal{I} \models D$.
Case 1: $\mathcal{I} \models I$ then $\exists m \in C_{2}$ s.t. $\mathcal{I} \models m$. This implies $\mathcal{I} \models D$.
Case 2: $\mathcal{I} \models \bar{l}$ similarly, $\exists m \in C_{1}$ s.t. $\mathcal{I} \models m$.
This means that each model \mathcal{I} of Δ also satisfies D, i.e., $\Delta \models D$.

Resolution: completeness?

Do we have

$\Delta \models \varphi$ implies $\Delta \vdash \varphi$?

Of course, could only hold for CNF. However:

However, one can show that resolution is refutation-complete:
Why Logic?
Propositio
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and
Resolution
Completeness
Resolution
Strategies
Horn Clauses

Entailment: Reduce to unsatisfiability testing and decide by resolution.

Resolution: completeness?

Do we have

$$
\Delta \models \varphi \text { implies } \Delta \vdash \varphi ?
$$

Of course, could only hold for CNF.

However, one can show that resolution is refutation-complete:
Why Logic?
Propositio-
nal Logic
Syntax
Semantics

Terminology
Decision
Problems and
Resolution
Completeness
Resolution
Strategies
Horn Clauses

Entailment: Reduce to unsatisfiability testing and decide by resolution.

Resolution: completeness?

Do we have

$$
\Delta \models \varphi \text { implies } \Delta \vdash \varphi \text { ? }
$$

Why Logic?
Propositio-
nal Logic
Syntax
Semantics

Terminology
Decision
Problems and
Resolution
Completeness
Resolution
Strategies
Horn Clauses Δ is unsatisfiable iff $\Delta \vdash \square$.

Entailment: Reduce to unsatisfiability testing and decide by resolution.

Resolution: completeness?

Do we have

$$
\Delta \models \varphi \text { implies } \Delta \vdash \varphi \text { ? }
$$

Why Logic?
Propositio-
nal Logic
Syntax
Semantics

Terminology
Decision
Problems and
Resolution
Completeness
Resolution
Strategies
Horn Clauses
Δ is unsatisfiable iff $\Delta \vdash \square$.

Entailment: Reduce to unsatisfiability testing and decide by
resolution.

Resolution: completeness?

Do we have

$$
\Delta \models \varphi \text { implies } \Delta \vdash \varphi \text { ? }
$$

Why Logic?
Propositio-
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and
Resolution
Completeness
Resolution
Strategies
Horn Clauses
Δ is unsatisfiable iff $\Delta \vdash \square$.

Entailment: Reduce to unsatisfiability testing and decide by resolution.

Resolution strategies

- Trying out all different resolutions can be very costly,
- and might not be necessary.

There are different resolution strategies.
Examples:
Input resolution $\left(R_{/}(\cdot)\right)$: In each resolution step, one of the parent clauses must be a clause of the input set.
Unit resolution $\left(R_{U}(\cdot)\right)$: In each resolution step, one of the parent clauses must be a unit clause.
Not all strategies are (refutation) completeness preserving. Neither input nor unit resolution is. However, there are others.

Propositio-
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and
Resolution
Completeness
Resolution
Strategies
Horn Clauses

Resolution strategies

- Trying out all different resolutions can be very costly,
- and might not be necessary.
- There are different resolution strategies.
- Examples:
- Input resolution $\left(R_{/}(\cdot)\right)$: In each resolution step, one of the parent clauses must be a clause of the input set.

$$
\begin{aligned}
& \text { Unit resolution }\left(R_{U}(\cdot)\right) \text { : In each resolution step, one of the } \\
& \text { parent clauses must be a unit clause. } \\
& \text { Not all strategies are (refutation) completeness preserving. } \\
& \text { Neither input nor unit resolution is. However, there are } \\
& \text { others. }
\end{aligned}
$$

Propositio
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and
Resolution
Completeness
Resolution
Strategies
Horn Clauses

Resolution strategies

- Trying out all different resolutions can be very costly,
- and might not be necessary.
- There are different resolution strategies.
- Examples:
- Input resolution $\left(R_{/}(\cdot)\right)$: In each resolution step, one of the parent clauses must be a clause of the input set.
- Unit resolution $\left(R_{U}(\cdot)\right)$: In each resolution step, one of the parent clauses must be a unit clause.
Not all strategies are (refutation) completeness preserving. Neither input nor unit resolution is. However, there are others.

Resolution strategies

- Trying out all different resolutions can be very costly,
- and might not be necessary.
- There are different resolution strategies.
- Examples:
- Input resolution $\left(R_{l}(\cdot)\right)$: In each resolution step, one of the parent clauses must be a clause of the input set.
- Unit resolution $\left(R_{U}(\cdot)\right)$: In each resolution step, one of the parent clauses must be a unit clause.

Propositio-
nal Logic
Syntax
Semantics

Terminology

Decision
Problems and
Resolution
Completeness
Resolution
Strategies
Horn Clauses

- Not all strategies are (refutation) completeness preserving. Neither input nor unit resolution is. However, there are others.

Horn clauses \& resolution

Horn clauses: Clauses with at most one positive literal

Proposition

Unit resolution is refutation-complete for Horn clauses.

Proof idea.

Consider $R_{U}^{*}(\Delta)$ of Horn clause set Δ. We have to show that if
$\square \notin R_{U}^{*}(\Delta)$, then $\Delta\left(\equiv R_{U}^{*}(\Delta)\right)$ is satisfiable.

- Assign true to all unit clauses in $R_{U}^{*}(\Delta)$.
- Those clauses that do not contain a literal / such that $\{I\}$ is one of the unit clauses have at least one negative literal.
- Assign true to these literals.
- Results in satisfying truth assignment for $R_{U}^{*}(\Delta)$ (and $\left.\Delta \subseteq R_{U}^{*}(\Delta)\right)$.

Horn clauses \& resolution

Horn clauses: Clauses with at most one positive literal Example: $(a \vee \neg b \vee \neg c),(\neg b \vee \neg c)$

Proposition

Unit resolution is refutation-complete for Horn clauses.

Why Logic?
Propositio-
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and
Resolution
Completeness
Resolution
Strategies
Horn Clauses

Horn clauses \& resolution

Horn clauses: Clauses with at most one positive literal Example: $(a \vee \neg b \vee \neg c),(\neg b \vee \neg c)$

Proposition

Unit resolution is refutation-complete for Horn clauses.

Why Logic?
Propositio-
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and
Resolution
Completeness
Resolution
Strategies
Horn Clauses

Horn clauses \& resolution

Horn clauses: Clauses with at most one positive literal Example: $(a \vee \neg b \vee \neg c),(\neg b \vee \neg c)$

Proposition

Unit resolution is refutation-complete for Horn clauses.

Propositio-
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and
Resolution
Completeness
Resolution
Strategies
Horn Clauses

Horn clauses \& resolution

Horn clauses: Clauses with at most one positive literal Example: $(a \vee \neg b \vee \neg c),(\neg b \vee \neg c)$

Proposition

Why Logic?
Propositio-
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and
Resolution
Completeness
Resolution
Strategies
Horn Clauses

Horn clauses \& resolution

Horn clauses: Clauses with at most one positive literal Example: $(a \vee \neg b \vee \neg c),(\neg b \vee \neg c)$

Proposition

Unit resolution is refutation-complete for Horn clauses.

Why Logic?
Propositio-
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and
Resolution
Completeness
Resolution
Strategies
Horn Clauses

Literature

Harry R. Lewis and Christos H. Papadimitriou.Elements of the Theory of Computation.
Prentice-Hall, Englewood Cliffs, NJ, 1981 (Chapters 8 \& 9).Volker Sperschneider and Grigorios Antoniou.Logic - A Foundation for Computer Science.
Addison-Wesley, Reading, MA, 1991 (Chapters 1-3).
H.-P. Ebbinghaus, J. Flum, and W. Thomas.
Einführung in die mathematische Logik.Wissenschaftliche Buchgesellschaft, Darmstadt, 1986.
Propositio
nal Logic
Syntax
Semantics
Terminology
Decision
Problems and
Resolution
Completeness
ResolutionStrategies
U. Schöning.
Logik für Informatiker.
Spektrum-Verlag, 5th edition, 2000.

