Exercise 10.1 (Merge-and-Shrink abstractions, 2 + 3 points)

Consider the (SAS⁺) Gripper planning task \(\Pi \) from Exercise Sheet 9. The graph for \(T^{\pi_{t=t_1}} \otimes T^{\pi_{t=t_2G_1}} \) and its two-dimensional table are given by

The corresponding one-dimensional tables are given by

\[
\begin{array}{l|c|c}
T_{b_k}^1 & s_2 = 0 & s_2 = 1 \\
\hline
s_1 = 0 & 0 & 1 \\
 s_1 = 1 & 2 & 3 \\
 s_1 = 2 & 4 & 5 \\
 s_1 = 3 & 6 & 7 \\
\end{array}
\]

(a) Shrink the graph by collapsing all nodes with identical \(g \) and \(h \) values. Use linked lists to renumber the nodes. Visualize the resulting graph, and specify the resulting new two-dimensional table and the final status of the linked list.
(b) Which heuristic value do we get for \(s = \{ \text{pos}_{B_1} \mapsto L, \text{pos}_{B_2} \mapsto G_1, \text{pos}_{\text{Robby}} \mapsto R, \text{status}_{G_1} \mapsto F, \text{status}_{G_2} \mapsto E \} \) and how is the look-up of the value performed?

Exercise 10.2 (Dynamic programming, 3 points)

Consider the propositional nondeterministic planning task \(\Pi' = \langle A', I', O', \gamma' \rangle \), with

- the set of variables \(A' = \{a, b, c\} \),
- initial state \(I' = \{a \mapsto 0, b \mapsto 0, c \mapsto 1\} \),
- set of operators \(O' = \{o_1, o_2, o_3\} \), where
 - \(o_1 = \langle a, \{b \land c, b \land \neg c\} \rangle \),
 - \(o_2 = \langle \neg a \land b, \{a \land \neg b, a\} \rangle \),
 - \(o_3 = \langle \neg b, \{\neg a \land b\} \rangle \)
- and goal \(\gamma' = a \land b \)

Determine a strong plan for \(\Pi' \) by computing backward distances with the dynamic programming algorithm.

Exercise 10.3 (Symbolic regression search with boolean function operations, 2 points)

Consider the planning task \(\Pi' \) from **Exercise 10.2**. Perform a regression search with boolean function operations and simplify all formulas as much as possible. It is sufficient to calculate \(\text{spreimg}_o(\alpha) \), where \(o \) is the operator from the strong plan of Exercise 10.2 that is applied in a state described by \(\text{spreimg}_o(\alpha) \) and results in a state described by \(\alpha \).

Note: The exercise sheets may and should be worked on in groups of two students. Please state both names on your solution (this also holds for submissions by e-mail).