What do we mean by search?

- **Search** is a very generic term.
- Every algorithm that tries out various alternatives can be said to "search" in some way.
- Here, we mean **classical search** algorithms.
 - **Search nodes** are expanded to generate successor nodes.
 - **Examples**: breadth-first search, A*, hill-climbing, ...
- To be brief, we just say search in the following (not "classical search").

Do you know this stuff already?

- **We assume prior knowledge** of basic search algorithms:
 - uninformed vs. informed
 - systematic vs. local
- There will be a small refresher in the next chapter.
- **Background**: Russell & Norvig, Artificial Intelligence – A Modern Approach, Ch. 3 (all of it), Ch. 4 (local search)
Search in planning

- search: one of the big success stories of AI
- many planning algorithms based on classical AI search (we’ll see some other algorithms later, though)
- will be the focus of this and the following chapters (the majority of the course)

Satisficing or optimal planning?

Must carefully distinguish two different problems:

- **satisficing planning**: any solution is OK (although shorter solutions typically preferred)
- **optimal planning**: plans must have shortest possible length

Both are often solved by search, but:

- details are very different
- almost no overlap between good techniques for satisficing planning and good techniques for optimal planning
- many problems that are trivial for satisficing planners are impossibly hard for optimal planners

Planning by search

How to apply search to planning? ~~~ many choices to make!

Choice 1: Search direction

- **progression**: forward from initial state to goal
- **regression**: backward from goal states to initial state
- bidirectional search

Choice 2: Search space representation

- search nodes are associated with states (~~~ state-space search)
- search nodes are associated with sets of states
Planning by search

How to apply search to planning? \(\Rightarrow \) many choices to make!

Choice 3: Search algorithm

- uninformed search:
 - depth-first, breadth-first, iterative depth-first, …
- heuristic search (systematic):
 - greedy best-first, A\(^*\), Weighted A\(^*\), IDA\(^*\), …
- heuristic search (local):
 - hill-climbing, simulated annealing, beam search, …

Choice 4: Search control

- heuristics for informed search algorithms
- pruning techniques: invariants, symmetry elimination, partial-order reduction, helpful actions pruning, …

Search-based satisficing planners

FF (Hoffmann & Nebel, 2001)

- search direction: forward search
- search space representation: single states
- search algorithm: enforced hill-climbing (informed local)
- heuristic: FF heuristic (inadmissible)
- pruning technique: helpful actions (incomplete)

\(\Rightarrow \) one of the best satisficing planners

Search-based optimal planners

Fast Downward Stone Soup (Helmert et al., 2011)

- search direction: forward search
- search space representation: single states
- search algorithm: A\(^*\) (informed systematic)
- heuristic: multiple admissible heuristics combined into a heuristic portfolio (LM-cut, M&S, blind, …)
- pruning technique: none

\(\Rightarrow \) one of the best optimal planners
Our plan for the next lectures

Choices to make:
1. search direction: progression/regression/both
 ⇝ this chapter
2. search space representation: states/sets of states
 ⇝ this chapter
3. search algorithm: uninformed/heuristic; systematic/local
 ⇝ next chapter
4. search control: heuristics, pruning techniques
 ⇝ following chapters

Planning by forward search: progression

Progression: Computing the successor state \(\text{app}_o(s) \) of a state \(s \) with respect to an operator \(o \).

Progression planners find solutions by forward search:
- start from initial state
- iteratively pick a previously generated state and progress it through an operator, generating a new state
- solution found when a goal state generated

pro: very easy and efficient to implement

Search space representation in progression planners

Two alternative search spaces for progression planners:
1. search nodes correspond to states
 - when the same state is generated along different paths, it is not considered again (duplicate detection)
 - pro: save time to consider same state again
 - con: memory intensive (must maintain closed list)
2. search nodes correspond to operator sequences
 - different operator sequences may lead to identical states (transpositions); search does not notice this
 - pro: can be very memory-efficient
 - con: much wasted work (often exponentially slower)

⇝ first alternative usually preferable in planning
 (unlike many classical search benchmarks like 15-puzzle)
Progression planning example (depth-first search)

Example where search nodes correspond to operator sequences (no duplicate detection)

October 31st, 2012 B. Nebel, R. Mattmüller – AI Planning

16 / 49
Example where search nodes correspond to operator sequences (no duplicate detection)

Progression planning example (depth-first search)

Example where search nodes correspond to operator sequences (no duplicate detection)
Progression planning example (depth-first search)

Example where search nodes correspond to operator sequences (no duplicate detection)

$S_0 \rightarrow S_*$

Forward search vs. backward search

Going through a transition graph in forward and backward directions is not symmetric:
- forward search starts from a **single** initial state;
- backward search starts from a **set** of goal states
- when applying an operator o in a state s in forward direction, there is a **unique successor state** s';
- if we applied operator o to end up in state s', there can be **several possible predecessor states** s

\Rightarrow most natural representation for backward search in planning associates **sets of states** with search nodes
Regression: Computing the possible predecessor states \(\text{regr}_o(G) \) of a set of states \(G \) with respect to the last operator \(o \) that was applied.

Regression planners find solutions by backward search:
- start from set of goal states
- iteratively pick a previously generated state set and regress it through an operator, generating a new state set
- solution found when a generated state set includes the initial state

Pro: can handle many states simultaneously
Con: basic operations complicated and expensive

Regression planning example (depth-first search)

Search space representation in regression planners

identify state sets with logical formulae (again):
- search nodes correspond to state sets
- each state set is represented by a logical formula: \(\phi \) represents \(\{ s \in S \mid s \models \phi \} \)
- many basic search operations like detecting duplicates are NP-hard or coNP-hard
Regression planning example (depth-first search)

$\varphi_1 = \text{regr} \rightarrow (\gamma)$

$\varphi_2 = \text{regr} \rightarrow (\varphi_1)$

$\varphi_3 = \text{regr} \rightarrow (\varphi_2), I \models \varphi_3$

Regression for STRIPS planning tasks

Definition (STRIPS planning task)
A planning task is a STRIPS planning task if all operators are STRIPS operators and the goal is a conjunction of atoms.

Regression for STRIPS planning tasks is very simple:
- Goals are conjunctions of atoms $a_1 \land \cdots \land a_n$.
- First step: Choose an operator that makes none of a_1, \ldots, a_n false.
- Second step: Remove goal atoms achieved by the operator (if any) and add its preconditions.
- Outcome of regression is again conjunction of atoms.

Optimization: only consider operators making some a_i true.
Definition (STRIPS regression)

Let \(\varphi = \varphi_1 \land \cdots \land \varphi_n \) be a conjunction of atoms, and let \(o = (\chi, e) \) be a STRIPS operator which adds the atoms \(a_1, \ldots, a_k \) and deletes the atoms \(a_1, \ldots, d_j \).

The STRIPS regression of \(\varphi \) with respect to \(o \) is defined as follows:

\[
\text{sregr}_o(\varphi) := \begin{cases}
\bot & \text{if } a_i = d_j \text{ for some } i,j \\
\bot & \text{if } \varphi_i = d_j \text{ for some } i,j \\
\chi \land \{\varphi_1, \ldots, \varphi_n\} \setminus \{a_1, \ldots, a_k\} & \text{otherwise}
\end{cases}
\]

Note: \(\text{sregr}_o(\varphi) \) is again a conjunction of atoms, or \(\bot \).

Regression for general planning tasks

- With disjunctions and conditional effects, things become more tricky. How to regress \(a \lor (b \land c) \) with respect to \((q, d \triangleright b) \)?
- The story about goals and subgoals and fulfilling subgoals, as in the STRIPS case, is no longer useful.
- We present a general method for doing regression for any formula and any operator.
- Now we extensively use the idea of representing sets of states as formulae.

Effect preconditions

Definition (effect precondition)

The effect precondition \(\text{EPC}_l(e) \) for literal \(l \) and effect \(e \) is defined as follows:

\[
\text{EPC}_l(l) = \top \\
\text{EPC}_l(l') = \bot \text{ if } l \neq l' \text{ (for literals } l') \\
\text{EPC}_l(e_1 \land \cdots \land e_n) = \text{EPC}_l(e_1) \lor \cdots \lor \text{EPC}_l(e_n) \\
\text{EPC}_l(l \triangleright e) = \text{EPC}_l(e) \land \chi
\]

Intuition: \(\text{EPC}_l(e) \) describes the situations in which effect \(e \) causes literal \(l \) to become true.
Effect precondition examples

Example

\[EPC_a(b \land c) = \bot \lor \bot \equiv \bot \]
\[EPC_a(a \land (b \triangleright a)) = \top \lor (\top \land b) \equiv \top \]
\[EPC_a((c \triangleright a) \land (b \triangleright a)) = (\top \land c) \lor (\top \land b) \equiv c \lor b \]

Effect preconditions: connection to change sets

Lemma (A)

Let \(s \) be a state, \(l \) a literal and \(e \) an effect. Then \(l \in [e]_s \) if and only if \(s \models EPC_l(e) \).

Proof.

Induction on the structure of the effect \(e \).

Base case 1, \(e = l \): \(l \in [l]_s = \{ l \} \) by definition, and \(s \models EPC_l(l) = \top \) by definition. Both sides of the equivalence are true.

Base case 2, \(e = l' \) for some literal \(l' \neq l \): \(l' \in [l']_s \) by definition, and \(s \not\models EPC_l(l') = \bot \) by definition. Both sides are false.

Inductive case 1, \(e = e_1 \land \cdots \land e_n \):

\(l \in [e]_s \) iff \(l \in [e_1]_s \lor \cdots \lor [e_n]_s \) (Def \([e_1 \land \cdots \land e_n]_s\))

iff \(l \in [e']_s \) for some \(e' \in \{ e_1, \ldots, e_n \} \)

iff \(s \models EPC_l(e') \) for some \(e' \in \{ e_1, \ldots, e_n \} \) (IH)

iff \(s \models EPC_l(e_1) \lor \cdots \lor EPC_l(e_n) \) (Def \(EPC\))

Inductive case 2, \(e = \chi \triangleright e' \):

\(l \in [\chi \triangleright e']_s \) iff \(l \in [e']_s \) and \(s \models \chi \) (Def \([\chi \triangleright e']_s\))

iff \(s \models EPC_l(e') \) and \(s \models \chi \) (IH)

iff \(s \models EPC_l(e') \land \chi \) (IH)

iff \(s \models EPC_l(\chi \triangleright e') \). (Def \(EPC\))

Remark: EPC vs. effect normal form

Notice that in terms of \(EPC_a(e)\), any operator \(\langle \chi, e \rangle\) can be expressed in effect normal form as

\[\left(\chi, \bigwedge_{a \in A} ((EPC_a(e) \triangleright a) \land (EPC_{\neg a}(e) \triangleright \neg a)) \right), \]

where \(A\) is the set of all state variables.
Regressing state variables

The formula $EPC_a(e) \vee (a \land \neg EPC_{\neg a}(e))$ expresses the value of state variable $a \in A$ after applying o in terms of values of state variables before applying o.

Either:
- a became true, or
- a was true before and it did not become false.

Regressing state variables: examples

Example

Let $e = (b \rightarrow a) \land (c \rightarrow \neg a) \land b \land \neg d$.

<table>
<thead>
<tr>
<th>variable x</th>
<th>$EPC_x(e) \vee (x \land \neg EPC_{\neg x}(e))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>$b \lor (a \land \neg c)$</td>
</tr>
<tr>
<td>b</td>
<td>$\top \lor (b \land \neg \bot) \equiv \top$</td>
</tr>
<tr>
<td>c</td>
<td>$\bot \lor (c \land \neg \bot) \equiv c$</td>
</tr>
<tr>
<td>d</td>
<td>$\bot \lor (d \land \neg \top) \equiv \bot$</td>
</tr>
</tbody>
</table>

Regressing state variables: correctness

Lemma (B)

Let a be a state variable, $o = (\chi, e)$ an operator, s a state, and $s' = \text{app}_o(s)$.

Then $s \models EPC_a(e) \vee (a \land \neg EPC_{\neg a}(e))$ if and only if $s' \models a$.

Proof.

(\Rightarrow): Assume $s \models EPC_a(e) \vee (a \land \neg EPC_{\neg a}(e))$.

Do a case analysis on the two disjuncts.

1. Assume that $s \models EPC_a(e)$. By Lemma A, we have $a \in [e]_s$ and hence $s' \models a$.

2. Assume that $s \models a \land \neg EPC_{\neg a}(e)$. By Lemma A, we have $\neg a \not\in [e]_s$. Hence a remains true in s'.

(\Leftarrow): We showed that if the formula is true in s, then a is true in s'. For the second part, we show that if the formula is false in s, then a is false in s'.

- So assume $s \not\models EPC_a(e) \vee (a \land \neg EPC_{\neg a}(e))$.
- Then $s \not\models \neg EPC_a(e) \land (\neg a \lor EPC_{\neg a}(e))$ (de Morgan).
- Case distinction: a is true or a is false in s.

1. Assume that $s \models a$. Now $s \models EPC_a(e)$ because $s \models \neg a \lor EPC_{\neg a}(e)$.

Hence by Lemma A $\neg a \not\in [e]_s$ and we get $s' \not\models a$.

2. Assume that $s \not\models a$. Because $s \not\models \neg EPC_a(e)$, by Lemma A we get $a \not\in [e]_s$ and hence $s' \not\models a$.

Therefore in both cases $s' \not\models a$.

Regressing state variables: correctness (ctd.)
Regression: general definition

We base the definition of regression on formulae $EPC_i(e)$.

Definition (general regression)

Let φ be a propositional formula and $o = \langle \chi, e \rangle$ an operator. The regression of φ with respect to o is

$$regr_o(\varphi) = \chi \land \varphi_t \land \kappa$$

where

1. φ_t is obtained from φ by replacing each $a \in A$ by $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$, and
2. $\kappa = \land_{a \in A} \neg (EPC_a(e) \land EPC_{\neg a}(e))$.

The formula κ expresses that operators are only applicable in states where their change sets are consistent.

Regression example: binary counter

$$\neg b_0 \lor b_0 \land (\neg b_1 \land b_0) \lor (b_1 \land \neg b_0) \land (\neg b_2 \land b_1 \land b_0) \lor (b_2 \land \neg b_1 \land \neg b_0)$$

$EPC_{b_0}(e) = \neg b_2 \land b_1 \land b_0$

$EPC_{b_1}(e) = \neg b_1 \land b_0$

$EPC_{b_2}(e) = \neg b_0$

Regression replaces state variables as follows:

- b_2 by $(\neg b_2 \land b_1 \land b_0) \lor (b_2 \land \neg b_1)$
- b_1 by $b_1 \land (\neg b_2 \land (b_1 \land b_0))$
- b_0 by $b_0 \land \neg (b_1 \land \neg b_2)$

Regression examples

- $regr_{(a,b)}(b) = a \land (T \lor (b \land \neg T)) \land T \equiv a$
- $regr_{(a,b)}(b \land c \land d) = a \land (T \lor (b \land \neg T)) \land (T \lor (c \land \neg T)) \land (T \lor (d \land \neg T)) \land T \equiv a \land c \land d$
- $regr_{(a,c-b)}(b) = a \land (c \land (b \land \neg c)) \land T \equiv a \land (c \lor b)$
- $regr_{(a,c-b)}(b \land c-d) = a \land (c \land (b \land \neg d)) \land (c \land (c \land d) \equiv a \land (c \lor b) \land (c \lor \neg d) \land (c \land \neg d) \equiv a \land (c \lor b) \land \neg d$

General regression: correctness

Theorem (correctness of $regr_o(\varphi)$)

Let φ be a formula, o an operator and s a state. Then $s \models regr_o(\varphi)$ iff o is applicable in s and $app_o(s) \models \varphi$.

Proof.

Let $o = \langle \chi, e \rangle$. Recall that $regr_o(\varphi) = \chi \land \varphi_t \land \kappa$, where φ_t and κ are as defined previously.

If o is inapplicable in s, then $s \not\models \chi \land \kappa$, both sides of the “iff” condition are false, and we are done. Hence, we only further consider states s where o is applicable. Let $s' := app_o(s)$.

We know that $s \models \chi \land \kappa$ (because o is applicable), so the “iff” condition we need to prove simplifies to:
General regression: correctness

Proof (ctd.)

To show: \(s \models \varphi \) iff \(s' \models \varphi \).

We show that for all formulae \(\psi, s \models \psi \) iff \(s' \models \psi \), where \(\psi \) is \(\psi \) with every \(a \in A \) replaced by \(EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e)) \).

The proof is by structural induction on \(\psi \).

Induction hypothesis \(s \models \psi \) if and only if \(s' \models \psi \).

Base cases 1 & 2 \(\psi = T \) or \(\psi = \bot \): trivial, as \(\psi_r = \psi \).

Base case 3 \(\psi = a \) for some \(a \in A \):

Then

\[\psi_r = EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e)). \]

By Lemma B, \(s \models \psi \) iff \(s' \models \psi \).

Emptiness and subsumption testing

The following two tests are useful when performing regression searches to avoid exploring unpromising branches:

- Test that \(\text{regr}_o(\varphi) \) does not represent the empty set (which would mean that search is in a dead end).

 For example, \(\text{regr}_{(a \land \bot)}(p) \equiv a \land \bot = \bot \).

- Test that \(\text{regr}_o(\varphi) \) does not represent a subset of \(\varphi \) (which would make the problem harder than before).

 For example, \(\text{regr}_{(b \lor c)}(a) \equiv a \land b \).

Both of these problems are NP-hard.

Formula growth

The formula \(\text{regr}_{o_1}(\text{regr}_{o_2}(... \text{regr}_{o_{n-1}}(\text{regr}_{o_n}(\varphi)))) \) may have size \(O(|\varphi||o_1||o_2|...|o_{n-1}||o_n|) \), i.e., the product of the sizes of \(\varphi \) and the operators.

\(~\approx\) worst-case exponential size \(O(m^n) \)

Logical simplifications

- \(\bot \lor \varphi \equiv \bot, \top \land \varphi \equiv \varphi, \bot \lor \varphi \equiv \varphi, \top \lor \varphi \equiv \top \)
- \(a \lor \varphi \equiv a \lor \varphi[\bot/a], a \lor \varphi \equiv a \lor \varphi[\top/a], a \land \varphi \equiv a \land \varphi[\bot/a], a \land \varphi \equiv a \land \varphi[\top/a] \)
- idempotency, absorption, commutativity, associativity, ...
Restricting formula growth in search trees

Problem: very big formulae obtained by regression
Cause: disjunctivity in the (NNF) formulae (formulae without disjunctions easily convertible to small formulae $l_1 \land \cdots \land l_n$ where l_i are literals and n is at most the number of state variables.)
Idea: handle disjunctivity when generating search trees

Unrestricted regression: search tree example

Unrestricted regression: do not treat disjunctions specially
Goal $\gamma = a \land b$, initial state $I = \{a \mapsto 0, b \mapsto 0, c \mapsto 0\}$. $\neg c \lor a \land b$ in DNF: $L = (\neg c \land b) \lor (a \land b)$ \Rightarrow split into $\neg c \land b$ and $a \land b$

Full splitting: search tree example

Full splitting: always remove all disjunctivity
Goal $\gamma = a \land b$, initial state $I = \{a \mapsto 0, b \mapsto 0, c \mapsto 0\}$. $\neg c \lor a \land b$ in DNF: $L = (\neg c \land b) \lor (a \land b)$ \Rightarrow split into $\neg c \land b$ and $a \land b$

General splitting strategies

Alternatives:
1. Do nothing (unrestricted regression).
2. Always eliminate all disjunctivity (full splitting).
3. Reduce disjunctivity if formula becomes too big.

Discussion:
- With unrestricted regression the formulae may have size that is exponential in the number of state variables.
- With full splitting search tree can be exponentially bigger than without splitting.
- The third option lies between these two extremes.
(Classical) search is a very important planning approach. Search-based planning algorithms differ along many dimensions, including search direction (forward, backward) what each search node represents (a state, a set of states, an operator sequence) Progression search proceeds forwards from the initial state.
- If we use duplicate detection, each search node corresponds to a unique state.
- If we do not use duplicate detection, each search node corresponds to a unique operator sequence.

Regression search proceeds backwards from the goal.
- Each search node corresponds to a set of states represented by a formula.
- Regression is simple for STRIPS operators.
- The theory for general regression is more complex.
- When applying regression in practice, additional considerations such as when and how to perform splitting come into play.