Principles of AI Planning
2. Transition systems and planning tasks

Transition systems

Definition (transition system)
A transition system is a 5-tuple $\mathcal{T} = (S, L, T, s_0, S_*)$ where
- S is a finite set of states,
- L is a finite set of (transition) labels,
- $T \subseteq S \times L \times S$ is the transition relation,
- $s_0 \in S$ is the initial state, and
- $S_* \subseteq S$ is the set of goal states.

We say that \mathcal{T} has the transition $\langle s, \ell, s' \rangle$ if $\langle s, \ell, s' \rangle \in T$.
We also write this $s \overset{\ell}{\rightarrow} s'$, or $s \rightarrow s'$ when not interested in ℓ.

Note: Transition systems are also called state spaces.

Transition systems: example

Transition systems are often depicted as directed arc-labeled graphs with marks to indicate the initial state and goal states.
Transition system terminology

We use common graph theory terms for transition systems:

- **\(s' \) successor of \(s \)** if \(s \rightarrow s' \)
- **\(s \) predecessor of \(s' \)** if \(s' \rightarrow s \)
- **\(s' \) reachable** from \(s \) if there exists a sequence of transitions
 \[s^0 \stackrel{\ell_1}{\rightarrow} s^1, \ldots, s^{n-1} \stackrel{\ell_n}{\rightarrow} s^n \text{ s.t. } s^0 = s \text{ and } s^n = s' \]
 - **Note:** \(n = 0 \) possible; then \(s = s' \)
 - \(s^0, \ldots, s^{n-1} \) is called **path** from \(s \) to \(s' \)
 - \(s^0, \ldots, s^n \) is also called **path** from \(s \) to \(s' \)
 - **length** of that path is \(n \)
- **additional terms:** strongly connected, weakly connected, strong/weak connected components, \ldots

Deterministic transition systems

Definition (deterministic transition system)

A transition system with transitions \(T \) is called **deterministic** if for all states \(s \) and labels \(\ell \), there is at most one state \(s' \) with \(s \stackrel{\ell}{\rightarrow} s' \).

Example: previously shown transition system

Running example: blocks world

- Throughout the course, we will often use the **blocks world** domain as an example.
- In the blocks world, a number of differently coloured blocks are arranged on our table.
- Our job is to rearrange them according to a given goal.
Blocks world rules

Location on the table does not matter.

\[
\begin{array}{c|c}
\text{Location on a block does not matter.} & \\
\end{array}
\]

Blocks world computational properties

<table>
<thead>
<tr>
<th>blocks</th>
<th>states</th>
<th>blocks</th>
<th>states</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>58941091</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>11</td>
<td>824073141</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>12</td>
<td>1247016233</td>
</tr>
<tr>
<td>4</td>
<td>73</td>
<td>13</td>
<td>202976401213</td>
</tr>
<tr>
<td>5</td>
<td>501</td>
<td>14</td>
<td>3535017524403</td>
</tr>
<tr>
<td>6</td>
<td>4051</td>
<td>15</td>
<td>65573803186921</td>
</tr>
<tr>
<td>7</td>
<td>37633</td>
<td>16</td>
<td>1290434218669921</td>
</tr>
<tr>
<td>8</td>
<td>394353</td>
<td>17</td>
<td>26846616451246353</td>
</tr>
<tr>
<td>9</td>
<td>4596553</td>
<td>18</td>
<td>588633468315403843</td>
</tr>
</tbody>
</table>

- **Finding a solution** is polynomial time in the number of blocks (move everything onto the table and then construct the goal configuration).
- **Finding a shortest solution** is NP-complete (for a compact description of the problem).
Compact representations

- Classical (i.e., deterministic) planning is in essence the problem of finding solutions in huge transition systems.
- The transition systems we are usually interested in are too large to explicitly enumerate all states or transitions.
- Hence, the input to a planning algorithm must be given in a more concise form.
- In the rest of chapter, we discuss how to represent planning tasks in a suitable way.

State variables

How to represent huge state sets without enumerating them?
- Represent different aspects of the world in terms of different state variables
 - A state is a valuation of state variables
- \(n \) state variables with \(m \) possible values each induce \(m^n \) different states
 - Exponentially more compact than "flat" representations
- Example: \(n \) variables suffice for blocks world with \(n \) blocks

Blocks world with finite-domain state variables

Describe blocks world state with three state variables:
- \(\text{location-of-A}: \{B, C, \text{table}\} \)
- \(\text{location-of-B}: \{A, C, \text{table}\} \)
- \(\text{location-of-C}: \{A, B, \text{table}\} \)

Example

\[
\begin{align*}
 s(\text{location-of-A}) &= \text{table} \\
 s(\text{location-of-B}) &= A \\
 s(\text{location-of-C}) &= \text{table}
\end{align*}
\]

Not all valuations correspond to intended blocks world states.
Example: \(s \) with \(s(\text{location-of-A}) = B, s(\text{location-of-B}) = A \).
Problem:
- How to succinctly represent transitions and goal states?

Idea: Use propositional logic
- state variables: propositional variables (0 or 1)
- goal states: defined by a propositional formula
- transitions: defined by actions given by
 - precondition: when is the action applicable?
 - effect: how does it change the valuation?

Note: general finite-domain state variables can be compactly encoded as Boolean variables

Boolean state variables

Blocks world with Boolean state variables

Example

\[
\begin{align*}
s(A-on-B) &= 0 \\
s(A-on-C) &= 0 \\
s(A-on-table) &= 1 \\
s(B-on-A) &= 1 \\
s(B-on-C) &= 0 \\
s(B-on-table) &= 0 \\
s(C-on-A) &= 0 \\
s(C-on-B) &= 0 \\
s(C-on-table) &= 1
\end{align*}
\]

Syntax of propositional logic

Definition (propositional formula)
Let \(A \) be a set of atomic propositions (here: state variables).
The propositional formulae over \(A \) are constructed by finite application of the following rules:
- \(\top \) and \(\bot \) are propositional formulae (truth and falsity).
- For all \(a \in A \), \(a \) is a propositional formula (atom).
- If \(\phi \) is a propositional formula, then so is \(\neg \phi \) (negation)
- If \(\phi \) and \(\psi \) are propositional formulas, then so are \((\phi \lor \psi) \) (disjunction) and \((\phi \land \psi)\) (conjunction).

Note: We often omit the word “propositional”.

Propositional logic conventions

Abbreviations:
- \((\varphi \rightarrow \psi) \) is short for \((\neg \varphi \lor \psi) \) (implication)
- \((\varphi \leftrightarrow \psi) \) is short for \(((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)) \) (equivalence)
- parentheses omitted when not necessary
- \((\neg) \) binds more tightly than binary connectives
- \((\land) \) binds more tightly than \((\lor)\) than \((\rightarrow)\) than \((\leftrightarrow)\)
Semantics of propositional logic

Definition (propositional valuation)

A *valuation* of propositions A is a function $v : A \rightarrow \{0, 1\}$.

Define the notation $v \models \varphi$ (v satisfies φ; v is a model of φ; φ is true under v) for valuations v and formulae φ by

- $v \models \top$
- $v \not\models \bot$
- $v \models a$ iff $v(a) = 1$, for $a \in A$.
- $v \models \neg \varphi$ iff $v \not\models \varphi$
- $v \models \varphi \lor \psi$ iff $v \models \varphi$ or $v \models \psi$
- $v \models \varphi \land \psi$ iff $v \models \varphi$ and $v \models \psi$

Propositional logic terminology

- A propositional formula φ is *satisfiable* if there is at least one valuation v so that $v \models \varphi$.
- Otherwise it is *unsatisfiable*.
- A propositional formula φ is *valid* or a tautology if $v \models \varphi$ for all valuations v.
- A propositional formula ψ is a *logical consequence* of a propositional formula φ, written $\varphi \models \psi$, if $v \models \psi$ for all valuations v with $v \models \varphi$.
- Two propositional formulae φ and ψ are *logically equivalent*, written $\varphi \equiv \psi$, if $v \models \varphi$ and $\psi \models \varphi$.

Question: How to phrase these in terms of models?

Propositional logic terminology (ctd.)

- A propositional formula that is a proposition a or a negated proposition $\neg a$ for some $a \in A$ is a *literal*.
- A formula that is a disjunction of literals is a *clause*.
 This includes *unit clauses* / consisting of a single literal, and the empty clause \bot consisting of zero literals.

Normal forms: NNF, CNF, DNF

October 24th, 2012 B. Nebel, R. Mattmüller – AI Planning 24 / 36

Operators

Transitions for state sets described by propositions A can be concisely represented as operators or actions $\langle \chi, e \rangle$, where

- the *precondition* χ is a propositional formula over A describing the set of states in which the transition can be taken (states in which a transition starts), and
- the *effect* e describes how the resulting successor states are obtained from the state where the transitions is taken (where the transition goes).

Example: blocks world operators

Blocks world operators
To model blocks world operators conveniently, we use auxiliary state variables A-clear, B-clear, and C-clear to denote that there is nothing on top of a given block.

Then blocks world operators can be modeled as:

- $(A$-clear $\land A$-on-T \land B-clear, A-on-B \land \neg A-on-T \land \neg B-clear)
- $(A$-clear \land A-on-T \land C-clear, A-on-C \land \neg A-on-T \land \neg C-clear)
- $(A$-clear \land A-on-B, A-on-T \land \neg A-on-B \land B-clear)
- $(A$-clear \land A-on-C, A-on-T \land \neg A-on-C \land C-clear)
- $(A$-clear \land A-on-B \land C-clear, A-on-C \land \neg A-on-B \land B-clear \land \neg C-clear)
- $(A$-clear \land A-on-C \land B-clear, A-on-B \land \neg A-on-C \land C-clear \land \neg B-clear)
- ...

Effect example

$\chi \triangleright e$ means that change e takes place if χ is true in the current state.

Example

Increment 4-bit number $b_3b_2b_1b_0$ represented as four state variables b_0, \ldots, b_3:

\[
\begin{align*}
(-b_3 \triangleright b_0) & \land \\
((-b_1 \land b_0) \triangleright (b_1 \land \neg b_0)) & \land \\
((-b_2 \land b_1 \land b_0) & \triangleright (b_2 \land \neg b_1 \land \neg b_0)) \land \\
((-b_3 \land b_2 \land b_1 \land b_0) & \triangleright (b_3 \land \neg b_2 \land \neg b_1 \land \neg b_0))
\end{align*}
\]

Effects (for deterministic operators)

Definition (effects)

(Deterministic) effects are recursively defined as follows:

- If $a \in A$ is a state variable, then a and $\neg a$ are effects (atomic effect).
- If e_1, \ldots, e_n are effects, then $e_1 \land \cdots \land e_n$ is an effect (conjunctive effect).
- If χ is a propositional formula and e is an effect, then $\chi \triangleright e$ is an effect (conditional effect).

Atomic effects a and $\neg a$ are best understood as assignments $a := 1$ and $a := 0$, respectively.

Operator semantics

Definition (changes caused by an operator)

For each effect e and state s, we define the change set of e in s, written $[e]_s$, as the following set of literals:

- $[a]_s = \{a\}$ and $[-a]_s = \{-a\}$ for atomic effects a, $\neg a$
- $[e_1 \land \cdots \land e_n]_s = [e_1]_s \cup \cdots \cup [e_n]_s$
- $[\chi \triangleright e]_s = [e]_s$ if $s \models \chi$ and $[\chi \triangleright e]_s = \emptyset$ otherwise

Definition (applicable operators)

Operator (χ, e) is applicable in a state s iff $s \models \chi$ and $[e]_s$ is consistent (i.e., does not contain two complementary literals).
Operator semantics (ctd.)

Definition (successor state)
The successor state \(\text{app}_o(s) \) of \(s \) with respect to operator \(o = (\chi, e) \) is the state \(s' \) with \(s' \models [e]_s \) and \(s'(v) = s(v) \) for all state variables \(v \) not mentioned in \([e]_s \). This is defined only if \(o \) is applicable in \(s \).

Example
Consider the operator \(o = (a, \neg a \land (\neg c \triangleright \neg b)) \) and the state \(s = \{ a \mapsto 1, b \mapsto 1, c \mapsto 1, d \mapsto 1 \} \).
The operator is applicable because \(s \models a \) and \([\neg a \land (\neg c \triangleright \neg b)]_s = \{ \neg a \} \) is consistent.
Applying the operator results in the successor state \(\text{app}_o(a, \neg a \land (\neg c \triangleright \neg b))(s) = \{ a \mapsto 0, b \mapsto 1, c \mapsto 1, d \mapsto 1 \} \).

Deterministic planning tasks

Definition (deterministic planning task)
A deterministic planning task is a 4-tuple \(\Pi = (A, I, O, \gamma) \) where
- \(A \) is a finite set of state variables (propositions),
- \(I \) is a valuation over \(A \) called the initial state,
- \(O \) is a finite set of operators over \(A \), and
- \(\gamma \) is a formula over \(A \) called the goal.

Note:
- When we talk about deterministic planning tasks, we usually omit the word “deterministic”.
- When we will talk about nondeterministic planning tasks later, we will explicitly qualify them as “nondeterministic”.

Mapping planning tasks to transition systems

Definition (induced transition system of a planning task)
Every planning task \(\Pi = (A, I, O, \gamma) \) induces a corresponding deterministic transition system \(\mathcal{T}(\Pi) = (S, L, T, s_0, S^\star) \):
- \(S \) is the set of all valuations of \(A \),
- \(L \) is the set of operators \(O \),
- \(T = \{ (s, o, s') | s \in S, o \text{ applicable in } s, s' = \text{app}_o(s) \} \),
- \(s_0 = I \), and
- \(S^\star = \{ s \in S | s \models \gamma \} \).
By planning, we mean the following two algorithmic problems:

Definition (satisficing planning)
Given: a planning task Π
Output: a plan for Π, or **unsolvable** if no plan for Π exists

Definition (optimal planning)
Given: a planning task Π
Output: a plan for Π with minimal length among all plans for Π, or **unsolvable** if no plan for Π exists

- **Transition systems** are (typically huge) directed graphs that encode how the state of the world can change.
- **Planning tasks** are compact representations for transition systems, suitable as input for planning algorithms.
- Planning tasks are based on concepts from propositional logic, enhanced to model state change.
- States of planning tasks are propositional valuations.
- Operators of planning tasks describe when (precondition) and how (effect) to change the current state of the world.
- In **satisficing planning**, we must find a solution to planning tasks (or show that no solution exists).
- In **optimal planning**, we additionally guarantee that generated solutions are of the shortest possible length.