1 Motivation

- Why?
- Examples

Motivation: Why Analyzing the Expressive Power?

- Expressive power is the motivation for designing new planning languages
- Often there is the question: Syntactic sugar or essential feature?
 - Compiling away or change planning algorithm?
 - If a feature can be compiled away, then it is apparently only syntactic sugar.
 - Sometimes, however, a compilation can lead to much larger planning domain descriptions or to much longer plans.
 - This means the planning algorithm will probably choke, i.e., it cannot be considered as a compilation
Example: DNF Preconditions

- Assume we have DNF preconditions in STRIPS operators
- This can be compiled away as follows
- Split each operator with a DNF precondition \(c_1 \lor \ldots \lor c_n \) into \(n \) operators with the same effects and \(c_i \) as preconditions
 \[\Rightarrow \text{If there exists a plan for the original planning task there is one for the new planning task and vice versa} \]
 \[\Rightarrow \text{The planning task has almost the same size} \]
 \[\Rightarrow \text{The shortest plans have the same size} \]

Example: Conditional effects

- Can we compile away conditional effects to STRIPS?
- Example operator: \(\langle a, b \triangleright d \land \lnot c \triangleright e \rangle \)
- Can be translated into four operators:
 \[\langle a \land b \land c, d \rangle, \langle a \land b \land \lnot c, d \land e \rangle, \ldots \]
- Plan existence and plan size are identical
- Exponential blowup of domain description!
 \[\Rightarrow \text{Can this be avoided?} \]

2 Propositional STRIPS and Variants

- Disjunctive Preconditions: Difficult or Easy?
- STRIPS Variants
- Partially Ordered STRIPS Variants
- Computational Complexity

Propositional STRIPS and Variants

- In the following we will only consider propositional STRIPS and some variants of it.
- Planning task:
 \[T = \langle A, I, O, G \rangle \]
- Often we refer to domain structures \(D = \langle A, O \rangle \).
Disjunctive Preconditions: Trivial or Essential?

- Kambhampati et al [ECP 97] and Gazen & Knoblock [ECP 97]: Disjunctive preconditions are trivial – since they can be translated to basic STRIPS (DNF-preconditions)
- Bäckström [AIJ 95]: Disjunctive preconditions are probably essential – since they can not easily be translated to basic STRIPS (CNF-preconditions)
- Anderson et al [AIPS 98]: “[D]isjunctive preconditions . . . are . . . essential prerequisites for handling conditional effects” ⊨ conditional effects imply disjunctive preconditions (?) (General Boolean preconditions)

More “Expressive Power”

- \(\text{STRIPS}_N \): plain strips with negative literals
- \(\text{STRIPS}_{Bd} \): precondition in disjunctive normal form
- \(\text{STRIPS}_{Bc} \): precondition in conjunctive normal form
- \(\text{STRIPS}_B \): Boolean expressions as preconditions
- \(\text{STRIPS}_C \): conditional effects
- \(\text{STRIPS}_{C,N} \): conditional effects & negative literals

Ordering Planning Formalisms Partially

Computational Complexity

Theorem
\(\text{PLANEX} \) is \(\text{PSPACE} \)-complete for \(\text{STRIPS}_N, \text{STRIPS}_{C,B} \), and for all formalisms “between” the two.

Proof.
Follows from theorems proved in the previous lecture.
3 Expressive Power

- Measuring Expressive Power
- Compilation Schemes
- Compilability
- Positive Results
- Negative Results
- Using Circuit Complexity...
- General Compilability Results

Measuring Expressive Power

Consider mappings between planning problems in different formalisms

- that preserve
 - solution existence
 - plan size linearly or polynomially etc.
 - the exact plan size
 - the plan “structure”
 - the solutions/plans themselves
- that are limited
 - in the size of the result (poly. size)
 - in the computational resources (poly. time)
- that transform
 - entire planning instances
 - domain structure and states in isolation

Method 1: Polynomial Transformation

- preserving
 - solution existence
 - plan size linearly or polynomially etc.
 - the exact plan size
 - the plan “structure”
 - the solutions/plans themselves
- limiting
 - in the size of the result (poly. size)
 - in the computational resources (poly. time)
- transforming
 - entire planning instances
 - domain structure and states in isolation

⇝ all formalisms have the same expressiveness (?)

Method 2: Bäckström’s ESP-reductions

- preserving
 - solution existence
 - plan size linearly or polynomially etc.
 - the exact plan size
 - the plan “structure”
 - the solutions/plans themselves
- limiting
 - in the size of the result (poly. size)
 - in the computational resources (poly. time)
- transforming
 - entire planning instances
 - domain structure and states in isolation

⇝ However, expressiveness is independent of the computational resources needed to compute the mapping
Method 3: Polysize Mappings

- preserving
 - solution existence
 - plan size linearly or polynomially etc.
 - the exact plan size
 - the plan “structure”
 - the solutions/plans themselves

- limiting
 - in the size of the result (poly. size)
 - in the computational resources (poly. time)

- transforming
 - entire planning instances
 - domain structure and states in isolation

⇝ All formalisms are trivially equivalent (because planning is PSPACE-complete for all propositional STRIPS formalisms)

Method 4: Modular & Polysize Mappings

- preserving
 - solution existence
 - plan size linearly or polynomially etc.
 - the exact plan size
 - the plan “structure”
 - the solutions/plans themselves

- limiting
 - in the size of the result (poly. size)
 - in the computational resources (poly. time)

- transforming
 - entire planning instances
 - domain structure and states in isolation

⇝ When measuring the expressiveness of planning formalisms, domain structures should be considered independently from states

Compilability

\(\mathcal{Y} \preceq \mathcal{X} \) (\(\mathcal{Y} \) is compilable to \(\mathcal{X} \))

iff

there exists a compilation scheme from \(\mathcal{Y} \) to \(\mathcal{X} \).

- \(\mathcal{Y} \preceq^1 \mathcal{X} \): preserving plan size exactly (modulo additive constants)
- \(\mathcal{Y} \preceq^c \mathcal{X} \): preserving plan size linearly (in \(|\pi| \))
- \(\mathcal{Y} \preceq^p \mathcal{X} \): preserving plan size polynomially (in \(|\pi| \) and \(|D| \))
- \(\mathcal{Y} \preceq^x \mathcal{X} \): polynomial-time compilability

Theorem

For all \(x, y \), the relations \(\preceq_x^y \) are transitive and reflexive.
Back-Translatability

- Shouldn’t we also require that plans in the compiled instance can be translated back to the original formalism?
- Yes, if we want to use this technique, one should require that!
- In all positive cases, there was never any problem to translate the plan back.
- For the negative case, it is easier to prove non-existence.

⇝ So, similarly to the concentration on decision problems when determining complexity, we simplify things here.

A (Trivial) Positive Result: $\text{STRIPS}_{Bd} \preceq^1_p \text{STRIPS}_N$

DNF preconditions can be “compiled away.”
Assume operator $o = \langle c, e \rangle$ and $c = L_1 \lor \ldots \lor L_k$ with L_i being a conjunction of literals. Create k operators $o_i = \langle L_i, e \rangle$

1. compilation is solution-preserving,
2. D' is only polynomially larger than D,
3. compilation can be computed in polynomial time,
4. resulting plans do not grow at all.

⇝ $\text{STRIPS}_{Bd} \preceq^1_p \text{STRIPS}_N$

Another Positive Result: $\text{STRIPS}_{C,Bc} \preceq^C_p \text{STRIPS}_{C,N}$

CNF preconditions can be “compiled away” – provided we have already conditional effects.

- Evaluate the truth value of all disjunctions appearing in operators by using a special evaluation operator with conditional effects that make new “clause atoms” true.
- Alternate between executing original operators (clauses replaced by new atoms) and evaluation operators.

⇝ Operator sets grow only polynomially.
⇝ Plans are double as long as the original plans.
⇝ Anderson et al’s conjecture holds in a weak version.

A First Negative Result: Conditional Effects Cannot be Compiled into Boolean Preconditions

Consider domain D with only one (STRIPS$_{C,B}$) operator o:

$$\langle \top, (p_1 \triangleright (\neg p_1)) \land (\neg p_1 \triangleright p_1) \land \ldots \land (p_k \triangleright (\neg p_k)) \land (\neg p_k \triangleright p_k) \rangle,$$

which “inverts” a given state. For all (I, G) with

$$G = \bigwedge \{ \neg v \mid v \in A, I \models v \} \land \bigwedge \{ v \mid v \in A, I \not\models v \},$$

there exists a STRIPS$_{C,B}$ one-step plan.

Assume there exists a compilation preserving plan size linearly leading to a STRIPS$_B$ domain structure D'. There are exponentially many possible initial states, but only polynomially many different c-step plans for D'. Some STRIPS$_B$ plan π is used for different initial states I_1, I_2 (for large enough k). Let v be a variable with $I_1(v) \neq I_2(v)$.

⇝ In one case, v must be set by π, in the other case, it must be cleared.
⇝ This is not possible in an unconditional plan.
⇝ The transformation is not solution preserving.
⇝ Conditional effects cannot be compiled away (if plan size can grow only linearly).
Another Negative Result: \(\text{STRIPS}_{Bc} \not\preceq_c \text{STRIPS}_N \)

\(k \)-FISEX: Planning problem with fixed plan length \(k \) and varying initial state. Does there exist an initial state leading to a successful \(k \)-step plan? 1-FISEX is NP-complete for \(\text{STRIPS}_{Bc} = \text{SAT} \). 1-FISEX is polynomial for \(\text{STRIPS}_N \) (regression analysis)

Using a technique first used by Kautz & Selman, one can show that even arbitrary compilations can be ruled out – provided the polynomial hierarchy does not collapse. The proof method uses non-uniform complexity classes such as \(P/poly \).

\(\leadsto \) Bäckström’s conjecture holds in the compilation framework.

Boolean Circuits

- We know what Boolean circuits are (directed, acyclic graphs with different types of nodes: and, or, not, input, output)
- Size of circuit = number of gates
- Depth of circuit = length of longest path from input gate to output gate
- When we want to recognize formal languages with circuits, we need a sequence of circuits with an increasing number of input gates
- Families with polynomial size and poly-log \((\log^k n)\) depth
- complexity classes \(NC^k \) (Nick’s class)
- \(NC = \bigcup_k NC^k \subseteq P \), the class of problems that can be solved efficiently in parallel
- The class of languages that can be characterized by polynomially sized Boolean formulae is identical to \(NC^1 \)

A Final Negative Result: Boolean Preconditions Cannot be Compiled Away Even in the Presence of Conditional Effects

- Boolean preconditions have the power of families of Boolean circuits with logarithmic depth (because Boolean formula have this power) \((= NC^1)\)
- Conditional effects can simulate only families of circuits with fixed depth \((= AC^0)\).
- The parity function can be expressed in the first framework \((NC^1)\) while it cannot be expressed in the second \((AC^0)\).

\(\leadsto \) The negative result follows unconditionally!
Accepting languages with families of domain structures with fixed goals

- We will view families of domain structures with fixed goals and fixed size plans as "machines" that accept languages.
- Consider families of poly-sized domain structures in STRIPSB and use one-step plans for acceptance.
- Obviously, this is the same as using Boolean formulae.
 \[\Rightarrow \text{All languages in } \mathbf{NC}^1 \text{ can be accepted in this way.} \]

Simulating STRIPSC,N c-step Plans with AC0 circuits (1)

- Represent each operator and then chain the actions together (\(O(|O|^c)\) different plans):

Simulating STRIPSC,N c-step Plans with AC0 circuits (2)

- For each single action (precondition testing (a), conditional effects (b), and the computation of effects (c))

STRIPS$B \not\preceq^c$ STRIPSC,N

Theorem
STRIPS$B \not\preceq^c$ STRIPSC,N.

Proof.
Assuming STRIPS$B \not\preceq^c$ STRIPSC,N has the consequence that the underlying compilation scheme could be used to compile a NC1 circuit family into an AC0 circuit family, which is impossible in the general case.
All other potential positive results have been ruled out by our 3 negative results and transitivity.

Summary

- Compilation schemes seem to be the right method to measure the relative expressive power of planning formalisms
- Either we get a positive result preserving plan size linearly with a polynomial-time compilation
- or we get an impossibility result
- Results are relevant for building planning systems
- CNF preconditions do not add much when we have already conditional effects
- Note: In all cases we can get a positive result if we allow for a polynomial blow-up of the plans.