Exercise 6.1 (DFA, 1+1+2 marks)
Consider the following two DFAs (deterministic finite automata) with \(\Sigma = \{0, 1\} \):

(a) What languages \(L_1 \) and \(L_2 \) do these two automata individually recognize?

(b) Give the formal definition for \(M_1 \).

(c) Show that \(L_1 \cup L_2 \) is also a regular language, by constructing one DFA. Please hand in a high quality diagram.

Exercise 6.2 (DFA, 1+1 marks)

(a) Construct a DFA that recognizes the language \(L \) with an alphabet \(\Sigma = \{0, 1\} \), where \(L = \{w \mid w \) has both an even number of 0’s and an even number of 1’s\}.

(b) Give the state diagram for a DFA accepting the language \(L = \{w \mid w \) starts with 1 and contains 10 or starts with 0 and contains the 01\}.
 The alphabet is \(\Sigma = \{0, 1\} \).
Exercise 6.3 (Regular Languages, 2.5 + 1.5 marks)

In this exercise we want to prove that regular languages are closed under intersection and under complement. The intersection of two languages is defined as \(L_1 \cap L_2 \). The complement of a language is defined as the set of all words in \(\Sigma^* \) which are not in \(L \), i.e. \(\overline{L} = \Sigma^* \setminus L \) (\(\Sigma^* \) is the set of all words/strings over \(\Sigma \)).

Let \(L \) and \(L' \) be regular languages that are recognized by DFAs \(M = (Q, \Sigma, \delta, q_0, F) \) and \(M' = (Q', \Sigma', \delta', q'_0, F') \), respectively.

(a) Show that the regular languages are closed under intersection, i.e. give a finite automaton that recognizes \(L \cap L' \).

(b) Show that the regular languages are closed under complement, i.e. give a finite automaton that recognizes \(\overline{L} \).