Regular Languages

Bernhard Nebel und Christian Becker-Asano

Overview

- Deterministic finite automata
- Regular languages
- Nondeterministic finite automata
- Closure operations
- Regular expressions
- Nonregular languages
- The pumping lemma

Finite automata

- An intuitive example: supermarket door controller
- Probabilistic counterparts exist
 - Markov chains, Bayesian nets, etc.
 - Not in this course

Finite automata (ctd.)

- Example M_1 (figure 1.4)

$$M_1 = \begin{align*}
q_1 &\xrightarrow{0} q_2 & q_1 \xrightarrow{1} q_3
\end{align*}$$

(plotted with JFLAP; www.jflap.org)

states: q_1, q_2, q_3
start state: q_1
acceptance state: q_2
transitions
output: accept or reject

DEFINITION 1.5:
A finite automaton M is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$ where,
1. Q is a finite set called the states
2. Σ is a finite set called the alphabet
3. $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
4. $q_0 \in Q$ is the start state
5. $F \subseteq Q$ is the set of accept states (also called final states)
Finite automata: example

Describe M_1:
1. $Q = \{q_1, q_2, q_3\}$
2. $\Sigma = \{0, 1\}$
3. δ defined by transition table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>q_1</td>
<td>q_2</td>
</tr>
<tr>
<td>q_2</td>
<td>q_3</td>
<td>q_2</td>
</tr>
<tr>
<td>q_3</td>
<td>q_2</td>
<td>q_2</td>
</tr>
</tbody>
</table>

Which kind of input does M_1 accept:
1. „abbbaa“?
2. „000000“?
3. the empty string ε?
4. „1000111“?
5. q_1 start state
6. $F = \{q_2\}$

→ Which language is accepted by M_1?

Finite automaton M_1 and language A

- Let A be the set of strings that a machine M accepts, then
 - “M recognizes A”
 - A is the language $L(M)$
- In case of M_1, let
 $$A = \{w \mid w \text{ contains at least one } 1 \text{ and an even number of } 0 \text{s follow the last } 1\}.$$

 then
 $$L(M_1) = A,$$ or equivalently,
 M_1 recognizes A.

Finite automata M_2 and M_3

State diagram of the two-state finite automaton M_2

State diagram of the two-state finite automaton M_3

Finite automaton M_4

Finite automaton M_4 (figure 1.12)
ACS II: Regular Languages

Finite automaton M₅

M₅:
- keeps a running count of the sum of all numerical input symbols of its alphabet Σ = {0,1,2,RESET} that it reads, modulo 3.
- resets the count, every time it receives <RESET>.
- accepts, if the sum is a multiple of 3.

Finite automaton M₅ (figure 1.14)

ACS II: Regular Languages

Formal definition of computation

- Let \(M \) be a finite automaton \(M = (Q, \Sigma, \delta, q₀, F) \)
- Let \(w = w₁ ... wₙ \) be a string over \(\Sigma \)
 - \(M \) accepts \(w \) if a sequence of states \(r₀, ..., rₙ \) exists in \(Q \) such that
 1. \(r₀ = q₀ \)
 2. \(\delta(rᵢ, wᵢ₊₁) = rᵢ₊₁ \) for all \(i = 0, ..., n-1 \)
 3. \(rₙ \in F \)
- \(M \) recognizes language \(A \) if \(A = \{ w \mid M \text{ accepts } w \} \)

DEFINITION 1.16:
A language is called **regular language** if some finite automaton recognizes it.

ACS II: Regular Languages

Designing finite automata

- Design automaton for language consisting of binary strings with an odd number of 1s
- Design first states
- Then transitions
- Start state and accept states

ACS II: Regular Languages

Another example

- Design an automaton to recognize the language of binary strings containing the string 001 as substring
- We have four possibilities:
 1. we haven't seen any symbol of the pattern yet, or
 2. we have seen a 0, or
 3. we have seen a 00, or
 4. we have seen the pattern 001
The regular operations

- Let A and B be languages.
- We define:
 - **Union:** $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
 - **Concatenation:** $A \circ B = \{xy \mid x \in A \text{ and } y \in B\}$
 - **Star:** $A^* = \{x_1x_2 \ldots x_n \mid n \geq 0 \text{ and each } x_i \in A\}$
 - **note** that also $\varepsilon \in A$
- Example: $A = \{\text{empty, full}\}$; $B = \{\text{cup, bottle}\}$
- $A \cup B = \ldots$
- $A \circ B = \ldots$
- $A^* = \ldots$

Regular languages are closed under …

A set S is **closed** under an operation o if applying o on elements of S yields elements of S.

- example: multiplication on natural numbers
- counterexample: division of natural numbers

Theorem 1.25:
The class of regular languages is closed under the union operation.
(In other words: If A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.)

Proof 1.25 (by construction)

Let M_1 recognize A_1 where $M_1 = (Q_1, \Sigma, \delta_1, q_{10}, F_1)$, and M_2 recognize A_2 where $M_1 = (Q_2, \Sigma, \delta_2, q_{20}, F_2)$.

Construct M to recognize $A_1 \cup A_2$, where $M = (Q, \Sigma, \delta, q_0, F)$.

1. $Q = \{(r_1, r_2) \mid r_1 \in Q_1 \text{ and } r_2 \in Q_2\}$. This set is the cartesian product of the sets Q_1 and Q_2 (written $Q_1 \times Q_2$). It is the set of all pairs of states with the first from Q_1 and the second from Q_2.
2. Σ, the alphabet, is the same as in case of M_1 and M_2. The theorem remains true if they have different alphabets, Σ_1 and Σ_2. We would then modify the proof to let $\Sigma = \Sigma_1 \cup \Sigma_2$.

Proof 1.25 (by construction, ctd.)

3. δ, the transition function, is defined as follows.
 For each $(r_1, r_2) \in Q$ and each $a \in \Sigma$, let
 $$\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a)).$$
 Hence δ gets a state of M (which actually is a pair of states from M_1 and M_2), together with an input symbol, and returns M’s next state.
4. q_0 is the pair (q_{10}, q_{20}).
5. F is the set of pairs, in which at least one member is an accept state of either M_1 or M_2. We can write this as
 $$F = \{(r_1, r_2) \mid r_1 \in F_1 \text{ or } r_2 \in F_2\}.$$
 This expression is the same as $F = (Q_1 \times Q_2) \cup (Q_1 \times F_2)$.
 (Note: it is not the same as $F = F_1 \times F_2$. What would that give us?)
Regular languages are closed under ...

Theorem 1.26:
The class of regular languages is closed under the concatenation operation.
(In other words: If A_1 and A_2 are regular languages, so is $A_1 \cdot A_2$.)

Non deterministic finite automata

Non deterministic finite automata (NFA)

- Deterministic (DFA)
 - **One** successor state
 - **ϵ** transitions not allowed
- Non deterministic (NFA)
 - **Several** successor states possible
 - ϵ transitions possible

Deterministic vs. non deterministic computation

![Deterministic vs. non deterministic computation diagram](image)
Example run

ASCII II: Regular Languages

Another NFA

Nondeterministic finite automaton

DEFINITION 1.37:
A nondeterministic finite automaton is a 5-tuple (Q, Σ, δ, q₀, F) with:
1. Q a finite set of states
2. Σ a finite set, the alphabet
3. δ: Q × Σₑ → P(Q) is the transition function
4. q₀ ∈ Q is the start state
5. F ⊆ Q is the set of accept states
Σₑ includes ε
P(Q) the powerset of Q

Example 1.18

The formal description of N₁ is (Q, Σ, δ, q₁, F), where
1. Q = \{q₁, q₂, q₃, q₄\},
2. Σ = \{0, 1\}
3. δ is given as

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>q₁</td>
<td>{q₁}</td>
<td>{q₁, q₂}</td>
<td>{}</td>
</tr>
<tr>
<td>q₂</td>
<td>{q₃}</td>
<td>{}</td>
<td>{q₃}</td>
</tr>
<tr>
<td>q₃</td>
<td>{}</td>
<td>{q₄}</td>
<td>{}</td>
</tr>
<tr>
<td>q₄</td>
<td>{q₄}</td>
<td>{q₄}</td>
<td>{}</td>
</tr>
</tbody>
</table>

4. q₁ is the start state
Formal definition of computation

Let M be a finite automaton $(Q, \Sigma, \delta, q_0, F)$.
Let $w = w_1 \ldots w_n$ be a string over Σ.

M accepts w if a sequence of states r_0, \ldots, r_n exists in Q such that
1. $r_0 = q_0$
2. $\delta(r_i, w_{i+1}) = r_{i+1}$ for all $i = 0, \ldots, n - 1$
3. $r_n \in F$

M recognizes language A if $A = \{w \mid M \text{ accepts } w\}$.

A language is regular if some finite automaton recognizes it.

Equivalence NFA and DFA

Two machines are equivalent if they recognize the same language.

Theorem 1.39:
Every nondeterministic finite automaton has an equivalent deterministic finite automaton.

Corollary 1.40:
A language is regular if and only if some nondeterministic finite automaton recognizes it.

Proof: Theorem 1.39

Let $N = (Q, \Sigma, \delta_0, q_0, F)$ be the NFA recognizing some language A.

Idea: We show how to construct a DFA M recognizing A for any such NFA.

We start by only considering the easier case first, wherein N has no ϵ transitions. The ϵ transitions are taken into account later.
Proof: Theorem 1.39 (ctd.)

Construct $M = (Q', \Sigma, \delta_0', q_0', F')$.

1. $Q' = P(Q)$.
 Every state of M is a set of states of N.
 (Recall that $P(Q)$ is the power set of Q).

2. For $R \in Q'$ and $a \in \Sigma$ let
 $\delta'(R, a) = \{ q \in Q \mid q \in \delta(r, a) \text{ for some } r \in R \}$.
 If R is a state of M, it is also a set of states of N. When M reads a symbol a in state R, it tells us where a takes each state in R.
 Because each state leads to a set of states, we take the union of all these sets. Alternatively we can write:
 $$\delta'(R, a) = \bigcup_{r \in R} \delta(r, a)$$

3. $q_0' = \{ q_0 \}$. M starts in the state corresponding to the collection containing just the start state of N.

Proof: Theorem 1.39 (ctd.)

4. $F' = \{ R \in Q' \mid R \text{ contains an accept state of } N \}$.
The machine M accepts if one of the possible states that N could be in at any given moment in an accept state.
The ϵ transitions need some extra notation:
 a) For any state R of M we define $E(R)$ to be the collection of states that can be reached from R by means of any number of ϵ transitions alone, including the members of R themselves.
 Formally, for $R \subseteq Q$ let
 $E(R) = \{ q \mid q \text{ can be reached from } R \text{ along } 0 \text{ or more } \epsilon \text{ transitions} \}$.
 b) The transition function M is then modified to take into account all states that can be reached by going along ϵ transitions after every step. Replacing $\delta(r, a)$ by $E(\delta(r, a))$ achieves this. Thus,
 $$\delta'(R, a) = \{ q \in Q \mid q \in E(\delta(r, a)) \text{ for some } r \in R \}$$.

An example

Example: The NFA N_4 (figure 1.42)

Construct an equivalent DFA!
Closure under the regular operations

Theorem 1.45:
The class of regular languages is closed under the union operation. In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Theorem 1.47:
The class of regular languages is closed under the concatenation operation.

Theorem 1.49:
The class of regular languages is closed under the star operation.

Proof of Theorem 1.45

The class of regular languages is closed under the union operation.

Idea:

Proof of Theorem 1.45 (ctd.)

Let $N_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$ recognize A_1, and $N_2 = (Q_2, \Sigma, \delta_2, q_0, F_2)$ recognize A_2.

Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$ as follows:

1. $Q = \{q_0\} \cup Q_1 \cup Q_2$. The states of N are all the states of N_1 and N_2, with the addition of the new start state q_0.

2. The state q_0 is the start state of N.

3. The accept states $F = F_1 \cup F_2$. The accept states are all the accept states of N_1 and N_2. That way N accepts if either N_1 or N_2 accepts.

4. Define δ so that for any $q \in Q$ and any $a \in \Sigma$,

$$
\delta(q, a) = \begin{cases}
\delta_1(q, a) & q \in Q_1 \\
\delta_2(q, a) & q \in Q_2 \\
\{q_1, q_2\} & q = q_0 \text{ and } a = \varepsilon \\
\emptyset & q = q_0 \text{ and } a \neq \varepsilon
\end{cases}
$$

Proof of Theorem 1.47

The class of regular languages is closed under the concatenation operation.

Idea:
Proof of Theorem 1.47 (ctd.)

Let \(N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \) recognize \(A_1 \), and
\(N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \) recognize \(A_2 \).

Construct \(N = (Q, \Sigma, \delta, q_1, F_2) \) to recognize \(A_1 \ast A_2 \) as follows:
1. \(Q = Q_1 \cup Q_2 \). The states of \(N \) are all the states of \(N_1 \) and \(N_2 \).
2. The state \(q_1 \) is the start state of \(N \), which is the same as the start state of \(N_1 \).
3. The accept states \(F_2 \) are the same as the accept states of \(N_2 \).
4. Define \(\delta \) so that for any \(q \in Q \) and any \(a \in \Sigma \),
\[
\delta(q, a) = \begin{cases}
\delta_1(q, a) & q \in Q_1 \text{ and } q \in F_1 \\
\delta_1(q, a) & q \in F_1 \text{ and } a \neq \varepsilon \\
\delta_1(q, a) \cup \{q_1\} & q \in F_1 \text{ and } a = \varepsilon \\
\delta_2(q, a) & q \in F_2
\end{cases}
\]

Proof of Theorem 1.49

The class of regular languages is closed under the star operation.

Idea:

\[
N_1 \xrightarrow{\varepsilon} N \xrightarrow{\varepsilon} N
\]

Regular expressions

Definition 1.52:

Say that \(R \) is a regular expression if \(R \) is
1. \(a \) for some \(a \) in the alphabet \(\Sigma \),
2. \(\varepsilon \),
3. \(\emptyset \),
4. \((R_1 \cup R_2) \), where \(R_1 \) and \(R_2 \) are regular expressions,
5. \((R_1 \ast R_2) \), where \(R_1 \) and \(R_2 \) are regular expressions, or
6. \((R_1) \), where \(R_1 \) is a regular expression.
Regular expressions: examples (1)

Let $\Sigma = \{0,1\}$:
1. $0^*1^* = \{ w \mid w \text{ has exactly a single } 1 \}$.
2. $\Sigma^*1\Sigma^* = \{ w \mid w \text{ has at least one } 1 \}$.
3. $\Sigma^001\Sigma^* = \{ w \mid w \text{ contains 001 as a substring} \}$.
4. $(01^*)^* = \{ w \mid \text{every 0 in } w \text{ is followed by at least one } 1 \}$.
5. $(\Sigma\Sigma)^* = \{ w \mid w \text{ is a string of even length} \}$.
6. $(\Sigma\Sigma\Sigma)^* = \{ w \mid \text{the length of } w \text{ is a multiple of three} \}$.
7. $01 \cup 10 = \{01,10\}$.
8. $0\Sigma^*0 \cup 1\Sigma^*1 \cup 0 \cup 1 = \{ w \mid w \text{ starts and with the same symbol as it ends} \}$.

Applications of regular expressions

- Design of compilers
 \([+,-,\varepsilon](D D^* \cup D D^* D \cup D^* D D^*) \] where $D = \{0, \ldots, 9\}$
- awk, grep, vi, ... in *nix systems (search for strings)
- Programming languages (e.g. Perl, Python, C++, Java)
- Bioinformatics
 - So-called motifs (patterns occuring in sequences)

Equivalence of RE and NFA

Theorem 1.54 (page 66):
A language is regular if and only if some regular expression describes it.

Two directions to consider:

Lemma 1.55 (page 67):
If a language is described by some regular expression, then it is regular.

Lemma 1.60 (page 69):
If a language is regular, then it can be described by some regular expression.
Proof of Lemma 1.55

- Idea: Given a regular expression R describing a regular language A. We show how to convert R into an NFA recognizing A.
- Six cases have to be considered:
 1. $R = a$ for some $a \in \Sigma$, then $L(R) = \{a\}$.
 2. $R = \epsilon$, then $L(R) = \{\epsilon\}$.
 3. $R = \emptyset$, then $L(R) = \emptyset$.
 4. $R = R_1 \cup R_2$.
 5. $R = R_1 \circ R_2$.
 6. $R = R_1^*$.

Proof of Lemma 1.55, case 1

Given: $R = a$ for some $a \in \Sigma$, then $L(R) = \{a\}$

The NFA $N = (\{q_1, q_2\}, \Sigma, \delta, q_1, \{q_2\})$ recognizes $L(R)$ with:
1. $\delta(q_1, a) = \{q_2\}$, and
2. $\delta(r, b) = \emptyset$, for $r \neq q_1$ or $b \neq a$.

Note: this machine fits the definition of an NFA, but not that of a DFA, as not all input symbols have exiting arrows.

Proof of Lemma 1.55, cases 2 & 3

Given: $R = \epsilon$, then $L(R) = \{\epsilon\}$.

The NFA $N = (\{q_1\}, \Sigma, \delta, q_1, \{q_1\})$ recognizes $L(R)$ with:
1. $\delta(r, b) = \emptyset$, for any r and b.

Given: $R = \emptyset$, then $L(R) = \emptyset$.

Proof of Lemma 1.55, cases 4, 5 & 6

Given:
4. $R = R_1 \cup R_2$.
5. $R = R_1 \circ R_2$.
6. $R = R_1^*$.

The proofs for Theorems 1.45, 1.47, and 1.49 (slide 35, “closure of regular languages”) can be used to construct the NFA R from the NFAs for R_1 and R_2 (or just R_1 in case 6).
Example 1.56: \((ab \cup a)^*\)

- Convert regular expression \((ab \cup a)^*\) into an NFA in a sequence of stages.
- Build up from the smallest subexpressions to larger subexpressions until NFA for the original expression is achieved.
- Note: This procedure generally does not result in the NFA with the fewest states!

Exercise: NFA for \((a \cup b)^*aba\)

- a:
- b:
- \(a \cup b\)
- \((a \cup b)^*\)

Example 1.56: NFA for \((ab \cup a)^*\)

- a:
- b:
- ab:
- \(ab \cup a\)
- \((ab \cup a)^*\)

Example: NFA for \((a \cup b)^*aba\) (cont.)

- aba:
- \((a \cup b)^*aba:\)
Lemma 1.60

Lemma 1.60 (page 69):
If a language is regular, then it can be described by a regular expression.

- Two steps
 - DFA into GNFA (generalized nondeterministic finite automaton)
 - Convert GNFA into regular expression

Generalized NFA

A generalized nondeterministic finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_{\text{start}}, q_{\text{accept}})\), where:

1. \(Q\) a finite set of states
2. \(\Sigma\) a finite set, the alphabet
3. \(\delta\): \(Q \setminus \{q_{\text{accept}}\} \times (Q \setminus \{q_{\text{start}}\}) \rightarrow \mathcal{R}\) is the transition function
4. \(q_{\text{start}} \in Q\) is the start state
5. \(q_{\text{accept}} \in Q\) is the accept state

\(\mathcal{R}\) represents the collection of all regular expressions over the alphabet \(\Sigma\).

GNFAs

- Labels are regular expressions
- Two states \(q\) and \(r\) are connected in both directions (fully connected)
- Exception:
 - One direction only
 - Start state (exiting transition arrows)
 - Accept state (only one!) (only incoming transition arrows)

A generalized NFA accepts string \(w\)...

A GNFA accepts string \(w \in \Sigma^*\) if \(w = w_1w_2...w_k\), where each \(w_i \in \Sigma^*\) and a sequence of states \(q_0, q_1, ..., q_k\) exists such that

1. \(q_0 = q_{\text{start}}\) is the start state,
2. \(q_k = q_{\text{accept}}\) is the accept state, and
3. for each \(i\), we have \(w_i \in L(R_i)\), where \(R_i = \delta(q_{i-1}, q_i)\); in other words, \(R_i\) is the expression on the arrow from \(q_{i-1}\) to \(q_i\).
Convert DFA into GNFA

- add new start state, with ε transition to old start state
- add new accept state, with ε transitions from old accept states
- if any transitions have multiple labels a and b, replace them by $a \cup b$
- add transitions with label \emptyset between states that had no transitions before

Ripping of states

Replace one state by the corresponding RE

Convert(DFA) into GNFA

1. Let k be the number of states of G.
2. If $k = 2$, then G must consist of a start state, an accept state, and a single transition connecting them, which is labeled with a regular expression R. Return the expression R and exit.
3. If $k > 2$, we select any state $q_{rip} \in Q$ different from q_{start} and q_{accept} and let G' be the GNFA $(Q', \Sigma, \delta', q_{start}, q_{accept})$, where $Q' = Q \setminus \{q_{rip}\}$, and for any $q_i \in Q' \setminus \{q_{accept}\}$ and any $q_j \in Q' \setminus \{q_{start}\}$ let
 \[\delta'(q_i, q_j) = (R_1)(R_2)^* (R_3) \cup R_4,\]
 for $R_1 = \delta(q_i, q_{rip}), R_2 = \delta(q_{rip}, q_{rip}), R_3 = \delta(q_{rip}, q_j)$, and $R_4 = \delta(q_j, q_j)$.
4. Compute $\text{Convert}(G')$ and return this value.
ACS II: Regular Languages

Example

DFA:

Step 1: convert into GNFA

Step 2: rip state 2

Step 3: rip state 1:

Another Example

DFA:

GNFA:

Rip 1:

Rip 2:

Rip 3:

Induction Proof

Claim 1.65: For any GNFA G, $\text{Convert}(G)$ is equivalent to G.

Procedure: We proof this claim by induction on k, the number of states of the GNFA.

Basis: Prove the claim true for $k = 2$ states. If G has only two states, it can have only a single transition, which goes from the start state to the accept state. The regular expression label on this transition describes all the strings that allow G to get to the accept state. Hence, this expression is equivalent to G.

Induction step: Assume that the claim is true for $k - 1$ states and use this assumption to prove that the claim is true for k states. First we show that G and G' recognize the same language. Suppose that G accepts an input w. Then in an accepting branch of the computation G enters a sequence of states

$q_{\text{start}}, q_1, q_2, q_3, \ldots, q_{\text{accept}}$

Induction Proof (ctd.)

If none of them is the removed state q_{rip}, clearly G' also accepts w, because each of the new regular expressions labeling the transitions of G' contains the old regular expression as part of a union.

If q_{rip} does appear, removing each run of consecutive q_{rip} states forms an accepting computation for G'. The states q_i and q_j bracketing a run have a new regular expression on the transition between them that describes all strings taking q_i to q_j via q_{rip} on G. So G' accepts w.

For the other direction, suppose that G' accepts an input w. As each transition between any two states q_i and q_j in G' describes the collection of strings taking q_i and q_j in G, either directly or via q_{rip}, G must also accept w. Thus, G and G' are equivalent.

...
Induction Proof (ctd.)

The induction hypothesis states that when the algorithm calls itself recursively on input G', the result is a regular expression that is equivalent to G', because G' has $k - 1$ states. Hence this regular expression also is equivalent to G, and the algorithm is proved correct.

![Diagram]

<table>
<thead>
<tr>
<th>ACS II: Regular Languages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonregular Languages</td>
</tr>
<tr>
<td>➢ Finite Automata have a finite memory</td>
</tr>
<tr>
<td>➢ Are the following languages regular?</td>
</tr>
<tr>
<td>$B = {0^n</td>
</tr>
<tr>
<td>$C = {w</td>
</tr>
<tr>
<td>$D = {w</td>
</tr>
<tr>
<td>➢ Mathematical proof necessary</td>
</tr>
</tbody>
</table>

The pumping lemma

If A is a regular language, then there is a number p (the pumping length), such that any string s of length at least p may be divided into three pieces, $s = xyz$, such that

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

Note: from 2 follows that $y \neq \varepsilon$.

Proof Idea

Let M be a DFA recognizing A. Assign p to be the number of states in M. Show that string s, with length at least p, can be broken into xyz. Now prove that all three conditions are met.
Proof: Pumping Lemma

Let \(M = (Q, \Sigma, \delta, q_0, F) \) be a DFA recognizing \(A \) and \(|Q| = p \).

Let \(s = s_1s_2 \ldots s_n \) be a string in \(A \), with \(|s| = n \), and \(n \geq p \).

Let \(r = r_1, \ldots, r_{n+1} \) be the sequence of states that \(M \) enters for \(s \), so \(r_{i+1} = \delta(r_i, s_i) \) with \(1 \leq i \leq n \), \(|r_1, \ldots, r_{n+1}| = n + 1, n + 1 \geq p + 1 \).

Among the first \(p + 1 \) elements in \(r \), there must be a \(r_j \) and a \(r_l \) being the same state \(q_m \), with \(j \neq l \).

As \(r_j \) occurs in the first \(p + 1 \) states: \(l \leq p + 1 \).

Let \(x = s_1 \ldots s_{j-1}, y = s_j \ldots s_{l-1} \), and \(z = s_l \ldots s_n \).

As \(x \) takes \(M \) from \(r_l \) to \(r_j \), \(y \) from \(r_j \) to \(r_l \), and \(z \) from \(r_l \) to \(r_{n+1} \), being an accept state, \(M \) must accept \(xy^iz \) for \(i \geq 0 \).

With \(j \neq l \), \(|y| > 0 \)

With \(l \leq p + 1, |xy| \leq p \)

Nonregular languages: example 1

\[B = \{0^n1^n \mid n \geq 0 \} \]

Choose string \(s = 0^p1^p \) for \(p \in \mathbb{N}^+ \) being the pumping length.

If we were to consider condition 2, then we would have that:

1. string \(y \) consists only of 0s \(\rightarrow xyyz \) has more 0s than 1s \(\rightarrow \) not a member of \(B \) \(\rightarrow \) violates condition 1 \(\rightarrow \) contradiction!
2. string \(y \) consists only of 1s \(\rightarrow \) similar argument as in case 1 \(\rightarrow \) contradiction!
3. string \(y \) consists of both 0s and 1s \(\rightarrow xyyz \) may have same number of 0s and 1s, but out of order with some 1s before 0s \(\rightarrow \) contradiction!

Intuitive argument: A DFA \(M \) would need to be able to remember how many 0s have been seen so far as it reads the input. As the number of 0s isn’t limited and all DFAs only have a finite number of states, \(B \)

Pumping Lemma (cont.)

Use pumping lemma to prove that a language \(A \) is not regular:

1. Assume that \(A \) is regular (Proof by contradiction)
2. use the lemma to guarantee the existence of \(p \), such that strings of length \(p \) or greater can be pumped
3. find string \(s \) of \(A \), with \(|s| \geq p \) that cannot be pumped
4. demonstrate that \(s \) cannot be pumped using \textbf{all different ways of dividing \(s \) into \(x, y, \) and \(z \)} (using condition 3 is here very useful)
5. the existence of \(s \) contradicts the assumption, therefore \(A \) is not a regular language

Nonregular languages: example 2

\[C = \{w \mid w \text{ has an equal number of 0s and 1s}\} \]

Choose string \(s = 0^p1^p \) for \(p \in \mathbb{N}^+ \) being the pumping length.

Pumping \(s \) seems possible, but only if we ignored condition 3!

\textbf{Condition:} \(|xy| \leq p \)

Thus, \(y \) consists of 0s only

Then \(xyyz \notin C \) \(\rightarrow \) Contradiction!

Alternative proof:

We know that \(B = \{0^n1^n \mid n \geq 0 \} \) is not regular.

If \(C \) were regular, then \(C \cap 0^*1^* = B \) also regular, because regular languages are closed under intersection (cp. slide 14)!

\(\rightarrow \) Contradiction!
Nonregular languages: example 3

Let \(F = \{ww \mid w \in \{0,1\}^*\} \)

- Choose string \(s = 0^p1^p \) for \(p \in \mathbb{N}^+ \) being the pumping length
 - Does NOT WORK, because it can be pumped! Try again.
- Choose string \(s = 0^p10^p1 \) for \(p \in \mathbb{N}^+ \) being the pumping length
- We use condition 3 again:
 - Condition 3: \(|xy| \leq p \)
 - Thus, \(y \) consists of 0s only
 - Then \(xyz \notin F \Rightarrow \text{Contradiction!} \)
- Choice of \(s \) is crucial
 - If some \(s \) does not work, try another one!

Summary

- Deterministic finite automata
- Regular languages
- Nondeterministic finite automata
- Closure operations
- Regular expressions
- Nonregular languages
- The pumping lemma