Introduction to Multi-Agent-Programming

B. Nebel, A. Kleiner
C. Dornhege, D. Zhang

Winter Semester 2010/2011

Exercise Sheet 11

Due: January 25th, 2011

Exercise 11.1 (Q-Learning (3pt))

Consider the following grid world, where the numbers are rewards associated with the cells. The numbered cells are terminal states, unnumbered cells have a reward of -0.1 . An agent starts at the left-bottom corner. It can perform four possible actions: North, South, East and West.

The agent executed the actions marked in each cell and the executed trajectory is marked by the arrows. Let $\gamma=0.9$ and $\alpha=0.5$ and the Q -function be initialized to 0 for all $s \in S, a \in A$. Show the updates that Q-learning performed in each step along the trajectory.

Exercise 11.2 (Optimal Policy (2pt))

Consider the gridworld above. Assume the rewards of unnumbered cells are 0 How will the optimal policy in each cell look?
How will this change if the rewards are larger negative numbers, e.g. -5?

