Introduction to Multi-Agent-Programming

B. Nebel, A. KleinerC. Dornhege, D. ZhangWinter Semester 2010/2011

University of Freiburg Department of Computer Science

Exercise Sheet 8 Due: December 21st, 2010

This exercise should be submitted during the lecture on Tuesday (Dec. 21st), the exercise session on Dec. 23rd 2010 is moved to Jan. 13th, 2011

Exercise 8.1 (Hungarian Method)

Three robots $\{a, b, c\}$ need to finish three tasks $\{t_1, t_2, t_3\}$ in the following grid world. It takes 1 day for a robot to move from one cell to one of its 4 neighbors.

In the following table, we list the days that each robot can finish each task alone. The tasks need to be finished as soon as possible.

	t_1	t_2	t_3
a	10	20	15
b	30	30	20
с	15	10	10

(a) Solve the assignment problem by Hungarian Method, please show the process (2pts)

Exercise 8.2 (Distributed Pseudo-tree Optimization)

A sensor field (the following grid) is composed of 9 sensors: $S = \{s_1, s_2, ..., s_9\}$. There are 3 targets $T = \{t_1, t_2, t_3\}$. Each of them must be tracked by 3 different sensors. One sensor can track only a single target. Each sensor can cover a target within a radius of 3 cells (Manhattan distance). The sensor can communicate with the other sensors within the area.

5				s_3		
4	t_3				t_1	
3	s_1	s_2		s_4	s_5	s_6
2		s_7		t_2		
1			s_8			
0				s_9		
	0	1	2	3	4	5

(a) Solve the assignment problem by Distributed Pseudo-tree Optimization, please show the process briefly(3pts)