Introduction to Multi-Agent-Programming

B. Nebel, A. Kleiner
C. Dornhege, D. Zhang

Winter Semester 2010/2011

Exercise Sheet 8

Due: December 21st, 2010
This exercise should be submitted during the lecture on Tuesday (Dec. 21st), the exercise session on Dec. 23rd 2010 is moved to Jan. 13th, 2011

Exercise 8.1 (Hungarian Method)
Three robots $\{a, b, c\}$ need to finish three tasks $\left\{t_{1}, t_{2}, t_{3}\right\}$ in the following grid world. It takes 1 day for a robot to move from one cell to one of its 4 neighbors.

In the following table, we list the days that each robot can finish each task alone. The tasks need to be finished as soon as possible.

	t_{1}	t_{2}	t_{3}
a	10	20	15
b	30	30	20
c	15	10	10

(a) Solve the assignment problem by Hungarian Method, please show the process (2pts)

Exercise 8.2 (Distributed Pseudo-tree Optimization)

A sensor field (the following grid) is composed of 9 sensors: $S=\left\{s_{1}, s_{2}, \ldots, s_{9}\right\}$. There are 3 targets $T=\left\{t_{1}, t_{2}, t_{3}\right\}$. Each of them must be tracked by 3 different
sensors. One sensor can track only a single target. Each sensor can cover a target within a radius of 3 cells (Manhattan distance). The sensor can communicate with the other sensors within the area.

(a) Solve the assignment problem by Distributed Pseudo-tree Optimization, please show the process briefly (3pts)

