Introduction to Multi-Agent-Programming

B. Nebel, A. KleinerC. Dornhege, D. ZhangWinter Semester 2009/2010

University of Freiburg Department of Computer Science

Exercise Sheet 6 Due: December 7th, 2010

Exercise 6.1 (Kalman Filter)

The temperature of a victim is measured by three agents (a_1, a_2, a_3) . Each of them is equipped with a temperature sensor. The measurements are guided by three independent Gaussian with covariances $(\sigma_{a_1}^2, \sigma_{a_2}^2, \sigma_{a_3}^2) = (1, 2, 3)$.

(a) Integrate the measurements (1pt)

The agents get the measurements $(m_{a_1}, m_{a_2}, m_{a_3}) = (34, 30, 40)$. If these measurements are integrated in a Kalman filter, what is the result?

(b) Explain the results (1pt)

The temperature of a victim should be 37.5 if one is conscious, or 33.0 if one is unconscious. What is most possible status (conscious?) of the victim, and why?

Exercise 6.2 (Markov Localization)

A robot is moving in the following grid world. Moving into its four neighbors are equally possible. The robot will stay at the same cell if it moves towards a wall. Initially, the robot is at (1, 1) with a probability of 50% and at (1,3) with a probability of 36%, each of the rest cells gets a probability of 1%

At the next step, the observations are described in probabilities and shown in the following grid.

(a) If three trajectories are tracked by the KFs, please draw these trajectories on the grid. (1pt)

Exercise 6.3 (Potential Fields)

A robot moving from S to G in the following grid world. G has an attractive potential with value -5. Cell (2,1) has a repulsive potential with value 3. The potentials are linearly decreasing or increasing along the Manhattan distance.

- (a) Compute the value of potential at each cell. (1pt)
- $\rm (b)\,$ Paint the trajectory of the Robot on the grid according to the potentials (1pt)

This exercise should be submitted during the lecture on Tuesday (Dec. 7th)