
10.  Swarm Intelligence 

Flocking, Foraging, Ant Systems, TSP 
solving 

 Alexander Kleiner, Bernhard Nebel 

Introduction to Multi-Agent 
Programming 



Contents 

•  Introduction 
•  Swarming & Flocking 
•  Foraging strategies in ants 
•  Ant Colony Optimization (ACO) 

– Solving TSPs 
•  Case-study: Team coordination of virtual 

robots  
•  Summary 



Introduction 

•  What is swarm intelligence ? 
•  Swarm intelligence is motivated from insects 

–  Colonies of social insects can achieve flexible, intelligent, and 
complex system level performance from stereotyped, unreliable, 
unintelligent, and simple elements 

–  Insects follow simple rules, use simple local communication 
(scent trails, sound, touch) with low computational demands 

–  Global structure (e.g. nest) reliably emerges from the unreliable 
actions of many 

•  The modeling of social insects by means of self-Organization 
can be utilized to motivate the design of methods for 
distributed problem solving, known as Swarm Intelligent 
Systems 



Introduction 
Examples from Insects 

•  Bees: 
–  Communicate the distance and bearing of food 

sources by dancing 

–  Food sources are exploited according to quality and 
distance from the hive 

•  Termites 
–  Build large cone-shaped outer walls with ventilation 

ducts 

•  Ants 
–  Leafcutter ants (Atta) cut leaves from plants to grow 

fungi  

–  Weaver ant (Oecophylla) workers form chains of their 
own bodies, allowing them to cross wide gaps and to 
generate enough force to join leaves together. When 
the leaves are in place, the ants connect both edges 
with a continuous thread of silk emitted by a mature 
larva held by a worker 



Introduction 
Self-organization in social insects 

•  Relies on four basic ingredients: 
–  Positive feedback (amplification) 

•  Recruitment to a food source by laying or following a trail (e.g. ant 
pheromones or bee dance)  

–  Negative feedback 
•  Counterbalances the positive feedback 
•  In form of saturation (limited number of workers), exhaustion (of 

the food source), or competition (crowding at the food source) 

–  Fluctuation 
•  Random walks, errors, random task switching 
•  Can be seen as “exploration” for finding unexploited food sources 

–  Multiple interactions / Stigmergy 
•  Direct: antennation, food or liquid exchange, visual contact, 

chemical contact (the odor of nestmates), … 
•  Indirect: Two individuals interact indirectly if one modifies the 

environment and the other one responds to this modification later in 
time (Stigmergy)   



Stigmergy Example 

Pillar construction by termites: 

1)  Assume the architecture 
reaches state A that triggers 
action R from worker S (i.e. 
drop a soil pellet) transforming 
the architecture into A1 

2)  A1 stimulates another response 
R1from S or any other worker 
SN and so forth 

Individual S 

Individual SN 

Individual SN 

Individual SN 

A 

A1 

A2 

A3 



Swarming & Flocking 
Real-world example 

Anchovies 



Swarming & Flocking 

•  Aggregation of similar animals that travel into the same 
direction 

•  Applications: Movie effects (Lord of the rings, Lion King), 
Network routing, swarm robotics, computer games 

•  In the late 80’s Craig Reynolds created a simple model of 
animal motion that he called Boids 
–  Flock is a group of objects that exhibit the general class of 

polarized (aligned), non-colliding, aggregate motion 
–  Boid is a simulated bird-like object, i.e., it exhibits this type of 

behavior. It can be a fish, bee, dinosaur, etc.  

•  The boids model can be implemented by only 3 
rules defining a boid’s steering behavior   



Boids model 
Only 3 simple rules needed 

Separation: steer to avoid crowding 
local mates  

Alignment: steer towards the 
average heading and speed of 
local mates  

Cohesion: steer to move toward 
the average position of local 
mates  



Boids model 
Java Demo 

Taken from http://www.alxvy.org/ 



Foraging Strategies in Ants 

•  Some ants establish indirect communication based on the 
deposition of pheromone over the path they follow 
–  A single ant moves at random, but when it finds a pheromone 

trail, there is a high probability to follow the trail 
–  Ants foraging for food deposit pheromones over their routes. 

When finding a food source, they return to the nest reinforcing 
their trails 

–  By this, other ants have greater probability to start following 
such trails and thereby reinforcing it by more pheromones  

–  This process works as a positive feedback loop system because 
the higher the intensity of the pheromone over a trail, the 
higher the probability that ants start traveling through it  

Ants exploring two paths to a food source. The shorter path 
finally wins due to a higher density of pheromones  

Food Nest 



Ant Colony Optimization (ACO) 
Solving TSPs 

•  ACO can be used to solve graph problems such as 
the Traveling Salesman Problem (TSP) 
–  finding good but not necessarily optimal solutions!  

•  Goal: find a closed tour of minimal length 
connecting n given cities, while visiting every city 
only once  

•  Ant colony solution concept: 
–  Using a positive feedback mechanism based on an 

analogy with the trail laying/following behavior, to 
reinforce to keep good solutions  

–   Negative feedback by pheromone evaporation 



Traveling Salesman Problem (TSP) 

Example 40-node TSP with solution 
Note TSPs are NP-Complete problems, i.e. finding 
solutions with increasing number of cities becomes 

intractable 



Ant Colony Optimization (1) 
Solution to the TSP 

•  Ants move on the problem graph from one city 
to another until completing a tour 

•  Each transition depends on: 
– Whether the city has already been visited (tabu 

list). We denote the set of cities not visited by 
ant k when located at city i with 

– We denote             the visibility, computed from 
the distance between two cities i and j. Can be 
seen as a heuristic preferring nearby cities. 

–  The amount of virtual pheromone       on the 
edge connecting city i with city j at time t  

€ 

Ji
k

€ 

nij =1/dij

€ 

τij t( )



Ant Colony Optimization (2) 
Random Transition Rule 

•  The transition rule, i.e. probability for ant k to 
go to city j while building its t-th tour is given 
by: 

•  Where α and β are parameters controlling the 
trade-off between trail intensity and visibility € 

pij
k(t)= [τij(t)]α ⋅[nij]β

[τil(t)]α ⋅[nil]β
l ∈ Ji

k
∑

if j ∈ Ji
k , else 0



Ant Colony Optimization (3) 
Trail update 

•  Pheromone increase: 
–  After completing a tour (episode), each ant k lays a quantity of 

pheromone       on each visited edge  
–  The quantity depends on the ant’s performance during tour Tk at 

iteration t: 

–  Where Lk(t) is the length, and Q is a parameter that should be 
set close to the optimal tour length 

•  Pheromone decrease: 
–  Pheromone decay (evaporation) controlled by parameter ρ,  

with 0≤ρ<1 

€ 

Δτ ij
k t( )= Q

Lk t( )
if (i, j)∈T k t( ), else 0

€ 

Δτ ij
k

€ 

i, j( )



Ant Colony Optimization (4) 
Trail update 

•  Resulting update rule: 

     
  with: 

  i.e. summing up the influences from all m ants  

€ 

Δτij t( )= Δτ ij

k

k=1

m

∑ t( )€ 

τ ij(t)← 1− ρ( ) ⋅τ ij(t)+Δτ ij(t)



Ant Colony Optimization (5) 
Elitist ants 

•  Idea borrowed from genetic algorithms: 
always keep the best n solutions in the genetic 
pool 

•  An elitist ant is an ant that reinforces the edge 
belonging to T+ (the best tour found so far) by 
the quantity Q/L+, where L+ is the length of T+ 

•  During each iteration we add e elitist ants to 
the usual ants 

•  Hence, the edge belonging to T+ gets an extra 
reinforcement of e*Q/L+ 



Ant Colony Optimization (6) 
Complete Algorithm 

/* Initialization */!

For every edge (i,j) do!

End!

For k = 1 to m do!

!Place ant k on a randomly chosen city!

End!

Let T+ be the shortest found tour and L+ its length!

For t = 1 to tmax do !// tmax is the number of episodes!

!For k = 1 to m do  // m is the number of ants!

!! !Build tour Tk(t) by choosing n-1 times next city j with     !

       probability:!

!End!

€ 

τij 0( )=τ0

€ 

pij
k(t)= [τij(t)]α ⋅[nij]β

[τil(t)]α ⋅[nil]β
l ∈ Ji

k
∑

if j ∈ Ji
k , else 0



Ant Colony Optimization (7) 
Complete Algorithm 

!For k = 1 to m do!

!! !Compute length Lk(t) of tour Tk(t) of ant k !

!! !If Lk(t)< L+(t) then !

!! ! !T+(t) = Tk(t)!

!! !End!

!End!

!For every edge (i,j) do!

!! ! ! ! ! ! ! ! ! ! !  with !               , !!

!! ! ! ! ! ! ! ! ! ! ! !!

!! ! ! ! ! ! ! ! !!

!! ! ! ! ! ! ! ! ! !, !!

!! ! ! ! ! ! ! ! ! !.!

!End!

€ 

τij(t)← 1− ρ( ) ⋅τij(t)+Δτij(t)+e ⋅Δτije(t)

€ 

Δτij t( )= Δτij
k

k=1

m

∑ t( )

€ 

Δτij
k t( )=

Q /Lk t( ) if i, j( )∈T k t( )
0 ohterwise

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

€ 

Δτij
e t( )=

Q /L+ t( ) if i, j( )∈T + t( )
0 ohterwise

⎧ 
⎨ 
⎪ 

⎩ ⎪ 



Ant Colony Optimization (8) 
Complete Algorithm 

!For every edge (i,j) do!

!End!

End // Episodes!

Print shortest tour T+ and its length L+ !

!! ! ! ! ! ! !!

€ 

τij(t+1)=τij(t)



Ant Colony Optimization (9) 
DEMO 

From: http://kovarik.felk.cvut.cz/ant-algorithms/index.php 



•  TSPLIB: 

•  A library of sample instances for the TSP (and related problems) 
•  http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/ 

•  Ant Colony Optimization implementations: 

•  http://iridia.ulb.ac.be/~mdorigo/ACO/aco-code/public-
software.html 

•  http://kovarik.felk.cvut.cz/ant-algorithms/research-
download.php#acoc 

Try it out by yourself! 

TSP instances pcb442 (left side) and 
att532 (right side).  
The instance pcb442 stems from a 
drilling problem in a printed circuit 
board application, the instance 
att532 comprises 532 cities in the 
USA.  



Case-study: Team coordination of 
virtual robots 
USARSim: A simulator for emergency response 

•  Based on the Unreal game engine 
(UT2004, Epic Games)  

•  Realistic models for  
–  USAR environments, indoor & 

outdoor 
–  Robots, such as Pioneer2 DX, Sony 

AIBO, … 
–  Sensors, such as Laser Range Finder, 

Color Camera, IMU, Wheel 
Odometry, RFID 

•  Agents connect via a TCP/IP 
interface 

•  Path loss simulation (e.g. WLAN) 
•  Research challenges:  

–  Autonomous control of large robot 
teams (up to 12)  

–  Multi-robot disaster area mapping 
–  Coordination of heterogeneous 

robots with different manipulation 
and sensing capabilities 



RFID-based Exploration 
Hybrid: local exploration and global planning 

•  Task: Find all victims in the world with a team of robots 

•  Local exploration (LE): 
–  Indirect communication vi RFID 
–  Scales-up with # of robots and environment size 
–  Inefficient exploration due to local minima 

•  Global task assignment and path planning: 
–  Based on node graph abstraction of the environment 
–  Monitors LE and computes new agent-node assignment If 

exploration overlap is high 
–  Requires communication 



Local Exploration 
Navigation 

•  Local trajectory planning: 
–  Based on evidence grid, e.g. limited to 4X4 meters 
–  Exploration targets taken from extracted frontier cells 
–  Efficient A* planning towards selected FP 

–  Cost function considering path length and occupancy: 

Occupancy Grid 
generated from laser 

scans 

Extracted frontier cells 
and A* plan to selected 

target 

α regulates the 
influence of 
occupied cells 



Local Exploration 
Coordination & Frontier Cell Selection 

•  RFID tag distribution and detection: 
–  Deployment of new RFIDs with respect to the detected RFID density 

–  Detection of nearby RFIDs and consequent update of Local RFID Set 
(LRS) 

–  Programming of RFID memory with visited locations (relative position) 

•  Coordination: 
–  Discretization of node vicinity into equally sized patches 
–  Node memory for counting visits of each patch [Svennebring and 

Koenig, 2004]) 

•  Frontier selection by minimizing the following cost function: 

lfi :     frontier cell location,  
LRS: set of nodes within range,  
Pr:    set of patches around node r,  
d(.):   the Euclidean distance  

This models ant pheromones!  



Discretized visited areas 
counted in memory 

Local Exploration cont. 
Discretization of the node’s vicinity π  

π 

 RFID node 

Robot trajectories 

Relative 
addressing! 



Results Local Team Coordination 
Virtual rescue scenarios from NIST (RoboCup’06) 

Each color 
denotes the path 
of a single robot 

Largest explored area 
(by 8 robots) 

Final 1 (indoor, 1276m2) Final 2 (outdoor. 1203m2) 



Rescue Virtual Competition 
Videos from RoboCup’06 

Semi-Final`06 Final`06 



Summary 

•  Flocking is a very simple mechanism that has been uses 
quite successfully in many applications 
–  Can be used to simplify multi-agent path planning of a group 

•  The foraging behavior of ants has motivated Ant Colony 
Optimization (ACO) algorithms 
–  Although sub-optimal, they are powerful to find fast good 

solutions in TSPs 
–  Numerous of extensions to the presented approach have been 

proposed 
–  Other problems that have been solved: Task Allocation, Graph 

Partitioning, Constraint Satisfaction, Transport problems, … 

•  RFIDs might be a good choice for simulating pheromones 
(at least when they are getting cheaper) 



Literature 

•  Bonabeau E., Dorigo M., and Theraulaz G. Swarm 
Intelligence: From Natural to Artificial Systems, Oxford 
University Press, 1999. 

•  Reynolds, C. W. (1987) Flocks, Herds, and Schools: A 
Distributed Behavioral Model, in Computer Graphics, 21
(4) (SIGGRAPH '87 Conference Proceedings) pages 25-34.  

•  V.A. Ziparo, A. Kleiner, B. Nebel, and D. Nardi, RFID-Based 
Exploration for Large Robot Teams, In Proc. of the IEEE 
Int. Conf. on Robotics & Automation (ICRA), 2007 

•  Svennebring, J. and Koenig, S. Building terrain-covering 
ant robots: A feasibility study. Autonomous Robots, 16
(3):313–332, 2004. 

Illustrations and Ideas presented in this lecture are mainly from the above publications. 


