
9.  Working Together - Part II

Centralized and Decentralized
Assignment Problem

Alexander Kleiner, Bernhard Nebel

Introduction to Multi-Agent
Programming

Contents

•  Introduction
•  Centralized Assignment

–  Hungarian Method
•  Decentralized Assignment

–  DCOP
•  Summary

Literature

Amnon Meisels:
Distributed Search by Constrained Agents
- Algorithms, Performance, Communication

Adrian Petcu:
A Class of Algorithms for Distributed Constraint
Optimization

The Assignment Problem
Introduction

•  Consider the situation of assigning n jobs to n machines
–  For example, passengers to drivers in a car sharing domain
–  Cleaning robots to rooms

–  Wedding problem with individual sympathy measure
–  …

•  When assigning workers i (=1,2,....,n) to machine j (=1,2,n) costs cij
occur

•  The objective is to assign the workers to machines at the least possible total
cost

•  Note when there k machines and n persons (k<n) the matrix can artificially
be made square by adding n-k dummy persons (“no job”) that are initialized
with zeros

•  Decentralized / Distributed assignment:
–  No central instance for decision making

–  Agents only communicate with their immediate neighbors (e.g.
communication range)

Linear Sum Assignment Problem (LSAP)
Introduction

•  Given an n x n cost matrix match each row to a
different column in such a way that the sum of the
corresponding entries is minimized

•  Example:
–  Four persons have to be assigned to 4 cleaning jobs, each one

has different costs:

•  Costs cij are assumed non-negative. Negative costs can be
converted by adding to each element of C the value
v = -mini,j{cij}

Bathroom Floors Windows Kitchen

Gabi 8 € 10 € 17 € 9 €

Malte 3 € 8 € 5 € 6 €

Tom 10 € 12 € 11 € 9 €

Patrick 6 € 13 € 9 € 7 €

€

C = (cij)

Linear Sum Assignment Problem (LSAP)
Mathematical Formulation

Assignment Matrix:

€

xij =
1 if row i is assigned to column j,
0 otherwise,
⎧
⎨
⎩

€

min cij xij
j=1

n

∑
i=1

n

∑

s. t. xij =1 i =1,2,...,n(),
j=1

n

∑

xij =1 j =1,2,...,n(),
i=1

n

∑

xij ∈ 0,1{ } i, j =1,2,...,n().

ith person will do only one job

jth work will be done by only one
person

Note: There are n! valid solutions. For example n=10  3.63 X 106

Hungarian Method
Procedure

 The Hungarian Method (orig. version) solves LSAPs in O(|V3|) (Kuhn and Munkers)

 Stepwise computational procedure on the cost matrix

Theorem 2:
If all and there exists a solution such that
then the solution is optimal.

€

cij ≥ 0

€

cij xij∑ = 0

Theorem 1:
When adding (or subtracting) a constant to every element of any row
(or column) of the cost matrix then an assignment which
minimizes the total cost for the new matrix will also minimize the total
cost matrix.

€

(cij)

The Hungarian Method is dependent upon two theorems:

Hungarian Method
Stepwise Procedure on the cost matrix

Step 1: Row Reduction
 Subtract the minimum entry of each row from all entries in this row

Step 2: Column Reduction
 Subtract the minimum entry of each column from all entries in this column

Step 3: Zero Assignment
 (a) Rows: Examine each row (starting with the first one) until finding a row that
 contains exactly one zero. Mark this zero as temporary assignment and
 cross all entries in the column where the assignment has been made.
 (b) Columns: Examine each column (starting with the first one) until finding a
 column that contains exactly one zero. Mark this zero as temporary assignment
 and cross all entries in the row where the assignment has been made.

 Continue until all zeros are either crossed out or assigned!

Hungarian Method
Stepwise Procedure on the cost matrix

Continue until all zeros have either been assigned or crossed-out!

Then there are two possible outcomes:
1.  Each column and row contains exactly one marked zero, i.e.

total assigned zero’s = n. The assignment is optimal.
2.  At least two zeros are found in either a column or row, i.e. total

assigned zeros < n. Continue with Step 4

Step 4: Draw the minimum number of lines to cover all zero’s
 (a) Mark all rows in which the assignment has not been done
 (b) See the position of zero in the marked row and mark the corresponding column
 (c) Mark all other rows with a zero in this column

Step 5: Select the smallest element from the uncovered elements
 (a) Subtract this element from all uncovered ones
 (b) Add this element to all elements which are at the intersection of two lines

Step 6: Now we have increased the number of zeros. Repeat Step 3.

Hungarian Method
Summary

Start

S1: Row Reduction

S2: Column
Reduction

S4:
(a)  Draw the minimum number

of lines to cover all zeros
S5:
(a)  Choose the least covered

element
(b)  Subtract this from the

uncovered elements and
add it to elements at
intersections

ASSIGNMENT
FOUND

zeros < n

S3: Zero
Assignment

zeros = n

Hungarian Method
Example I

Bathroom Floors Windows Kitchen

Gabi 0 0 7 1

Malte 0 3 0 3

Tom 1 1 0 0

Patrick 0 5 1 1

Step 2: Column reduction

Bathroom Floors Windows Kitchen

Gabi 0 2 9 1

Malte 0 5 2 3

Tom 1 3 2 0

Patrick 0 7 3 1

Step 1: Row reduction

Bathroom Floors Windows Kitchen

Gabi 8 10 17 9

Malte 3 8 5 6

Tom 10 12 11 9

Patrick 6 13 9 7

Example Problem I:
Four persons have to be
assigned to 4 cleaning jobs,
each one has different costs:

Hungarian Method
Example I

Bathroom Floors Windows Kitchen

Gabi 0 0 7 1

Malte 0 3 0 3

Tom 1 1 0 0

Patrick 0 5 1 1

Step 3: Zero
assignment:

Temporary
assignments

Cross-outs

Finally, all zeros are either crossed out or assigned and
the number of assigned zeros is n and this the solution optimal!

Result: Gabi  Floors, Malte  Windows, Tom  Kitchen, Patrick 
Bathroom

Hungarian Method
Example II

Wiehre Herdern Merzhausen Zähringen Stühlinger

Gabi 6 12 3 11 15

Malte 4 2 7 1 10

Tom 8 11 10 7 11

Patrick 16 19 12 23 21

Robert 9 5 7 6 10

Wiehre Herdern Merzhausen Zähringen Stühlinger

Gabi 3 9 0 8 12

Malte 3 1 6 0 9

Tom 1 4 3 0 4

Patrick 4 7 0 11 9

Robert 4 0 2 1 5

Wiehre Herdern Merzhausen Zähringen Stühlinger

Gabi 2 9 0 8 8

Malte 2 1 6 0 5

Tom 0 4 3 0 0

Patrick 3 7 0 11 5

Robert 3 0 2 1 1

Step 2: Column reduction

Step 1: Row reduction

Example Problem II:
5 drivers can pick-up
passengers from 6 areas at
different costs

Wiehre Herdern Merzhausen Zähringen Stühlinger

Gabi 2 9 0 8 8

Malte 2 1 6 0 5

Tom 0 4 3 0 0

Patrick 3 7 0 11 5

Robert 3 0 2 1 1

Hungarian Method
Example II

Step 3 (a): Zero row
assignment:

Step 3 (b): Zero column
assignment:

Wiehre Herdern Merzhausen Zähringen Stühlinger

Gabi 2 9 0 8 8

Malte 2 1 6 0 5

Tom 0 4 3 0 0

Patrick 3 7 0 11 5

Robert 3 0 2 1 1

Now all the zeros are either assigned or crossed out, but the total number assigned zero’s<n (4<5).
Therefore, we have to follow step 5 as follows:

Result:

Hungarian Method
Example II

Wiehre Herdern Merzhausen Zähringen Stühlinger

Gabi 2 9 0 8 8

Malte 2 1 6 0 5

Tom 0 4 3 0 0

Patrick 3 7 0 11 5

Robert 3 0 2 1 1

Step 4: Draw the
minimum number
of lines to cover all
zero’s

Step 5: The smallest element among
the uncovered ones is 2 then
(a)  subtract 2 from all uncovered

elements
(b)  add 2 to the entries at the

junction of two lines

Wiehre Herdern Merzhausen Zähringen Stühlinger

Gabi 0 7 0 6 6

Malte 2 1 8 0 5

Tom 0 4 5 0 0

Patrick 1 5 0 9 3

Robert 3 0 4 1 1

Wiehre Herdern Merzhausen Zähringen Stühlinger

Gabi 0 7 0 6 6

Malte 2 1 8 0 5

Tom 0 4 5 0 0

Patrick 1 5 0 9 3

Robert 3 0 4 1 1

Repeat Step 3: Finally we have got
five assignments:
Gabi Wiehre, Malte  Zähringen,
Tom  Stühlinger, Patrick 
Merzhausen, Robert  Herdern

Distributed Constraint Optimization
(DCOP or DisCOP)

•  The Distributed Constraint Optimization (DCOP) is a general
model for distributed problem solving

•  DCOPs are composed of agents, each holding one or more
variables
–  Each variable has a domain of possible value assignments

•  Constraints among variables (possibly held by different
agents) assign costs to combinations of value assignments

•  Agents assign values to their variables and communicate
with each other, attempting to generate a solution that is
globally optimal with respect to the sum of the costs of the
constraints

“How do a set of agents optimize over a set of alternatives that
have varying degrees of global quality?”

Distributed Constraint Optimization
(DCOP or DisCOP)

•  Examples
–  allocating agents to targets:

•  Assign agents (i.e., fire fighters) to targets (i.e., fires) such
that the adequate number of agents is allocated to each
target

–  meeting scheduling:
•  arrange a set of meetings with varying participants

such that no two meetings involving the same person
are scheduled at the same time, while respecting order
and deadline constraints

•  Difficulties
–  No global control/knowledge
–  Localized communication
–  Limited time

Distributed Constraint Optimization
(DCOP or DisCOP)
•  Why distributed?

–  Cost of formalization:
•  when problem solving is centralized, each participant will have to formulate its

constraints on all imaginable options beforehand.
•  in contrast, when using open constraint satisfaction, agents are asked to

evaluate only a minimal number of constraints.

–  Privacy issues:
•  in a meeting scheduling scenario, the fact that person A is also meeting with

person B may be private information that A wants to keep from another
person C. When problem solution is centralized, the solver will see all
meetings and constraints that can easily be leaked or stolen.

•  In contrast, a distributed solution can be constructed in such a way that
agents only reveal information piecemeal when evaluating constraints.

–  Robustness:
•  a centralized solver creates a central point of failure that leads to brittleness

of the entire system.
•  When solving is distributed among different agents, it allows load balancing

and redundant and thus fault-tolerant and more efficient computation among
different agents, leading to more reliable systems.

Constraint Optimization Problem (COP)
Problem Formulation
A COP is a tuple such that:

•  is a set of variables (e.g. start times of meetings)

•  is a set of discrete, finite variable domains (e.g. time
slots)

•  is a set of utility functions, where each is a function
with the scope

 assigning a utility (reward) to each possible combination of values

•  Special case hard constraints: They forbid certain value
combinations by assigning 0 to feasible and –inf to infeasible once

•  Goal is to find instantiation X* maximizing the sum of utilities of
individual utility functions:

€

X,D,R

€

X = X1,...,Xn{ }

€

D = d1,...,dn{ }

€

R = r1,...,rn{ }

€

ri

€

Xi1
,...,Xik(),ri :di1 × ...× dik →ℜ

€

X* = argmax
X

ri X()
ri∈R
∑
⎛

⎝
⎜

⎞

⎠
⎟

Distributed COP (DCOP)
Problem Formulation

A DCOP is a tuple such that:

•  is a set of agents (e.g. people participating in
meetings)

•  is a set of disjoint centralized COPs,
where each COPi is the local sub-problem controlled by agent
Ai

•  is a set of inter-agent utility functions defined
over variables from several different sub problems COPi.
Each expresses the reward obtained by the
involved agents for some joint decision. Hard constraints are
simulated by assigning 0 to feasible and –inf to infeasible
once

€

A,COP,R ia

€

A = A1,...,Ak{ }

€

COP = COP1,...,COPk{ }

€

R ia = r1,...,rn{ }

€

ri : scope ri()→ℜ

DCOP Example Applications
Distributed Meeting Scheduling

The Meeting Schedule Problem (MSP) is defined by the tuple
 such that:

is a set of agents.

is a set of meetings.

is a set of mappings from agents to meetings:
each is the set of meetings attends.

is a set of utility functions; a function
expressed by agent Ai represents Ai’s utility for
each possible schedule of its meetings.

is a set of time slots; each meeting can
be hold within one available slot.

Goal: To find schedule that is feasible (i.e. two meetings sharing an agent must not
overlap) and maximizes the sum of agents’ utilities. Note the MSP is NP-hard.

€

A,M,P,T,C,R

€

A = A1,...,Ak{ }

€

M = M1,...,Mn{ }

€

P = p1,..., pk{ }

€

pi ⊆M

€

Ai

€

T = t1,...,tn{ }

€

R = r1,...,rk{ }

€

ri : pi →ℜ

DCOP Example Applications
Distributed Meeting Scheduling

Example: Three agents want to find optimal schedule for three
meetings:

 , , .

There are 3 possible time slots: 8AM, 9AM, and 10AM. Each agent has

A local scheduling problem COPi composed of:

•  Variables : one variable for each meeting Ai wants to
participate

•  Domains: the time slots 8AM, 9AM, and 10AM

•  Hard constrains: No two meetings of Ai may overlap

•  Utility functions: Ai’s preferences

€

A1 : M1,M 3{ }

€

A2 : M1,M 2,M 3{ }

€

A3 : M 2,M 3{ }

€

Ai _M j

DCOP Example Applications
Distributed Meeting Scheduling

ci: inter-agent constraints with ci=0 for combinations assigning the same values
to variables and –inf for different assignments

DCOP Example Applications
Distributed Resource Allocation

•  Distributed sensor allocation problem (SAP) consists of:
–  a sensor field composed of n sensors: S = {s1, s2, ..., sn}
–  m targets that need to be tracked: T = {t1, t2, ..., tm}
–  each sensor has a certain “range” (the maximum distance that it

can cover)
–  in order to successfully track a target, 3 sensors have to be

assigned to that target (triangulation can be applied using the
data coming from those 3 sensors)

•  The following restrictions apply:
–  Any sensor can only track one target at a time
–  the sensors in the field can communicate among themselves,

but not necessarily every sensor with every other sensor (the
sensor connectivity graph is not fully connected). The 3 sensors
tracking a given target must be able to communicate among
themselves

DCOP Example Applications
Distributed Resource Allocation

•  We assign one agent for each target with 3 variables, one for
each required sensor
–  Example:

•  Agent Ai assigned for target Ti has 3 variables representing
the sensors that have to be assigned to track the target

•  The domain of each variable consists of the sensors that can see the
target

•  Constraints:
–  Intra-agent:

•  one agent (target) must have 3 different sensors tracking it
•  there must be a communication link between the sensors

–  Inter-agent:
•  No two variables from any two agents Ai and Aj can be

assigned to the same value, i.e., one sensor can track only a single
target.

€

s1
i , s2

i , s3
i

€

sk
i , sl

j

DCOP Example Applications
Distributed Resource Allocation

T1

T2

T3

T4

Sensors

T4 Targets

DCOP Solvers

•  Synchronous Branch and Bound (SynchB&B)
–  Hirayama and Yokoo 1997

–  distributed version of the centralized Branch and Bound algorithm

•  ADOPT (Modi, Shen, Tambe, and Yokoo 2005)
–  Uses pseudo-tree derived from the structure of the constraints network in order to

improve the process of acquiring a solution for the search problem.

–  Asynchronous search algorithm in which assignments are passed down the
pseudo-tree. Agents compute upper and lower bounds for possible assignments
and send costs which are eventually accumulated by the root agent up to their
parents in the pseudo-tree.

•  DSA (Zhang, Wang, Xing Wittenburg 2005)
–  Synchronous Stochastic Assignment

•  DPOP (Petcu & Faltings 2005)
–  In DPOP, each agent receives from the agents which are its sons in the pseudo-

tree all the combinations of partial solutions in their sub-tree and their
corresponding costs.

–  The agent generates all possible partial solutions including the partial solutions it
received from its sons and its own assignments

–  Once the root agent receives all the information from its sons, it produces the
optimal solution and propagates it down the pseudo-tree to the rest of the agents.

Synchronous Branch and Bound (SBB)
Introduction

•  Simulates the BB technique for CSPs in a distributed environment

•  Starts with a fixed agent ordering, e.g., by agent IDs
–  A0, A1, A2, …, An

•  Current Partial Assignment (CPA) is exchanged as a token among
the agents according to the ordering until a solution is found

–  Synchronous and sequential processing!

–  Only the agent holding the CPA message may perform computation

•  Pro:
–  Complete solution

•  Drawbacks:
–  Slow since agents only perform computations when they hold the CPA

–  Most of the time other agents are idle

Synchronous Branch and Bound (SBB)
Algorithm

•  The CPA starts at the first agent, which assigns its first value to it and sends it to the
second agent

•  Each agent that receives the CPA extends it by writing on it a value assignment to its
variable, as well as the cost it incurred because of constraints with other assignments
appearing in the received CPA

•  Whenever the CPA reaches a new full assignment at the last agent, the accumulated
cost of the CPA is the cost of that full assignment

–  If this cost is smaller than the known upper bound, it is broadcast to all agents as the new upper
bound

•  Each agent holding the CPA checks whether the CPA’s accumulated cost is smaller than
the upper bound.

–  If this is false, it assigns the next value in its domain instead of the current value and checks
again

•  An agent encountering an empty domain of values erases its assignment (and its cost)
and sends the CPA back to the previous agent (backtracking)

•  When the domain of the first agent is exhausted, the last discovered full assignment is
reported as the solution (this requires remembering what that assignment was, which
can be done by the last agent).

Synchronous Branch and Bound (SBB)
Example

A1

A2

A3

Cost: 9 Cost: 5

Cost: 0
Broadcast
Upper bound: 0

Termination since domain of A1
is exhausted!

Constraints:
b/o, o/b  5
o/o  0
b/b  2

A1 A2
A3

d1 d2

A1

A2

A3

Problem: Domain:

Ordering:

A1

A2

A3

Cost: 0

Upper bound: inf

Cost: 2

Broadcast
Upper bound: 6 Cost: 6

Solution:

Distributed Stochastic Algorithm (DSA)
Overview
•  The DSA algorithm is

–  synchronous, i.e. each step is executed by all agents at the
same time (e.g. via a system clock)

–  uniform, i.e., agents do not require unique IDs
•  The procedure

–  starts by assigning random values to variables
–  tries to reduce the number of violated constraints during each

step
•  Pro:

–  Simplicity
–  Uniformity, all processes have equal priority for every act,

i.e., do not need identities to distinguish one another for
breaking ties.

–  Efficiency
•  Drawbacks

–  Synchronizing messages must be taken into account when
measuring the overall communication load

Distributed Stochastic Algorithm (DSA)
Pseudo Code

Algorithm Δ>0 C, Δ=0 no C, Δ=0

DSA-A v with p - -

DSA-B v with p v with p -

DSA-C v with p v with p v with p

DSA-D v v with p -

DSA-E v v with p v with p

•  C stands for conflict (yes/no)
•  Δ is the best possible
 conflict reduction
 between 2 steps
•  v is the value given Δ
•  p the probability to change the
current value
•  Notice when Δ>0 there must
be a conflict

Termination: after a defined
number of steps

Pseudo-tree Generation

•  Pseudo-trees allow to split COPs into smaller subproblems
–  There is a single agent (node) that is placed at the root
–  Each agent has zero or more children
–  All agents except the root have a parent

•  Constraints are only allowed between an agent and its
ancestors!
–  If two agents share a constraint, then one of these agents is an

ancestor of the other
–  All constraints are either from parent to son (tree edges), or

from an agent to one of its ancestors (back edges)

•  Simple solution: Build the depth first search tree (DFS) of
the constraint graph, i.e., traverse the graph from a start
node in a DFS manner
–  There are many possible DFS trees for a given constraint graph

Pseudo-tree Generation
Example

A
1

A
0

A
2

A
3

A
4

A
5

A
6

A
13

A
11

A
12

A
10

A
9

A
8

A
7

di dj f(di,dj)

0 0 1

0 1 2

1 0 2

1 1 0

Constraint graph

A
1

A
0

A
2

A
3

A
4

A
5

A
6

A
13

A
11

A
12

A
10

A
9

A
8

A
7

Pseudo Tree

Tree edges
Back edges

Distributed Pseudo-tree Optimization
(DPOP)

•  Composed of three phases:
1.  Generation of the pseudo-tree ordering of the agents

2.  UTIL propagation phase

3.  VALUE propagation phase

•  UTIL phase:
–  Starts from the leaves (e.g. A7 – A12) and propagates UTIL messages up

the tree only through tree edges
–  UTIL messages

•  Considers all direct parent dependencies (from tree & back edges) to compute
for each value combination of dependent variables the optimal utility

•  For example: message A6  A2 depends on A2 only, whereas A8  A3
depends on all combinations of <X3,X1> resulting in the following UTIL
message:

Max. Utilities given the
configuration of the
parents

Distributed Pseudo-tree Optimization
(DPOP)

•  UTIL phase (cont.):
–  Each node Ai waits until all UTIL messages from the children are

received

–  Ai computes the maximal utility for each of its values given the parent
dependencies and child messages

–  Ai memorizes its optimal values corresponding to each value assignment
of its parents

•  VALUE phase:
–  After all UTIL messages arrived at the root node XR, XR computes the

overall utility corresponding to each of its values and picks the maximal
one

–  XR sends downwards its final choice to all children which also are able
then to pick there optimal value and to send their choice further down
the tree

Distributed Pseudo-tree Optimization
(DPOP)

P: Parent (tree edge)
C: Child (tree edge)
PP: Pseudo Parent (back edge)
PC: Pseudo Child (back edge)

Distributed Pseudo-tree Optimization (DPOP)
Drawbacks

•  Fully synchronous, i.e., agents must wait
for all their children to finish their
computation before they can start to
compute

•  The size of the messages in DPOP can
become be exponentially large
–  For example, in a fully connected

problem, a pseudo-tree would be a chain,
and if there are 10 agents, then the UTIL
message from the leaf agent to its parent
would include its cost for each
assignment combination of the other nine
agents. If the domains are of size 10,
then this message contains at least 109
such values!

DCOP Performance Metrics

•  In general, computation time and communication load are of
interest! How to determine the right metric?
–  Counting Cycles of computation on each agent?
–  Big-O notation?
–  Counting the number of exchanged messages or the total

amount of information sent?

•  Non-Concurrent Constraint Checks (NCCCs)
–  Every agent holds a counter of constraint checks performed
–  Every message carries the value of the sending agent’s counter
–  When an agent receives a message it updates its counter to the

largest value between its own counter and the counter value
carried by the message

–  After termination the largest counter held by some agent is
reported as the cost of the search

DCOP Performance Metrics
Example: Testing complete methods

Problem Complexity

NCCCs

Links

http://liawww.epfl.ch/frodo/
Frodo - An Open-Source Framework for DCOP:

Freiburg DCOP Benchmarking:

http://kaspar.informatik.uni-
freiburg.de/~rslb

Summary

•  The assignment problem is fundamental in many real-
world domains

•  In general the assignment problem can be solved by
distributed and centralized methods

•  We discussed the Hungarian method, a centralized
approach
•  The Hungarian method computes an optimal

assignment in O(n3) running time
•  Distributed Constraint Optimization (DCOP) offers a rich

set of algorithms for solving the assignment problem
decentralized
•  Here we distinguish between complete and

incomplete methods
•  Complete methods, such as SyncBB and DPOP,

typically do not scale-up with large agent teams
•  In contrast, we discussed DSA an efficient stochastic

algorithm

Literature

•  Paper on the Hungarian Method:
–  Kuhn, Harold W. The Hungarian Method for the Assignment Problem. In

Jünger, Michael, Liebling, Thomas M., Naddef, Denis, Nemhauser,
George L., Pulleyblank, William R., Reinelt, Gerhard, Rinaldi, Giovanni
and Wolsey, Laurence A., 50 Years of Integer Programming
1958-2008, pp. 29-47. Springer Berlin Heidelberg 2010.

•  Paper on DSA:
–  Zhang, W., Wang, G., Xing, Z. and Wittenburg, L. Distributed stochastic

search and distributed breakout: properties, comparison and
applications to constraint optimization problems in sensor networks.
Artificial Intelligence 161 (1-2):55-87, 2005.

•  Paper on DPOP:
–  Petcu, A. and Faltings, B. A scalable method for multi-agent

constraint optimization. In International Joint Conference on
Artificial Intelligence, pp. 26-6, 2005.

