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The Assignment Problem 
Introduction 

•  Consider the situation of assigning n  jobs to n  machines 
–  For example, passengers to drivers in a car sharing domain 
–  Cleaning robots to rooms 

–  Wedding problem with individual sympathy measure 
–  … 

•  When assigning workers i (=1,2,....,n) to machine j (=1,2, .....n) costs cij 
occur 

•  The objective is to assign the workers to machines at the least possible total 
cost 

•  Note when there k machines and n persons (k<n) the matrix can artificially 
be made square by adding n-k dummy persons (“no job”) that are initialized 
with zeros 

•  Decentralized / Distributed assignment: 
–  No central instance for decision making 

–  Agents only communicate with their immediate neighbors (e.g. 
communication range) 



Linear Sum Assignment Problem (LSAP) 
Introduction 

•  Given an n x n cost matrix             match each row to a 
different column in such a way that the sum of the 
corresponding entries is minimized 

•  Example:  
–  Four persons have to be assigned to 4 cleaning jobs, each one 

has different costs: 

•  Costs cij are assumed non-negative. Negative costs can be 
converted by adding to each element of C the value             
v = -mini,j{cij} 

Bathroom Floors Windows Kitchen 

Gabi 8 € 10 € 17 € 9 € 

Malte 3 € 8 € 5 € 6 € 

Tom 10 € 12 € 11 € 9 € 

Patrick 6 € 13 € 9 € 7 € 

€ 

C = (cij )



Linear Sum Assignment Problem (LSAP) 
Mathematical Formulation 

Assignment Matrix: 

€ 

xij =
1 if row i is assigned to column j,
0 otherwise,
⎧ 
⎨ 
⎩ 

€ 

min cij xij
j=1

n

∑
i=1

n

∑

s. t. xij =1 i =1,2,...,n( ),
j=1

n

∑

xij =1 j =1,2,...,n( ),
i=1

n

∑

xij ∈ 0,1{ } i, j =1,2,...,n( ).

ith person will do only one job 

jth work will be done by only one 
person 

Note: There are n! valid solutions. For example n=10  3.63 X 106 



Hungarian Method 
Procedure 

 The Hungarian Method (orig. version) solves LSAPs in O(|V3|) (Kuhn and Munkers) 

 Stepwise computational procedure on the cost matrix 

Theorem 2: 
If all             and there exists a solution such that                                    
then the solution is optimal. 

€ 

cij ≥ 0

€ 

cij xij∑ = 0

Theorem 1: 
When adding (or subtracting) a constant to every element of any row 
(or column) of the cost matrix         then an assignment which 
minimizes the total cost for the new matrix will also minimize the total 
cost matrix. 

€ 

(cij )

The Hungarian Method is dependent upon two theorems:  



Hungarian Method 
Stepwise Procedure on the cost matrix 

Step 1: Row Reduction 
      Subtract the minimum entry of each row from all entries in this row 

Step 2: Column Reduction 
      Subtract the minimum entry of each column from all entries in this column 

Step 3: Zero Assignment 
 (a) Rows: Examine each row (starting with the first one) until finding a row that 
 contains exactly one zero. Mark this zero as temporary assignment and  
 cross all entries in the column where the assignment has been made. 
 (b) Columns: Examine each column (starting with the first one) until finding a 
 column that contains exactly one zero. Mark this zero as temporary assignment 
 and cross all entries in the row where the assignment has been made. 

 Continue until all zeros are either crossed out or assigned! 



Hungarian Method 
Stepwise Procedure on the cost matrix 

Continue until all zeros have either been assigned or crossed-out! 

Then there are two possible outcomes: 
1.  Each column and row contains exactly one marked zero, i.e. 

total assigned zero’s = n. The assignment is optimal. 
2.  At least two zeros are found in either a column or row, i.e. total 

assigned zeros < n. Continue with Step 4 

Step 4: Draw the minimum number of lines to cover all zero’s 
 (a) Mark all rows in which the assignment has not been done 
 (b) See the position of zero in the marked row and mark the corresponding column 
 (c) Mark all other rows with a zero in this column 

Step 5: Select the smallest element from the uncovered elements 
 (a) Subtract this element from all uncovered ones 
 (b) Add this element to all elements which are at the intersection of two lines 

Step 6: Now we have increased the number of zeros. Repeat Step 3. 



Hungarian Method 
Summary  

Start 

S1: Row Reduction 

S2: Column 
Reduction 

S4: 
(a)  Draw the minimum number 

of lines to cover all zeros 
S5: 
(a)  Choose the least covered 

element 
(b)  Subtract this from the 

uncovered elements and 
add it to elements at 
intersections 

ASSIGNMENT 
FOUND 

# zeros < n 

S3: Zero 
Assignment 

# zeros = n 



Hungarian Method 
Example I 

Bathroom Floors Windows Kitchen 

Gabi 0 0 7 1 

Malte 0 3 0 3 

Tom 1 1 0 0 

Patrick 0 5 1 1 

Step 2: Column reduction 

Bathroom Floors Windows Kitchen 

Gabi 0 2 9 1 

Malte 0 5 2 3 

Tom 1 3 2 0 

Patrick 0 7 3 1 

Step 1: Row reduction 

Bathroom Floors Windows Kitchen 

Gabi 8 10 17 9 

Malte 3 8 5 6 

Tom 10 12 11 9 

Patrick 6 13 9 7 

Example Problem I:  
Four persons have to be 
assigned to 4 cleaning jobs, 
each one has different costs: 



Hungarian Method 
Example I 

Bathroom Floors Windows Kitchen 

Gabi 0 0 7 1 

Malte 0 3 0 3 

Tom 1 1 0 0 

Patrick 0 5 1 1 

Step 3: Zero 
assignment: 

Temporary 
assignments  

Cross-outs 

Finally, all zeros are either crossed out or assigned and 
the number of assigned zeros is n and this the solution optimal! 

Result: Gabi  Floors, Malte  Windows, Tom  Kitchen, Patrick  
Bathroom 



Hungarian Method 
Example II 

Wiehre Herdern Merzhausen Zähringen Stühlinger 

Gabi 6 12 3 11 15 

Malte 4 2 7 1 10 

Tom 8 11 10 7 11 

Patrick 16 19 12 23 21 

Robert 9 5 7 6 10 

Wiehre Herdern Merzhausen Zähringen Stühlinger 

Gabi 3 9 0 8 12 

Malte 3 1 6 0 9 

Tom 1 4 3 0 4 

Patrick 4 7 0 11 9 

Robert 4 0 2 1 5 

Wiehre Herdern Merzhausen Zähringen Stühlinger 

Gabi 2 9 0 8 8 

Malte 2 1 6 0 5 

Tom 0 4 3 0 0 

Patrick 3 7 0 11 5 

Robert 3 0 2 1 1 

Step 2: Column reduction 

Step 1: Row reduction 

Example Problem II:  
5 drivers can pick-up 
passengers from 6 areas at 
different costs 



Wiehre Herdern Merzhausen Zähringen Stühlinger 

Gabi 2 9 0 8 8 

Malte 2 1 6 0 5 

Tom 0 4 3 0 0 

Patrick 3 7 0 11 5 

Robert 3 0 2 1 1 

Hungarian Method 
Example II 

Step 3 (a): Zero row 
assignment: 

Step 3 (b): Zero column 
assignment: 

Wiehre Herdern Merzhausen Zähringen Stühlinger 

Gabi 2 9 0 8 8 

Malte 2 1 6 0 5 

Tom 0 4 3 0 0 

Patrick 3 7 0 11 5 

Robert 3 0 2 1 1 

Now all the zeros are either assigned or crossed out, but the total number assigned zero’s<n (4<5). 
Therefore, we have to follow step 5 as follows: 

Result: 



Hungarian Method 
Example II 

Wiehre Herdern Merzhausen Zähringen Stühlinger 

Gabi 2 9 0 8 8 

Malte 2 1 6 0 5 

Tom 0 4 3 0 0 

Patrick 3 7 0 11 5 

Robert 3 0 2 1 1 

Step 4: Draw the 
minimum number 
of lines to cover all 
zero’s 

Step 5: The smallest element among 
the uncovered ones is 2 then 
(a)  subtract 2 from all uncovered 

elements 
(b)  add 2 to the entries at the 

junction of two lines 

Wiehre Herdern Merzhausen Zähringen Stühlinger 

Gabi 0 7 0 6 6 

Malte 2 1 8 0 5 

Tom 0 4 5 0 0 

Patrick 1 5 0 9 3 

Robert 3 0 4 1 1 

Wiehre Herdern Merzhausen Zähringen Stühlinger 

Gabi 0 7 0 6 6 

Malte 2 1 8 0 5 

Tom 0 4 5 0 0 

Patrick 1 5 0 9 3 

Robert 3 0 4 1 1 

Repeat Step 3: Finally we have got 
five assignments: 
Gabi Wiehre, Malte  Zähringen, 
Tom  Stühlinger, Patrick  
Merzhausen, Robert  Herdern 



Distributed Constraint Optimization 
(DCOP or DisCOP) 

•  The Distributed Constraint Optimization (DCOP) is a general 
model for distributed problem solving  

•  DCOPs are composed of agents, each holding one or more 
variables  
–  Each variable has a domain of possible value assignments  

•  Constraints among variables (possibly held by different 
agents) assign costs to combinations of value assignments  

•  Agents assign values to their variables and communicate 
with each other, attempting to generate a solution that is 
globally optimal with respect to the sum of the costs of the 
constraints 

“How do a set of agents optimize over a set of alternatives that 
have varying degrees of global quality?” 



Distributed Constraint Optimization 
(DCOP or DisCOP) 

•  Examples 
–  allocating agents to targets:  

•  Assign agents (i.e., fire fighters) to targets (i.e., fires) such 
that the adequate number of agents is allocated to each 
target 

–  meeting scheduling:  
•  arrange a set of meetings with varying participants 

such that no two meetings involving the same person 
are scheduled at the same time, while respecting order 
and deadline constraints  

•  Difficulties 
–  No global control/knowledge 
–  Localized communication 
–  Limited time 



Distributed Constraint Optimization 
(DCOP or DisCOP)   
•  Why distributed? 

–  Cost of formalization:  
•  when problem solving is centralized, each participant will have to formulate its 

constraints on all imaginable options beforehand. 
•  in contrast, when using open constraint satisfaction, agents are asked to 

evaluate only a minimal number of constraints.  

–  Privacy issues: 
•  in a meeting scheduling scenario, the fact that person A is also meeting with 

person B may be private information that A wants to keep from another 
person C. When problem solution is centralized, the solver will see all 
meetings and constraints that can easily be leaked or stolen. 

•  In contrast, a distributed solution can be constructed in such a way that 
agents only reveal information piecemeal when evaluating constraints. 

–  Robustness:  
•  a centralized solver creates a central point of failure that leads to brittleness 

of the entire system.  
•  When solving is distributed among different agents, it allows load balancing 

and redundant and thus fault-tolerant and more efficient computation among 
different agents, leading to more reliable systems.  



Constraint Optimization Problem (COP) 
Problem Formulation 
A COP is a tuple               such that: 

•                         is a set of variables (e.g. start times of meetings) 

•                       is a set of discrete, finite variable domains (e.g. time 
slots) 

•                     is a set of utility functions, where each    is a function 
with the scope    

 assigning a utility (reward) to each possible combination of values 

•  Special case hard constraints: They forbid certain value 
combinations by assigning 0 to feasible and –inf to infeasible once 

•  Goal is to find instantiation X* maximizing the sum of utilities of 
individual utility functions: 

€ 

X,D,R

€ 

X = X1,...,Xn{ }

€ 

D = d1,...,dn{ }

€ 

R = r1,...,rn{ }

€ 

ri

€ 

Xi1
,...,Xik( ),ri :di1 × ...× dik →ℜ

€ 

X* = argmax
X

ri X( )
ri∈R
∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 



Distributed COP (DCOP) 
Problem Formulation 

A DCOP is a tuple                   such that: 

•                      is a set of agents (e.g. people participating in 
meetings) 

•                                   is a set of disjoint centralized COPs, 
where each COPi is the local sub-problem controlled by agent 
Ai  

•                     is a set of inter-agent utility functions defined 
over variables from several different sub problems COPi. 
Each                         expresses the reward obtained by the 
involved agents for some joint decision. Hard constraints are 
simulated by assigning 0 to feasible and –inf to infeasible 
once  

€ 

A,COP,R ia

€ 

A = A1,...,Ak{ }

€ 

COP = COP1,...,COPk{ }

€ 

R ia = r1,...,rn{ }

€ 

ri : scope ri( )→ℜ



DCOP Example Applications 
Distributed Meeting Scheduling 

The Meeting Schedule Problem (MSP) is defined by the tuple                        
                        such that: 

is a set of agents. 

is a set of meetings. 

is a set of mappings from agents to meetings: 
each               is the set of meetings      attends. 

is a set of utility functions; a function                        
expressed by agent Ai represents Ai’s utility for 
each possible schedule of its meetings.  

is a set of time slots; each meeting can 
be hold within one available slot. 

Goal: To find schedule that is feasible (i.e. two meetings sharing an agent must not 
overlap) and maximizes the sum of agents’ utilities. Note the MSP is NP-hard. 

€ 

A,M,P,T,C,R

€ 

A = A1,...,Ak{ }

€ 

M = M1,...,Mn{ }

€ 

P = p1,..., pk{ }

€ 

pi ⊆M

€ 

Ai

€ 

T = t1,...,tn{ }

€ 

R = r1,...,rk{ }

€ 

ri : pi →ℜ



DCOP Example Applications 
Distributed Meeting Scheduling 

Example: Three agents want to find optimal schedule for three 
meetings:                                                                     

                        ,                             ,                       . 

There are 3 possible time slots: 8AM, 9AM, and 10AM. Each agent has  

A local scheduling problem COPi composed of: 

•  Variables            : one variable for each meeting Ai wants to 
participate 

•  Domains: the time slots 8AM, 9AM, and 10AM 

•  Hard constrains: No two meetings of Ai may overlap  

•  Utility functions: Ai’s preferences 

€ 

A1 : M1,M 3{ }

€ 

A2 : M1,M 2,M 3{ }

€ 

A3 : M 2,M 3{ }

€ 

Ai _M j



DCOP Example Applications 
Distributed Meeting Scheduling 

ci: inter-agent constraints with ci=0 for combinations assigning the same values 
to variables and –inf for different assignments 



DCOP Example Applications 
Distributed Resource Allocation 

•  Distributed sensor allocation problem (SAP) consists of: 
–  a sensor field composed of n sensors: S = {s1, s2, ..., sn} 
–  m targets that need to be tracked: T = {t1, t2, ..., tm} 
–  each sensor has a certain “range” (the maximum distance that it 

can cover)  
–  in order to successfully track a target, 3 sensors have to be 

assigned to that target (triangulation can be applied using the 
data coming from those 3 sensors)  

•  The following restrictions apply: 
–  Any sensor can only track one target at a time 
–  the sensors in the field can communicate among themselves, 

but not necessarily every sensor with every other sensor (the 
sensor connectivity graph is not fully connected). The 3 sensors 
tracking a given target must be able to communicate among 
themselves 



DCOP Example Applications 
Distributed Resource Allocation 

•  We assign one agent for each target with 3 variables, one for 
each required sensor   
–  Example:  

•  Agent Ai assigned for target Ti has 3 variables               representing 
the sensors that have to be assigned to track the target 

•  The domain of each variable consists of the sensors that can see the 
target 

•  Constraints:  
–  Intra-agent:  

•  one agent (target) must have 3 different sensors tracking it  
•  there must be a communication link between the sensors 

–  Inter-agent: 
•  No two variables            from any two agents Ai and Aj can be 

assigned to the same value, i.e., one sensor can track only a single 
target.  

€ 

s1
i , s2

i , s3
i

€ 

sk
i , sl

j



DCOP Example Applications 
Distributed Resource Allocation 

T1 

T2 

T3 

T4 

Sensors 

T4 Targets 



DCOP Solvers 

•  Synchronous Branch and Bound (SynchB&B) 
–  Hirayama and Yokoo 1997 

–  distributed version of the centralized Branch and Bound algorithm 

•  ADOPT (Modi, Shen, Tambe, and Yokoo 2005) 
–  Uses pseudo-tree derived from the structure of the constraints network in order to 

improve the process of acquiring a solution for the search problem.  

–  Asynchronous search algorithm in which assignments are passed down the 
pseudo-tree. Agents compute upper and lower bounds for possible assignments 
and send costs which are eventually accumulated by the root agent up to their 
parents in the pseudo-tree. 

•  DSA (Zhang, Wang, Xing Wittenburg 2005) 
–  Synchronous Stochastic Assignment 

•  DPOP (Petcu & Faltings 2005) 
–  In DPOP, each agent receives from the agents which are its sons in the pseudo-

tree all the combinations of partial solutions in their sub-tree and their 
corresponding costs.  

–  The agent generates all possible partial solutions including the partial solutions it 
received from its sons and its own assignments 

–  Once the root agent receives all the information from its sons, it produces the 
optimal solution and propagates it down the pseudo-tree to the rest of the agents.  



Synchronous Branch and Bound (SBB) 
Introduction 

•  Simulates the BB technique for CSPs in a distributed environment 

•  Starts with a fixed agent ordering, e.g., by agent IDs 
–  A0, A1, A2, …, An 

•  Current Partial Assignment (CPA) is exchanged as a token among 
the agents according to the ordering until a solution is found 

–  Synchronous and sequential processing! 

–  Only the agent holding the CPA message may perform computation 

•  Pro: 
–  Complete solution 

•  Drawbacks: 
–  Slow since agents only perform computations when they hold the CPA 

–  Most of the time other agents are idle 



Synchronous Branch and Bound (SBB) 
Algorithm 

•  The CPA starts at the first agent, which assigns its first value to it and sends it to the 
second agent 

•  Each agent that receives the CPA extends it by writing on it a value assignment to its 
variable, as well as the cost it incurred because of constraints with other assignments 
appearing in the received CPA 

•  Whenever the CPA reaches a new full assignment at the last agent, the accumulated 
cost of the CPA is the cost of that full assignment  

–  If this cost is smaller than the known upper bound, it is broadcast to all agents as the new upper 
bound 

•  Each agent holding the CPA checks whether the CPA’s accumulated cost is smaller than 
the upper bound.  

–  If this is false, it assigns the next value in its domain instead of the current value and checks 
again  

•  An agent encountering an empty domain of values erases its assignment (and its cost) 
and sends the CPA back to the previous agent (backtracking) 

•  When the domain of the first agent is exhausted, the last discovered full assignment is 
reported as the solution (this requires remembering what that assignment was, which 
can be done by the last agent). 



Synchronous Branch and Bound (SBB) 
Example 

A1 

A2 

A3 

Cost: 9 Cost: 5 

Cost: 0 
Broadcast 
Upper bound: 0 

Termination since domain of A1 
is exhausted! 

Constraints: 
b/o, o/b  5 
o/o  0 
b/b  2 

A1 A2 
A3 

d1 d2 

A1 

A2 

A3 

Problem: Domain: 

Ordering: 

A1 

A2 

A3 

Cost: 0 

Upper bound: inf 

Cost: 2 

Broadcast 
Upper bound: 6 Cost: 6 

Solution: 



Distributed Stochastic Algorithm (DSA) 
Overview 
•  The DSA algorithm is  

–  synchronous, i.e. each step is executed by all agents at the 
same time (e.g. via a system clock) 

–  uniform, i.e., agents do not require unique IDs 
•  The procedure 

–  starts by assigning random values to variables 
–  tries to reduce the number of violated constraints during each 

step  
•  Pro: 

–  Simplicity 
–  Uniformity, all processes have equal priority for every act, 

i.e., do not need identities to distinguish one another for 
breaking ties. 

–  Efficiency 
•  Drawbacks 

–  Synchronizing messages must be taken into account when 
measuring the overall communication load 



Distributed Stochastic Algorithm (DSA) 
Pseudo Code 

Algorithm Δ>0 C, Δ=0 no C, Δ=0 

DSA-A v with p - - 

DSA-B v with p v with p - 

DSA-C v with p v with p v with p 

DSA-D v v with p - 

DSA-E v v with p v with p 

•  C stands for conflict (yes/no) 
•  Δ is the best possible    
      conflict reduction    
      between 2 steps 
•  v is the value given Δ 
•  p the probability to change the 
current value 
•  Notice when Δ>0 there must 
be a conflict 

Termination: after a defined 
number of steps 



Pseudo-tree Generation 

•  Pseudo-trees allow to split COPs into smaller subproblems 
–  There is a single agent (node) that is placed at the root 
–  Each agent has zero or more children 
–  All agents except the root have a parent 

•  Constraints are only allowed between an agent and its 
ancestors! 
–  If two agents share a constraint, then one of these agents is an 

ancestor of the other 
–  All constraints are either from parent to son (tree edges), or 

from an agent to one of its ancestors (back edges) 

•  Simple solution: Build the depth first search tree (DFS) of 
the constraint graph, i.e., traverse the graph from a start 
node in a DFS manner 
–  There are many possible DFS trees for a given constraint graph 



Pseudo-tree Generation 
Example 

A
1 

A
0 

A
2 

A
3 

A
4 

A
5 

A
6 

A
13 

A
11 

A
12 

A
10 

A
9 

A
8 

A
7 

di dj f(di,dj) 

0 0 1 

0 1 2 

1 0 2 

1 1 0 

Constraint graph 

A
1 

A
0 

A
2 

A
3 

A
4 

A
5 

A
6 

A
13 

A
11 

A
12 

A
10 

A
9 

A
8 

A
7 

Pseudo Tree 

Tree edges 
Back edges 



Distributed Pseudo-tree Optimization 
(DPOP) 

•  Composed of three phases: 
1.  Generation of the pseudo-tree ordering of the agents 

2.  UTIL propagation phase 

3.  VALUE propagation phase 

•  UTIL phase: 
–  Starts from the leaves (e.g. A7 – A12) and propagates UTIL messages up 

the tree only through tree edges  
–  UTIL messages  

•  Considers all direct parent dependencies (from tree & back edges) to compute 
for each value combination of dependent variables the optimal utility 

•  For example: message A6  A2 depends on A2 only, whereas A8  A3 
depends on all combinations of <X3,X1> resulting in the following UTIL 
message:  

Max. Utilities given the 
configuration of the 
parents 



Distributed Pseudo-tree Optimization 
(DPOP) 

•  UTIL phase (cont.): 
–  Each node Ai waits until all UTIL messages from the children are 

received 

–  Ai computes the maximal utility for each of its values given the parent 
dependencies and child messages 

–  Ai memorizes its optimal values corresponding to each value assignment 
of its parents 

•  VALUE phase: 
–  After all UTIL messages arrived at the root node XR, XR computes the 

overall utility corresponding to each of its values and picks the maximal 
one 

–  XR sends downwards its final choice to all children which also are able 
then to pick there optimal value and to send their choice further down 
the tree  



Distributed Pseudo-tree Optimization 
(DPOP) 

P: Parent (tree edge) 
C: Child (tree edge) 
PP: Pseudo Parent (back edge) 
PC: Pseudo Child (back edge) 



Distributed Pseudo-tree Optimization (DPOP) 
Drawbacks 

•  Fully synchronous, i.e., agents must wait 
for all their children to finish their 
computation before they can start to 
compute 

•  The size of the messages in DPOP can 
become be exponentially large 
–  For example, in a fully connected 

problem, a pseudo-tree would be a chain, 
and if there are 10 agents, then the UTIL 
message from the leaf agent to its parent 
would include its cost for each 
assignment combination of the other nine 
agents. If the domains are of size 10, 
then this message contains at least 109 
such values!  



DCOP Performance Metrics 

•  In general, computation time and communication load are of 
interest! How to determine the right metric? 
–  Counting Cycles of computation on each agent? 
–  Big-O notation? 
–  Counting the number of exchanged messages or the total 

amount of information sent? 

•  Non-Concurrent Constraint Checks (NCCCs) 
–  Every agent holds a counter of constraint checks performed 
–  Every message carries the value of the sending agent’s counter 
–  When an agent receives a message it updates its counter to the 

largest value between its own counter and the counter value 
carried by the message 

–  After termination the largest counter held by some agent is 
reported as the cost of the search 



DCOP Performance Metrics 
Example: Testing complete methods 

Problem Complexity 

NCCCs 



Links 

http://liawww.epfl.ch/frodo/ 
Frodo - An Open-Source Framework for DCOP: 

Freiburg DCOP Benchmarking: 

http://kaspar.informatik.uni-
freiburg.de/~rslb 



Summary 

•  The assignment problem is fundamental in many real-
world domains 

•  In general the assignment problem can be solved by 
distributed and centralized methods 

•  We discussed the Hungarian method, a centralized 
approach 
•  The Hungarian method computes an optimal 

assignment in O(n3) running time 
•  Distributed Constraint Optimization (DCOP) offers a rich 

set of algorithms for solving the assignment problem 
decentralized 
•  Here we distinguish between complete and 

incomplete methods 
•  Complete methods, such as SyncBB and DPOP, 

typically do not scale-up with large agent teams 
•  In contrast, we discussed DSA an efficient stochastic 

algorithm  
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