
4.  Search Algorithms and Path-
finding

Robot Motion Planning & Multi-Robot
Planning

 Alexander Kleiner, Bernhard Nebel

Introduction to Multi-Agent
Programming

Contents

•  Robot Motion Planning
–  Visibility Graphs
– Grid-based Planning
–  Sampling-based Planning

•  Multi-Robot Planning
– Decoupled Techniques

Literature

Planning Algorithms

By Steven M. LaValle

Available for downloading at: http://planning.cs.uiuc.edu/

Illustrations and content presented in this lecture where
taken from:

Artificial Intelligence – A Modern Approach, 2nd Edition

by Stuart Russell - Peter Norvig

Robot Motion Planning
Introduction

A motion computed by a planning algorithm, for a digital actor to reach into a refrigerator

A planning algorithm computes the motions of 100
digital actors moving across terrain with obstacles

An application of
motion planning to
the sealing process in
automotive
manufacturing

Robot Motion Planning
Introduction

Several mobile robots attempt to successfully navigate
in an indoor environment while avoiding collisions with
the walls and each other

Using mobile robots to move a piano

Obstacle region

Robot configuration

Suppose world or

Robot Motion Planning
Problem Formulation

The configuration space
is the space containing all possible
configurations of the robot

Rigid robot

Obstacle region is defined by:

Which is the set of all configurations q at which
A(q), the transformed robot, intersects

The free space is defined by:

Robot Motion Planning
Problem / Solution Concepts

Problem: Find continuous path

With and

•  Requirements
–  Shortest path
–  Minimal execution time (requiring a good fit with the motion model, least amount of

rotations, etc.)
–  Maximal distance to obstacles (needed in dynamic environments, and when

sensors are unreliable)
•  Many solution concepts:

1.  Potential Fields (more details in a later lecture)
2.  Visibility Graphs
3.  Grid-based Planning
4.  Sampling-based Planning

Robot Motion Planning
Visibility Graphs

•  Approximation of obstacles as polygons

•  Visibility Graph S: Build graph S=(V,G),
–  where V is the set of all vertices from the corners of polygon obstacles

–  and E the set of all visible connections between them

•  Planning with discrete methods (e.g. A*)

•  Simplification at RoboCup Soccer: Every obstacle is considered as a circle!
 Edges are constructed from circle tangents

•  Advantage: Depends only on number of obstacles

•  Disadvantages: (1) Paths very close to obstacles (2) How to get good polygons?

G

G

S

S

Visibility Graphs
Example

Path very close to other robots

Robot Motion Planning
Grid-based Planning

•  Planning on a subdivision of Cfree into
smaller cells

•  Simplification: grow borders of obstacles up
to the diameter of the robot, e.g., by
Gaussian blur

•  Construction of graph G=(V,E), where V is
the set of cells and E represents their
neighbor-relations

•  Planning with discrete methods (e.g. A*)

–  Resulting path is a sequence of cells

•  Hierarchical planning: find path on coarse
resolution and re-plan on more fine grained
resolutions

•  Disadvantage:

–  Memory usage grows with the size of the
environment

–  Fails in narrow passages of Cfree

•  Advantage: No polygons!

Grid-based Planning
Example

Better: path sufficiently far from other !

Robot Motion Planning
Sampling-based Motion Planning

•  Basic Idea: To avoid explicit
construction of Cobs

•  Instead: probe Cfree with a sampling
scheme

•  Builds a graph G=(V,E) by
connecting sampled locations
–  each e ∊ E has to be collision free!
–  on G a solution can be found by

discrete search methods (e.g. A*)

•  Critical part: Random Sampling

•  Time consuming part: Collision
Checks

Sampling without obstacles

Sampling with obstacles

Sampling-based Motion Planning
General Procedure

1.  Initialization:

–  Let G=(V,E) be an undirected search graph with (qstart, qgoal) ∊ V, E =∅

2.  Vertex Selection Method (VSM):
–  Select a vertex qcurr ∊ V for expansion

3.  Local Planning Method (LPM):
–  Select any qnew∊ Cfree by sampling

–  Find a path τs :[0:1] ➝ Cfree such that τ(0)= qcurr and τ(1)=qnew

–  τs must be collision free, if not, go to 2)

4.  Insert new Vertex & Edge in the Graph:
–  Insert qnew to V

–  Insert edge between qcurr and qnew

5.  Check for a Solution:
–  Check if there is a valid path on G from qstart to qgoal, if yes: terminate

6.  Return to step 2) until any termination criterion is met

Sampling-based Motion Planning
Difficulties

Multi-
resolution
search
required to
quickly
overcome
cavities

Bidirectional
search
needed in
some cases

Sometimes
even multi-
dimensional
search
needed

Hard to
solve even
with multi-
dimensional
search

Sampling-based Motion Planning
Random Sampling / Deterministic Sampling

•  A Sampling sequence should reach every point in C! However, C is
uncountably infinite …

•  In practice, sampling has to terminate early. Hence the sequence of
sampling matters!

•  Dense Sequence: A sequence getting with increasing size arbitrarily close to
every element in C

•  Random sampling:
–  Suppose C=[0,1] and I ⊂ C is an interval of length e. If k samples are chosen independently at

random, the probability that none of them falls into I is (1−e)k. As k approaches infinity, this
probability converges to zero. This means random sampling is probably dense.

•  Deterministic sampling:
–  Suppose C=[0,1] and we want to place 16 samples

–  Simple approach:
•  Select the set S={i/16 | 0<i<16} so that all samples are evenly distributed

–  What if we want to make S into a sequence? What is the best ordering? What if 16
points are not enough, i.e., are not reaching every interesting point in C?

–  Problem with “sorting by increasing value”: after i=8 half of C has been neglected!
It would be preferable to have a nice covering of C for every i

Sampling-based Motion Planning
The Van der Corput sequence

•  Idea: to reverse the order of the bits, when the sequence is
represented with binary decimals

•  By reversing the bits, the most significant bit toggles in every step,
which means that the sequence alternates between the lower and
upper halves of C

Sequence for i<=16

Note: Both method can
also be applied for
C⊆ℜm by sampling
each dimension
independently

Sampling-based Motion Planning
Rapidly Exploring Dense Trees (RDTs)

•  Requires a dense sequence α(i)
•  Let S(G) be the set of all points
 reached by G (either vertices or
 edges)
•  Connects iteratively edges from α(i)
 to those nearest in G

Basic algorithm for RDTs
(without obstacles):

q0

qnear

α(i)

q0

qnear

α(i)

Case 1: Nearest point is a vertex

Case 2: Nearest point is on an edge

Result:

Sampling-based Motion Planning
Rapidly Exploring Dense Trees (RDTs)
Basic algorithm for RDTs (with
obstacles):

•  STOPPING-CONFIGURATION()
returns the nearest configuration
possible in Cfree

q0

qnear

α(i) Cobs
qs

Bug trap video on YouTube

http://www.youtube.com/watch?v=qci_AktcrD4

Multi Robot Planning
Problem

•  So far, we considered problems with single
agents in static environments

•  When multiple robots plan and navigate at the
same time, robot-robot collisions might occur

•  Obvious solution: To use a central planner that
plans trajectories for all robots simultaneously

Multi Robot Planning
Problem Formulation

3. Each robot Ai has both initial and goal configuration ,

2. There are m robots:

A state specifies a combination of all robot configurations
and my be expressed as:

The dimension of X is N, which is:

4. The state space considers configuration of all robots simultaneously:

C is he configuration
space

1. World and obstacle region

Multi Robot Planning
Problem Formulation

Obstacle region 2: robot-robot:

Obstacle region 1: robot-obstacle (walls, etc.);

Entire obstacle region:

5. Initial state: with

6. Goal state: with

7. Compute such that ,

Multi Robot Planning
Complexity

•  X can be considered as an ordinary C space (and
all the methods we learned can be applied)
–  However, the dimension of X grows linearly with the

number of robots!
–  Complete planning algorithms require time that is at least

exponential in the dimension of X!
–  Sample-based methods are more likely to scale well in

practice when there many robots, but the dimension of X
might still be too high

Decoupled planning

•  Decoupled approaches
–  search first for motion plans for each single robot while ignoring plans of

other robots

–  Solve then occurring conflicts by different strategies, e.g., stop, drive
back, driver slower, …

•  Prioritized Planning:
–  Straightforward approach that sorts robots by priority and plans for

higher priority robots first

–  Lower priority robots plan by viewing the higher priority robots as
obstacles (but in time-space!)

•  Incomplete: Planning can fail to find a valid multi-robot path
although there exists one!

If A1 ignores the plan of A2, then completeness is
lost when using the prioritized planning

approach.

G

Start R1

Start R2

1
1

Planning in time-space Only when c=2 conflict

3

4
2

1 c

Prioritized Planning
Optimizing priority schemes

•  Idea: to interleave the
search for collision-free
paths with the search for a
solvable priority scheme

•  Randomized hill-climbing
search

•  Randomly flips priorities of
two robots (max_flips)

•  Performs random restarts to
avoid local minima
(max_tries)

•  Any-time algorithm!

•  Can also be implemented as
a Genetic Algorithm

for tries := 1 to MAX_TRIES do

 select random order Π
 if (tries = 1) then

 Π*:=Π
 for flips := 1 to MAX_FLIPS do

 chose random i,j with i<j

 Π’:= swap(i,j,Π)
 If cost(Π’) < cost(Π)then
 Π:=Π’
 end for;
 If cost(Π) < cost(Π*)then
 Π*:=Π

end for;

return Π*

M. Benewitz et al.2001

Prioritized Planning
Performance of prioritized schemes

Robot start nodes

Goal nodes

Multi-robot plan

Conflicts vs. # of robots: Greedy (red), optimizing priorities (green)

Map 1 Map 2 Map 3

Greedy
Priorities: The
shorter the path
the higher the
priority

Multi-Robot Path Planning
Road-Map based approaches

•  Automatic generation of road maps (offline)
•  A road map consists of streets and street crossings
•  On lanes vehicles drive in convoys
•  Robots are coordinated at street crossings, otherwise

convoy driving

– Right before left
– Robot priorities according to cargo
–  Etc.

•  Automatic generation by computing Voronoi diagrams
•  Street merging by Linear Programming (LP)
•  Complete solution (but suboptimal in terms of distance)

Automatic Road Map Generation
Input: Grid Map

Automatic Road Map Generation
Voronoi Graph: Automatic Detection of drivable areas

Automatic Road Map Generation
Constraint solver: Generating the road map

Automatic Road Map Generation
Final Result: Road map with lanes & crossings

Summary

•  Sampling-based Planning methods are well
suited for Robot Motion Planning

•  To find complete solutions in multi-Robot
Planning is generally intractable

•  However, solutions sufficient for many problem
domains can be found by decoupled techniques

•  Complete solutions can be found by Road-Map
planners

