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Problem-Solving Agents 

  Goal-based agents 

Formulation: goal and problem 

Given: initial state 

Task: To reach the specified goal (a state) 
through the execution of appropriate 
actions. 

 Search for a suitable action sequence and 
execute the actions 



Problem Formulation 

•  Goal formulation 
World states with certain properties 

•  Definition of the state space 
important: only the relevant aspects  abstraction 

•  Definition of the actions that can change the world 
state 

•  Determination of the search cost (search costs, offline 
costs) and the execution costs (path costs, online 
costs) 

Note: The type of problem formulation can have a 
big influence on the difficulty of finding a solution. 



Problem Formulation for the Vacuum 
Cleaner World 

•  World state space:        
2 positions, dirt or no dirt 
   8 world states 

•  Successor function 
(Actions):                    
Left (L), Right (R), or Suck (S) 

•  Goal state:       
no dirt in the rooms 

•  Path costs:      
one unit per action 



The Vacuum Cleaner State Space 

States for the search: The world states 1-8. 



Implementing the Search Tree 

Data structure for nodes in the search tree: 

State: state in the state space 

Node: Containing a state, pointer to predecessor, depth, and path cost, action 

Depth: number of steps along the path from the initial state 

Path Cost: Cost of the path from the initial state to the node 

Fringe: Memory for storing expanded nodes. For example, stack or a queue 

General functions to implement: 

Make-Node(state): Creates a node from a state 

Goal-Test(state): Returns true if state is a goal state 

Successor-Fn(state): Implements the successor function, i.e. expands a set of 
new nodes given all actions applicable in the state 

Cost(state,action): Returns the cost for executing action in state  

Insert(node, fringe): Inserts a new node into the fringe  

Remove-First(fringe): Returns the first node from the fringe 



General Tree-Search Procedure 

Make-
Node 



Search Strategies 

Uninformed or blind searches:  

No information on the length or cost of a path to 
the solution. 

• breadth-first search, uniform cost search, 
depth-first search, 

• depth-limited search, Iterative deepening 
search,  and 

• bi-directional search 

In contrast: informed or heuristic approaches 



Criteria for Search Strategies 

Completeness:  

Is the strategy guaranteed to find a solution when there is 
one? 

Time Complexity:  

How long does it take to find a solution? 

Space Complexity:  

How much memory does the search require? 

Optimality:  

Does the strategy find the best solution (with the lowest 
path cost)? 



Breadth-First Search (1) 

Nodes are expanded in the order they were 
produced . fringe = Enqueue-at-end() (FIFO). 

•  Always finds the shallowest goal state first. 

•  Completeness. 

•  The solution is optimal, provided the path cost is a non-
decreasing function of the depth of the node (e.g., when 
every action has identical, non-negative costs). 



Breadth-First Search (2) 

The costs, however, are very high. Let b be the maximal 
branching factor and d the depth of a solution path. Then the 
maximal number of nodes expanded is 

b + b2 + b3 + … + bd + (bd+1 – b) ∈ O(bd+1)  

Example: b = 10, 10,000 nodes/second, 1,000 bytes/node: 

Depth Nodes Time Memory 

2 1,100 .11 seconds 1 megabyte 

4 111,100 11 seconds 106 megabytes 

6 107 19 minutes 10 gigabytes 

8 109 31 hours 1 terabyte 

10 1011 129 days 101 terabytes 

12 1013 35 years 10 petabytes 

14 1015 3,523 years 1 exabyte 

Note: One could easily perform the goal test BEFORE expansion, then 
the time & space complexity reduces to O(bd) 



Bidirectional Search 

As long as forwards and backwards searches are 
symmetric, search times of O(2·bd/2) = O(bd/2) can be 
obtained. 

E.g., for b=10, d=6, instead of 111111 only 2222 nodes! 



Problems With Repeated States 

•  Tree search ignores what happens if nodes are repeatedly visited 
–  For example, if actions lead back to already visited states 
–  Consider path planning on a grid 

•  Repeated states may lead to a large (exponential) overhead 

•  (a) State space with d+1 states, were d is the depth 
•  (b) The corresponding search tree which has 2d nodes  

      corresponding to the two possible paths! 
•  (c) Possible paths leading to A 



Graph Search 

•  Add a closed list to the tree search algorithm 
•  Ignore newly expanded state if already in 

closed list 
•  Closed list can be implemented as hash table 
•  Potential problems 

– Needs a lot of memory 
– Can ignore better solutions if a node is visited 

first on a suboptimal path (e.g. IDS is not 
optimal anymore) 



Best-First Search 

Search procedures differ in the way they determine the 
next node to expand. 

Uninformed Search: Rigid procedure with no 
knowledge of the cost of a given node to the goal. 

Informed Search: Knowledge of the cost of a given 
node to the goal is in the form of an evaluation function 
f or h, which assigns a real number to each node. 

Best-First Search: Search procedure that expands the 
node with the “best” f- or h-value. 



General Algorithm 

When h is always correct, we do not need to search! 



Greedy Search 

A possible way to judge the “worth” of a node is to estimate its 
distance to the goal. 

h(n) = estimated distance from n to the goal 

The only real condition is that h(n) = 0 if n is a goal. 

A best-first search with this function is called a greedy search. 

The evaluation function h in greedy searches is also called a 
heuristic function or simply a heuristic. 

In all cases, the heuristic is problem-specific and focuses the 
search! 

Route-finding problem: h = straight-line distance between two 
locations. 



Greedy Search Example 



Greedy Search from Arad to Bucharest 

However: AradSibiuFagrarasBucharest = 450 
        AradSibiuRimnicuPitestiBucharest = 418 ! 



A*: Minimization of the estimated 
path costs 

A* combines the greedy search with the uniform-cost-
search, i.e. taking costs into account. 

g(n) = actual cost from the initial state to n. 

h(n) = estimated cost from n to the next goal. 

f(n) = g(n) + h(n), the estimated cost of the cheapest 
solution through n. 

Let h*(n) be the true cost of the optimal path from n to 
the next goal. 

h is admissible if the following holds for all n : 

h(n) ≤ h*(n) 

We require that for optimality of A*, h is admissible 
(straight-line distance is admissible). 



A* Search Example 



A* Search from Arad to Bucharest 

f=220+193 

=413 



Heuristic Function Example 

h1 =  the number of tiles in the wrong position 
h2 =  the sum of the distances of the tiles from their goal 

 positions (Manhatten distance) 



Empirical Evaluation 
•  d = distance from goal 
•  Average over 100 instances 
•  IDS: Iterative Deepening Search (the best you can do without 

any heuristic) 
# nodes expanded 



A* Implementation Details 

•  How to code A* efficiently? 
•  Costly operations are: 

–  Insert & lookup an element in the closed list 
–  Insert element & get minimal element (f-value) from open 

list 
•  The closed list can efficiently be implemented as a hash 

set 
•  The open list is typically implemented as a priority 

queue, e.g. as 
–  Fibonacci heap, binomial heap, k-level bucket, etc. 
–  binary-heap with O(log n) is normally sufficient 

•  Hint: see priority queue implementation in the “Java 
Collection Framework” 



Online search   

•  Intelligent agents usually don‘t know the state 
space (e.g. street map) exactly in advance 
–  Environment can dynamically change! 
–  True travel costs are experienced during 

execution 
•  Planning and plan execution are interleaved 
•  Example: RoboCup Rescue  

–  The map is known, but roads might be blocked 
from building collapses 

–  Limited drivability of roads depending on traffic 
volume 

•  Important issue: How to reduce computational 
cost of repeated A* searches! 



Online search 

•  Incremental heuristic search 
–  Repeated planning of the complete path from current state to goal 
–  Planning under the free-space assumption 
–  Reuse information from previous planning episodes:  

•  Focused Dynamic A* (D*) [Stenz95] 
–  Used by DARPA and NASA 

•  D* Lite [Koenig et al. 02] 
–  Similar as D* but a bit easier to implement (claim) 

–  In particular, these methods reuse closed list entries from previous 
searches 

–  All Entries that have been compromised by updates (from observation) 
are adjusted accordingly 

•  Real-Time Heuristic search 
–  Repeated planning with limited look-ahead (agent centered search) 
–  Solutions can be suboptimal but faster to compute 
–  Update of heuristic values of visited states  

•  Learning Real-Time A* (LRTA*) [Korf90] 
•  Real-Time Adaptive A* (RTAA*) [Koenig06] 



Real-Time Adaptive A* (RTAA*) 

•  Executes A* plan with 
limited look-ahead 

•  Learns better informed 
heuristic H(s) from 
experience (initially h(s), 
e.g. Euclidian distance) 

•  Look-ahead defines trade-
off between optimality and 
computational cost  

•  astar(lookahead) 
–  A* expansion as far as 

“lookahead” cells and 
terminates with state s’   

while (scurr ∉ GOAL) 

 astar(lookahead); 

 if (s’ = FAILURE) then 

  return FAILURE; 

 for all s ∈ CLOSED do 

  H(s) := g(s’)+h(s’)-g(s); 

 end; 

 execute(plan); //do one step 

 end; 

return SUCCESS; 

s‘: last state expanded during 
previous A* search 



Real-Time Adaptive A* (RTAA*) 
Example 

G S 

s‘ 

s 

After first A* planning with 
look-ahead until s’: 

g(s‘)=7, h(s‘)=6, f(s‘)=13 

g(s)=2, h(s)=3  

Update of each element in  
CLOSED list, e.g.: 

    H(s) = g(s‘) + h(s‘) – g(s)  

    H(s) = 7 + 6 - 2 = 11 



Real-Time Adaptive A* (RTAA*) 
A* vs. RTAA* 

A* expansion 

RTAA* expansion (inf. Lookahead) 

3       8 

5        5 

h(s) 

g(s) f(s) 

H(s) 



Case Study: ResQ Freiburg path planner 
Requirements 

•  Rescue domain has some special features: 
–  Interleaving between planning and execution is within 

large time cycles 
–  Roads can be merged into “longroads” 

•  Planner is not used only for path finding, also for 
supporting  task assignment 
–  For example, prefer high utility goals with low path costs 
–  Hence, planner is frequently called for different goals 

•  Our decision:  
–  Dijkstra graph expansion on longroads 
–  Collisions are “reduced” by treating other agents on edges 

as obstacles (no complete solution) 



Case Study: ResQ Freiburg path planner 
Longroads 

•  RoboCup Rescue maps consist of buildings, nodes, 
and roads  
–  Buildings are directly connected to nodes  
–  Roads are inter-connected by crossings 

•  For efficient path planning, one can extract a graph of 
longroads that basically consists of road segments 
that are connected by crossings 

Longroad 



Case Study: ResQ Freiburg path planner 
Approach 

•  Reduction of street network to longroad network 
•  Caching of planning queries (useful if same queries are 

repeated) 
•  Each agent computes two Dijkstra graphs, one for each 

nearby longroad node 
•  Selection of optimal path by considering all 4 possible 

plans 
•  Dijkstra graphs are recomputed after each perception 

update (either via direct sensing or communication) 
•  Additional features: 

–  Parameter for favoring unknown roads (for exploration) 
–  Two more Dijkstra graphs for sampled time cost (allows 

time prediction) 



Case Study: ResQ Freiburg path planner  
Dijkstra‘s Algorithm (1) 

Single Source Shortest Path, i.e. finds the  
shortest path from a single node to all other  
nodes 

Worst case runtime O(|E| log |V|), assuming  
E>V, where E is the set of edges and V the  
set of vertices 

– Requires efficient priority queue   



Robot Motion Planning 
Introduction 

A motion computed by a planning algorithm, for a digital actor to reach into a refrigerator 

A planning algorithm computes the motions of 100 
digital actors moving across terrain with obstacles 

An application of 
motion planning to 
the sealing process in 
automotive 
manufacturing 



Robot Motion Planning 
Introduction 

Several mobile robots attempt to successfully navigate 
in an indoor environment while avoiding collisions with 
the walls and each other 

Using mobile robots to move a piano 



Obstacle region 

Robot configuration   

Suppose world                     or 

Robot Motion Planning 
Problem Formulation 

The configuration space   
is the space containing all possible 
configurations of the robot 

Rigid robot  

Obstacle region                     is defined by: 

Which is the set of all configurations q at which 
A(q), the transformed robot, intersects  

The free space is defined by: 



Robot Motion Planning 
Problem / Solution Concepts 

Problem: Find continuous path 

With                               and     

•  Requirements 
–  Shortest path 
–  Minimal execution time (requiring a good fit with the motion model, least amount of 

rotations, etc.) 
–  Maximal distance to obstacles (needed in dynamic environments, and when 

sensors are unreliable)  
•  Many solution concepts, generally we have 

1.  Potential Fields (more details in a later lecture) 
2.  Visibility Graphs 
3.  Grid-based Planning 
4.  Sampling-based Planning 



Robot Motion Planning 
Visibility Graphs 

•  Approximation of obstacles as polygons (or 
circles) 

•  Visibility Graph S: Build visibility graph S=
(V,G), where V is the set of all vertices from 
polygon obstacles or circle tangents 

•  Planning with discrete methods (e.g. A*) 

•  Advantage: Depends only on number of 
obstacles only 

•  Disadvantage: Paths very close to obstacles. 
How to get good polygons? 



Robot Motion Planning 
Grid-based Planning 

•  Planning on a subdivision of Cfree into 
smaller cells 

•  Simplification: grow borders of 
obstacles up to the diameter of the 
robot, e.g., by Gaussian blur 

•  Construction of graph G=(V,E), where 
V is the set of cells and E represents 
their neighbor-relations 

•  Planning with discrete methods (e.g. 
A*) 

–  Resulting path is a sequence of cells 

•  Hierarchical planning: find path on 
coarse resolution and re-plan on more 
fine grained resolutions  

•  Disadvantage: Memory usage grows 
with the size of the environment 

•  Advantage: No polygons! 



Robot Motion Planning 
Sampling-based Motion Planning 

•  Basic Idea: To avoid explicit 
construction of Cobs  

•  Instead: probe Cfree with a sampling 
scheme 

•  Builds a graph G=(V,E) by 
connecting sampled locations  
–  each e ∊ E has to be collision free!  
–  on G a solution can be found by 

discrete search methods (e.g. A*) 

•  Critical part: Random Sampling 

•  Time consuming part: Collision 
Checks 

Sampling without obstacles 

Sampling with obstacles 



Sampling-based Motion Planning 
General Procedure 

1.  Initialization:  

–  Let G=(V,E) be an undirected search graph with (qstart, qgoal) ∊ V, E =∅ 

2.  Vertex Selection Method (VSM):  
–  Select a vertex qcurr ∊ V for expansion 

3.  Local Planning Method (LPM): 
–  Select any qnew∊ Cfree by sampling  

–  Find a path τs :[0:1] ➝ Cfree such that τ(0)= qcurr and τ(1)=qnew 

–  τs must be collision free, if not, go to 2) 

4.  Insert new Vertex & Edge in the Graph:  
–  Insert edge between qcurr and qnew 

–  Insert qnew to V 

5.  Check for a Solution: 
–  Check if there is a valid path on G from qstart to qgoal, if yes: terminate 

6.  Return to step 2) until any termination criterion is met 



Sampling-based Motion Planning 
Difficulties 

Multi-
resolution 
search 
required to 
quickly 
overcome 
cavities 

Bidirectional 
search 
needed in 
some cases 

Sometimes 
even multi-
dimensional 
search 
needed 

Hard to 
solve even 
with multi-
dimensional 
search 



Sampling-based Motion Planning 
Random Sampling / Deterministic Sampling 

•  A Sampling sequence should reach every point in C! However, C is 
uncountably infinite … 

•  In practice, sampling has to terminate early. Hence the sequence of 
sampling matters! 

•  Dense Sequence: A sequence getting with increasing size arbitrarily close to 
every element in C 

•  Random sampling:  
–  Suppose C=[0,1] and I ⊂ C is an interval of length e. If k samples are chosen independently at 

random, the probability that none of them falls into I is (1−e)k. As k approaches infinity, this 
probability converges to zero. This means random sampling is probably dense. 

•  Deterministic sampling: 
–  Suppose C=[0,1] and we want to place 16 samples 

–  Simple approach:  
•  Select the set S={i/16 | 0<i<16} so that all samples are evenly distributed 

–  What if we want to make S into a sequence? What is the best ordering? What if 16 
points are not enough, i.e., are not reaching every interesting point in C? 

–  Problem with “sorting by increasing value”: after i=8 half of C has been neglected! 
It would be preferable to have a nice covering of C for every i 



Sampling-based Motion Planning 
The Van der Corput sequence 

•  Idea: to reverse the order of the bits, when the sequence is 
represented with binary decimals  

•  By reversing the bits, the most significant bit toggles in every step, 
which means that the sequence alternates between the lower and 
upper halves of C. 

Sequence for i<=16 

Note: Both method can 
also be applied for 
C⊆ℜm by sampling 
each dimension 
independently 



Sampling-based Motion Planning 
Rapidly Exploring Dense Trees (RDTs) 

•  Let S(G) be the set of all points  
  reached by G (either vertices or  
  edges) 
•  Requires a dense sequence α(i) 
•  Connects iteratively edges from α(i)     
  to those nearest in G 

Basic algorithm for RDTs 
(without obstacles): 

q0 

qnear 

α(i) 

q0 

qnear 

α(i) 

Case 1: Nearest point is a vertex 

Case 2: Nearest point is on an edge 

Result: 



Sampling-based Motion Planning 
Rapidly Exploring Dense Trees (RDTs) 
Basic algorithm for RDTs (with 
obstacles): 

•  STPPING-CONFIGURATION() 
returns the nearest configuration 
possible in Cfree  

q0 

qnear 

α(i) Cobs  
qs 



Bug trap video 
on YouTube 

http://www.youtube.com/watch?v=qci_AktcrD4 



Summary 

•  A problem consists of five parts: The state space, initial 
situation, actions, goal test, and path costs. A path from 
an initial state to a goal state is a solution. 

•  Search algorithms are judged on the basis of 
completeness, optimality, time complexity, and space 
complexity. 

•  Best-first search expands the node with the highest 
worth (defined by any measure) first. 

•  When h(n) is admissible, i.e., h* is never overestimated, 
we obtain the A* search, which is complete and optimal. 

•  Online search provides method that are computationally 
more efficient when planning and plan execution are 
tightly coupled 

•  Sampling-based Planning methods are well suited for 
Robot Motion Planning 
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