
4.  Search Algorithms and Path-
finding

Uninformed & informed search, Online
search, Robot Path Planning

 Alexander Kleiner, Bernhard Nebel

Introduction to Multi-Agent
Programming

Contents

•  Problem-Solving Agents
•  General Search (Uninformed search)
•  Best-First Search (Informed search)

– Greedy Search & A*
•  Online Search

– Real-Time Adaptive A*
•  Robot Path Planning

–  Sampling Based Planning

Literature

Planning Algorithms

By Steven M. LaValle

Available for downloading at: http://planning.cs.uiuc.edu/

Illustrations and content presented in this lecture where
taken from:

Artificial Intelligence – A Modern Approach, 2nd Edition

by Stuart Russell - Peter Norvig

Problem-Solving Agents

  Goal-based agents

Formulation: goal and problem

Given: initial state

Task: To reach the specified goal (a state)
through the execution of appropriate
actions.

 Search for a suitable action sequence and
execute the actions

Problem Formulation

•  Goal formulation
World states with certain properties

•  Definition of the state space
important: only the relevant aspects  abstraction

•  Definition of the actions that can change the world
state

•  Determination of the search cost (search costs, offline
costs) and the execution costs (path costs, online
costs)

Note: The type of problem formulation can have a
big influence on the difficulty of finding a solution.

Problem Formulation for the Vacuum
Cleaner World

•  World state space:
2 positions, dirt or no dirt
  8 world states

•  Successor function
(Actions):
Left (L), Right (R), or Suck (S)

•  Goal state:
no dirt in the rooms

•  Path costs:
one unit per action

The Vacuum Cleaner State Space

States for the search: The world states 1-8.

Implementing the Search Tree

Data structure for nodes in the search tree:

State: state in the state space

Node: Containing a state, pointer to predecessor, depth, and path cost, action

Depth: number of steps along the path from the initial state

Path Cost: Cost of the path from the initial state to the node

Fringe: Memory for storing expanded nodes. For example, stack or a queue

General functions to implement:

Make-Node(state): Creates a node from a state

Goal-Test(state): Returns true if state is a goal state

Successor-Fn(state): Implements the successor function, i.e. expands a set of
new nodes given all actions applicable in the state

Cost(state,action): Returns the cost for executing action in state

Insert(node, fringe): Inserts a new node into the fringe

Remove-First(fringe): Returns the first node from the fringe

General Tree-Search Procedure

Make-
Node

Search Strategies

Uninformed or blind searches:

No information on the length or cost of a path to
the solution.

• breadth-first search, uniform cost search,
depth-first search,

• depth-limited search, Iterative deepening
search, and

• bi-directional search

In contrast: informed or heuristic approaches

Criteria for Search Strategies

Completeness:

Is the strategy guaranteed to find a solution when there is
one?

Time Complexity:

How long does it take to find a solution?

Space Complexity:

How much memory does the search require?

Optimality:

Does the strategy find the best solution (with the lowest
path cost)?

Breadth-First Search (1)

Nodes are expanded in the order they were
produced . fringe = Enqueue-at-end() (FIFO).

•  Always finds the shallowest goal state first.

•  Completeness.

•  The solution is optimal, provided the path cost is a non-
decreasing function of the depth of the node (e.g., when
every action has identical, non-negative costs).

Breadth-First Search (2)

The costs, however, are very high. Let b be the maximal
branching factor and d the depth of a solution path. Then the
maximal number of nodes expanded is

b + b2 + b3 + … + bd + (bd+1 – b) ∈ O(bd+1)

Example: b = 10, 10,000 nodes/second, 1,000 bytes/node:

Depth Nodes Time Memory

2 1,100 .11 seconds 1 megabyte

4 111,100 11 seconds 106 megabytes

6 107 19 minutes 10 gigabytes

8 109 31 hours 1 terabyte

10 1011 129 days 101 terabytes

12 1013 35 years 10 petabytes

14 1015 3,523 years 1 exabyte

Note: One could easily perform the goal test BEFORE expansion, then
the time & space complexity reduces to O(bd)

Bidirectional Search

As long as forwards and backwards searches are
symmetric, search times of O(2·bd/2) = O(bd/2) can be
obtained.

E.g., for b=10, d=6, instead of 111111 only 2222 nodes!

Problems With Repeated States

•  Tree search ignores what happens if nodes are repeatedly visited
–  For example, if actions lead back to already visited states
–  Consider path planning on a grid

•  Repeated states may lead to a large (exponential) overhead

•  (a) State space with d+1 states, were d is the depth
•  (b) The corresponding search tree which has 2d nodes

 corresponding to the two possible paths!
•  (c) Possible paths leading to A

Graph Search

•  Add a closed list to the tree search algorithm
•  Ignore newly expanded state if already in

closed list
•  Closed list can be implemented as hash table
•  Potential problems

– Needs a lot of memory
– Can ignore better solutions if a node is visited

first on a suboptimal path (e.g. IDS is not
optimal anymore)

Best-First Search

Search procedures differ in the way they determine the
next node to expand.

Uninformed Search: Rigid procedure with no
knowledge of the cost of a given node to the goal.

Informed Search: Knowledge of the cost of a given
node to the goal is in the form of an evaluation function
f or h, which assigns a real number to each node.

Best-First Search: Search procedure that expands the
node with the “best” f- or h-value.

General Algorithm

When h is always correct, we do not need to search!

Greedy Search

A possible way to judge the “worth” of a node is to estimate its
distance to the goal.

h(n) = estimated distance from n to the goal

The only real condition is that h(n) = 0 if n is a goal.

A best-first search with this function is called a greedy search.

The evaluation function h in greedy searches is also called a
heuristic function or simply a heuristic.

In all cases, the heuristic is problem-specific and focuses the
search!

Route-finding problem: h = straight-line distance between two
locations.

Greedy Search Example

Greedy Search from Arad to Bucharest

However: AradSibiuFagrarasBucharest = 450
 AradSibiuRimnicuPitestiBucharest = 418 !

A*: Minimization of the estimated
path costs

A* combines the greedy search with the uniform-cost-
search, i.e. taking costs into account.

g(n) = actual cost from the initial state to n.

h(n) = estimated cost from n to the next goal.

f(n) = g(n) + h(n), the estimated cost of the cheapest
solution through n.

Let h*(n) be the true cost of the optimal path from n to
the next goal.

h is admissible if the following holds for all n :

h(n) ≤ h*(n)

We require that for optimality of A*, h is admissible
(straight-line distance is admissible).

A* Search Example

A* Search from Arad to Bucharest

f=220+193

=413

Heuristic Function Example

h1 = the number of tiles in the wrong position
h2 = the sum of the distances of the tiles from their goal

 positions (Manhatten distance)

Empirical Evaluation
•  d = distance from goal
•  Average over 100 instances
•  IDS: Iterative Deepening Search (the best you can do without

any heuristic)
nodes expanded

A* Implementation Details

•  How to code A* efficiently?
•  Costly operations are:

–  Insert & lookup an element in the closed list
–  Insert element & get minimal element (f-value) from open

list
•  The closed list can efficiently be implemented as a hash

set
•  The open list is typically implemented as a priority

queue, e.g. as
–  Fibonacci heap, binomial heap, k-level bucket, etc.
–  binary-heap with O(log n) is normally sufficient

•  Hint: see priority queue implementation in the “Java
Collection Framework”

Online search

•  Intelligent agents usually don‘t know the state
space (e.g. street map) exactly in advance
–  Environment can dynamically change!
–  True travel costs are experienced during

execution
•  Planning and plan execution are interleaved
•  Example: RoboCup Rescue

–  The map is known, but roads might be blocked
from building collapses

–  Limited drivability of roads depending on traffic
volume

•  Important issue: How to reduce computational
cost of repeated A* searches!

Online search

•  Incremental heuristic search
–  Repeated planning of the complete path from current state to goal
–  Planning under the free-space assumption
–  Reuse information from previous planning episodes:

•  Focused Dynamic A* (D*) [Stenz95]
–  Used by DARPA and NASA

•  D* Lite [Koenig et al. 02]
–  Similar as D* but a bit easier to implement (claim)

–  In particular, these methods reuse closed list entries from previous
searches

–  All Entries that have been compromised by updates (from observation)
are adjusted accordingly

•  Real-Time Heuristic search
–  Repeated planning with limited look-ahead (agent centered search)
–  Solutions can be suboptimal but faster to compute
–  Update of heuristic values of visited states

•  Learning Real-Time A* (LRTA*) [Korf90]
•  Real-Time Adaptive A* (RTAA*) [Koenig06]

Real-Time Adaptive A* (RTAA*)

•  Executes A* plan with
limited look-ahead

•  Learns better informed
heuristic H(s) from
experience (initially h(s),
e.g. Euclidian distance)

•  Look-ahead defines trade-
off between optimality and
computational cost

•  astar(lookahead)
–  A* expansion as far as

“lookahead” cells and
terminates with state s’

while (scurr ∉ GOAL)

 astar(lookahead);

 if (s’ = FAILURE) then

 return FAILURE;

 for all s ∈ CLOSED do

 H(s) := g(s’)+h(s’)-g(s);

 end;

 execute(plan); //do one step

 end;

return SUCCESS;

s‘: last state expanded during
previous A* search

Real-Time Adaptive A* (RTAA*)
Example

G S

s‘

s

After first A* planning with
look-ahead until s’:

g(s‘)=7, h(s‘)=6, f(s‘)=13

g(s)=2, h(s)=3

Update of each element in
CLOSED list, e.g.:

 H(s) = g(s‘) + h(s‘) – g(s)

 H(s) = 7 + 6 - 2 = 11

Real-Time Adaptive A* (RTAA*)
A* vs. RTAA*

A* expansion

RTAA* expansion (inf. Lookahead)

3 8

5 5

h(s)

g(s) f(s)

H(s)

Case Study: ResQ Freiburg path planner
Requirements

•  Rescue domain has some special features:
–  Interleaving between planning and execution is within

large time cycles
–  Roads can be merged into “longroads”

•  Planner is not used only for path finding, also for
supporting task assignment
–  For example, prefer high utility goals with low path costs
–  Hence, planner is frequently called for different goals

•  Our decision:
–  Dijkstra graph expansion on longroads
–  Collisions are “reduced” by treating other agents on edges

as obstacles (no complete solution)

Case Study: ResQ Freiburg path planner
Longroads

•  RoboCup Rescue maps consist of buildings, nodes,
and roads
–  Buildings are directly connected to nodes
–  Roads are inter-connected by crossings

•  For efficient path planning, one can extract a graph of
longroads that basically consists of road segments
that are connected by crossings

Longroad

Case Study: ResQ Freiburg path planner
Approach

•  Reduction of street network to longroad network
•  Caching of planning queries (useful if same queries are

repeated)
•  Each agent computes two Dijkstra graphs, one for each

nearby longroad node
•  Selection of optimal path by considering all 4 possible

plans
•  Dijkstra graphs are recomputed after each perception

update (either via direct sensing or communication)
•  Additional features:

–  Parameter for favoring unknown roads (for exploration)
–  Two more Dijkstra graphs for sampled time cost (allows

time prediction)

Case Study: ResQ Freiburg path planner
Dijkstra‘s Algorithm (1)

Single Source Shortest Path, i.e. finds the
shortest path from a single node to all other
nodes

Worst case runtime O(|E| log |V|), assuming
E>V, where E is the set of edges and V the
set of vertices

– Requires efficient priority queue

Robot Motion Planning
Introduction

A motion computed by a planning algorithm, for a digital actor to reach into a refrigerator

A planning algorithm computes the motions of 100
digital actors moving across terrain with obstacles

An application of
motion planning to
the sealing process in
automotive
manufacturing

Robot Motion Planning
Introduction

Several mobile robots attempt to successfully navigate
in an indoor environment while avoiding collisions with
the walls and each other

Using mobile robots to move a piano

Obstacle region

Robot configuration

Suppose world or

Robot Motion Planning
Problem Formulation

The configuration space
is the space containing all possible
configurations of the robot

Rigid robot

Obstacle region is defined by:

Which is the set of all configurations q at which
A(q), the transformed robot, intersects

The free space is defined by:

Robot Motion Planning
Problem / Solution Concepts

Problem: Find continuous path

With and

•  Requirements
–  Shortest path
–  Minimal execution time (requiring a good fit with the motion model, least amount of

rotations, etc.)
–  Maximal distance to obstacles (needed in dynamic environments, and when

sensors are unreliable)
•  Many solution concepts, generally we have

1.  Potential Fields (more details in a later lecture)
2.  Visibility Graphs
3.  Grid-based Planning
4.  Sampling-based Planning

Robot Motion Planning
Visibility Graphs

•  Approximation of obstacles as polygons (or
circles)

•  Visibility Graph S: Build visibility graph S=
(V,G), where V is the set of all vertices from
polygon obstacles or circle tangents

•  Planning with discrete methods (e.g. A*)

•  Advantage: Depends only on number of
obstacles only

•  Disadvantage: Paths very close to obstacles.
How to get good polygons?

Robot Motion Planning
Grid-based Planning

•  Planning on a subdivision of Cfree into
smaller cells

•  Simplification: grow borders of
obstacles up to the diameter of the
robot, e.g., by Gaussian blur

•  Construction of graph G=(V,E), where
V is the set of cells and E represents
their neighbor-relations

•  Planning with discrete methods (e.g.
A*)

–  Resulting path is a sequence of cells

•  Hierarchical planning: find path on
coarse resolution and re-plan on more
fine grained resolutions

•  Disadvantage: Memory usage grows
with the size of the environment

•  Advantage: No polygons!

Robot Motion Planning
Sampling-based Motion Planning

•  Basic Idea: To avoid explicit
construction of Cobs

•  Instead: probe Cfree with a sampling
scheme

•  Builds a graph G=(V,E) by
connecting sampled locations
–  each e ∊ E has to be collision free!
–  on G a solution can be found by

discrete search methods (e.g. A*)

•  Critical part: Random Sampling

•  Time consuming part: Collision
Checks

Sampling without obstacles

Sampling with obstacles

Sampling-based Motion Planning
General Procedure

1.  Initialization:

–  Let G=(V,E) be an undirected search graph with (qstart, qgoal) ∊ V, E =∅

2.  Vertex Selection Method (VSM):
–  Select a vertex qcurr ∊ V for expansion

3.  Local Planning Method (LPM):
–  Select any qnew∊ Cfree by sampling

–  Find a path τs :[0:1] ➝ Cfree such that τ(0)= qcurr and τ(1)=qnew

–  τs must be collision free, if not, go to 2)

4.  Insert new Vertex & Edge in the Graph:
–  Insert edge between qcurr and qnew

–  Insert qnew to V

5.  Check for a Solution:
–  Check if there is a valid path on G from qstart to qgoal, if yes: terminate

6.  Return to step 2) until any termination criterion is met

Sampling-based Motion Planning
Difficulties

Multi-
resolution
search
required to
quickly
overcome
cavities

Bidirectional
search
needed in
some cases

Sometimes
even multi-
dimensional
search
needed

Hard to
solve even
with multi-
dimensional
search

Sampling-based Motion Planning
Random Sampling / Deterministic Sampling

•  A Sampling sequence should reach every point in C! However, C is
uncountably infinite …

•  In practice, sampling has to terminate early. Hence the sequence of
sampling matters!

•  Dense Sequence: A sequence getting with increasing size arbitrarily close to
every element in C

•  Random sampling:
–  Suppose C=[0,1] and I ⊂ C is an interval of length e. If k samples are chosen independently at

random, the probability that none of them falls into I is (1−e)k. As k approaches infinity, this
probability converges to zero. This means random sampling is probably dense.

•  Deterministic sampling:
–  Suppose C=[0,1] and we want to place 16 samples

–  Simple approach:
•  Select the set S={i/16 | 0<i<16} so that all samples are evenly distributed

–  What if we want to make S into a sequence? What is the best ordering? What if 16
points are not enough, i.e., are not reaching every interesting point in C?

–  Problem with “sorting by increasing value”: after i=8 half of C has been neglected!
It would be preferable to have a nice covering of C for every i

Sampling-based Motion Planning
The Van der Corput sequence

•  Idea: to reverse the order of the bits, when the sequence is
represented with binary decimals

•  By reversing the bits, the most significant bit toggles in every step,
which means that the sequence alternates between the lower and
upper halves of C.

Sequence for i<=16

Note: Both method can
also be applied for
C⊆ℜm by sampling
each dimension
independently

Sampling-based Motion Planning
Rapidly Exploring Dense Trees (RDTs)

•  Let S(G) be the set of all points
 reached by G (either vertices or
 edges)
•  Requires a dense sequence α(i)
•  Connects iteratively edges from α(i)
 to those nearest in G

Basic algorithm for RDTs
(without obstacles):

q0

qnear

α(i)

q0

qnear

α(i)

Case 1: Nearest point is a vertex

Case 2: Nearest point is on an edge

Result:

Sampling-based Motion Planning
Rapidly Exploring Dense Trees (RDTs)
Basic algorithm for RDTs (with
obstacles):

•  STPPING-CONFIGURATION()
returns the nearest configuration
possible in Cfree

q0

qnear

α(i) Cobs
qs

Bug trap video
on YouTube

http://www.youtube.com/watch?v=qci_AktcrD4

Summary

•  A problem consists of five parts: The state space, initial
situation, actions, goal test, and path costs. A path from
an initial state to a goal state is a solution.

•  Search algorithms are judged on the basis of
completeness, optimality, time complexity, and space
complexity.

•  Best-first search expands the node with the highest
worth (defined by any measure) first.

•  When h(n) is admissible, i.e., h* is never overestimated,
we obtain the A* search, which is complete and optimal.

•  Online search provides method that are computationally
more efficient when planning and plan execution are
tightly coupled

•  Sampling-based Planning methods are well suited for
Robot Motion Planning

Literature

•  Homepage of Tony Stentz:
–  A. Stentz The focussed D* algorithm for real-time replanning Proc. of the Int.

Join Conference on Artificial Intelligence, p. 1652-1659, 1995.

•  Homepage of Sven Koenig:
–  S. Koenig and X. Sun. Comparing Real-Time and Incremental Heuristic

Search for Real-Time Situated Agents Journal of Autonomous Agents and
Multi-Agent Systems, 2009

–  S. Koenig and M. Likhachev Real-Time Adaptive A* Proceedings of the
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS), 281-288, 2006

–  S. Koenig and M. Likhachev. Fast Replanning for Navigation in Unknown
Terrain Transactions on Robotics, 21, (3), 354-363, 2005.

•  More difficult to find, also explained in the AIMA book (2nd ed.):
–  R. Korf. Real-time heuristic search. Artificial Intelligence, 42(2-3):189-211, 1990.

–  Demo search code in Java on the AIMA webpage http://aima.cs.berkeley.edu/

