Introduction to Multi-Agent Programming

15. Learning in Multi-Agent Systems (Part B)

Reinforcement Learning, Hierarchical Learning, Joint-Action Learners

Alexander Kleiner, Bernhard Nebel

Contents

- Reinforcement Learning (RL)
- Hierarchical Learning
- Case Study: Learning to play soccer
- Joint-Action Learners
- Markov Games

Reinforcement Learning

- Learning from interaction with an external environment or other agents
- Goal-oriented learning
- Learning and making observations are interleaved
- Process is modeled as MDP or variants

Key Features of RL

- Learner is not explicitly told which actions to take
- Possibility of delayed reward (sacrifice shortterm gains for greater long-term gains)
- Model-free: Models are learned online, i.e., have not to be defined in advance!
- Trial-and-Error search
- The need to exploit and explore, i.e., to perform the best known action or any arbitrary action ...

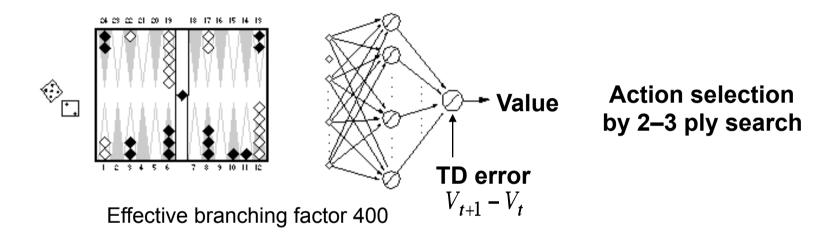
Some Notable RL Applications

- TD-Gammon: Tesauro
 - world's best backgammon program
- Elevator Control: Crites & Barto
 - high performance down-peak elevator controller
- Dynamic Channel Assignment: Singh & Bertsekas, Nie & Haykin
 - high performance assignment of radio channels to mobile telephone calls

Some Notable RL Applications

TD-Gammon

Tesauro, 1992–1995



Start with a random network

Play very many games against self

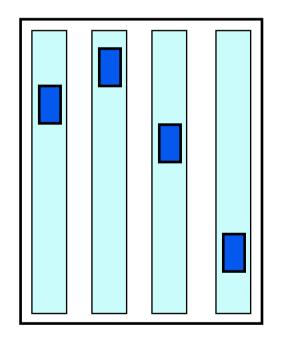
Learn a value function from this simulated experience

This produces arguably the best player in the world

Some Notable RL Applications Elevator Dispatching

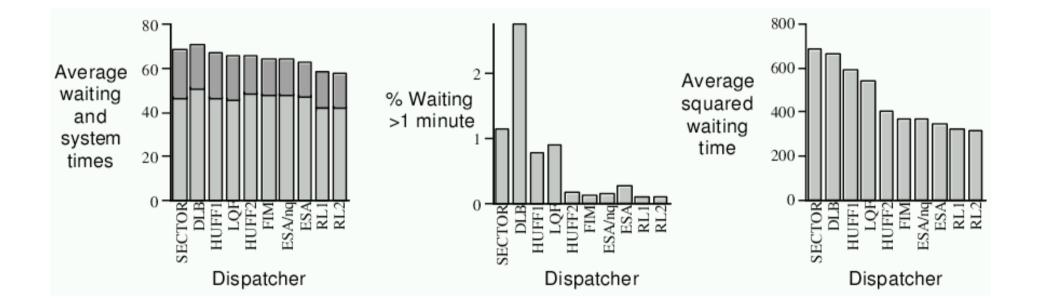
Crites and Barto, 1996

10 floors, 4 elevator cars



- <u>STATES</u>: button states; positions, directions, and motion states of cars; passengers in cars & in halls
- <u>ACTIONS</u>: stop at, or go by, next floor
- <u>REWARDS</u>: roughly, –1 per time step for each person waiting

Some Notable RL Applications Performance Comparison Elevator Dispatching



Q-Learning (1)

- Very common Reinforcement Leaning method
- Maintains a table of Q-values
 - Q(s,a) "what is the outcome of action a executed in state s"?
- Since values are with respect to states and actions, no explicit transition model *T* needed
- Updates are performed with a step size parameter in order to prevent value overwriting when learning different traces
- Converges to the optimum Q-values with probability 1

Q-Learning (2)

- At time t the agent performs the following steps:
 - Observe the current state s_t
 - Select and perform action a_t
 - Observe the subsequent state s_{t+1}
 - Receive immediate payoff r_t
 - Adjust Q-value for state s_t

• Update function:

$$Q_{k+1}(s_t, a_t) := (1 - \alpha) Q_k(s_t, a_t) + \alpha \left[R(s_t, a_t) + \gamma \max_{a \in A} Q_k(s_{t+1}, a_{t+1}) \right]$$

- Where k denotes the version of the Q function, and a denotes a learning step size parameter that should decay over time
- Intuitively, actions can be selected by:

$$\pi\left(s_{t}\right) = \operatorname*{argmax}_{a \in A} Q\left(s_{t}, a\right)$$

Q-Learning (4) Algorithm

Initialise Q(s,a) arbitrary for all $s \in S$ and $a \in A$ **Repeat** select best action a_t with the greedy policy: $a_t = \pi(s_t) = \underset{a \in A}{a \in A} Q(s_t, a)$ apply a_t in the world and observe s_{t+1} and immediate reward r_t : $s_t \rightarrow s_{t+1}$ r_t adapt the value function for state s_t $Q_{k+1}(s_t, a_t) := (1 - \alpha) Q_k(s_t, a_t) + \alpha \left[r_t + \gamma \max_{a \in A} Q_k(s_{t+1}, a_{t+1}) \right]$ **Until** (Q_{k+1} - $Q_k < \varepsilon$) or (s is terminal)

The Exploration/Exploitation Dilemma

• Suppose you form estimates

$$Q_t(a) = Q^*(a)$$

action value estimates

• The greedy action at time t is:

 $a_{t}^{*} = \operatorname{argmax}_{a} Q_{t}(a)$ $a_{t} = a_{t}^{*} \Rightarrow \operatorname{exploitation}$ $a_{t} \neq a_{t}^{*} \Rightarrow \operatorname{exploration}$

- You can't exploit all the time; you can't explore all the time
- You can never stop exploring; but you should always reduce exploring

e-Greedy Action Selection

• Greedy action selection:

$$a_t = a_t^* = \arg\max_a Q_t(a)$$

• e-Greedy:

$$a_{t} = \begin{cases} a_{t}^{*} \text{ with probability } 1 - \varepsilon \\ \text{random action with probability } \varepsilon \end{cases}$$

- Continuously decrease of ε during each episode necessary!
- \rightarrow the simplest way to try to balance exploration and exploitation

Eligibility Traces (1)

- Convergence speed of Q-Learning and other RL methods can be improved by eligibility traces
- Idea: simultaneous update of all Q values of states that have been visited within the current episode
- A whole trace can be updated from the effect of one step
- The influence of states on the past is controlled by the parameter $\boldsymbol{\lambda}$
- Q-Learning with eligibility traces is denoted by $Q(\boldsymbol{\lambda})$

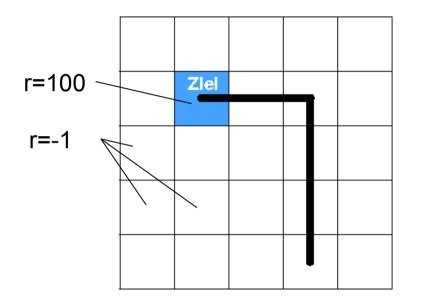
Eligibility Traces (2)

- An eligibility trace defines the state-action pair's responsibility for the current error in Q-values and is denoted by e(s, a)
 - e(s, a) is a scalar value and initialized with 0
- After observing state s and selecting action a, e(s,a) is updated for every Q value according to:

$$\forall \hat{s} \in \mathbb{S} \ \hat{a} \in \mathcal{A} \qquad e(\hat{s}, \hat{a}) \quad \leftarrow \lambda \gamma e(\hat{s}, \hat{a}) + \begin{cases} 1 & \text{if } \hat{s} = s \text{ and } \hat{a} = a \\ 0 & \text{otherwise} \end{cases}$$

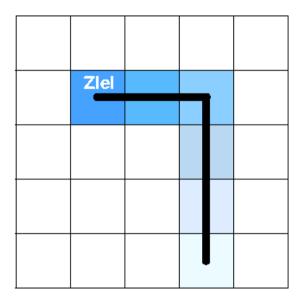
- After each action execution, we update the whole Q-table by applying the standard update rule, however with step-size e(s,a)*a instead of a
- Note that this can be implemented mach faster by keeping all states visited during an episode in memory and applying the update to only those

Eligibility Traces (3)



Normal Q-Learning:

Slow update, after each step only one *Q* value is updated



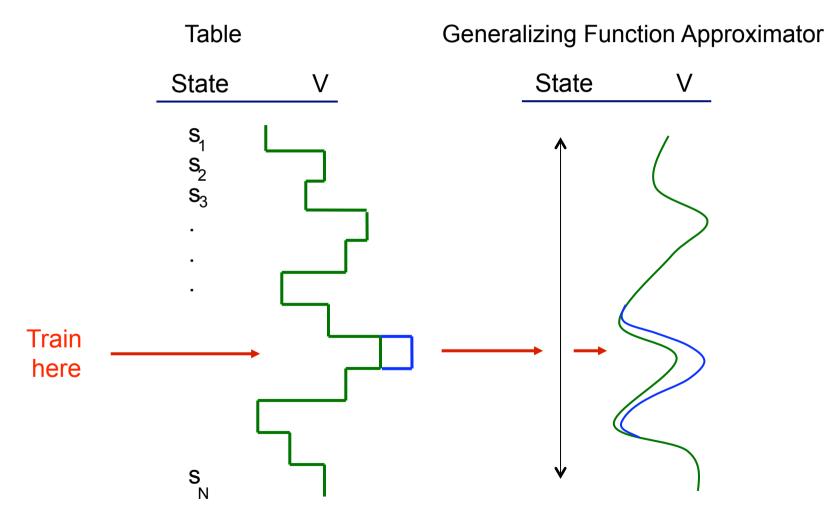
Learning with eligibility traces:

Updated all *Q* values of states that have been visited within the current episode

Function approximation Motivation

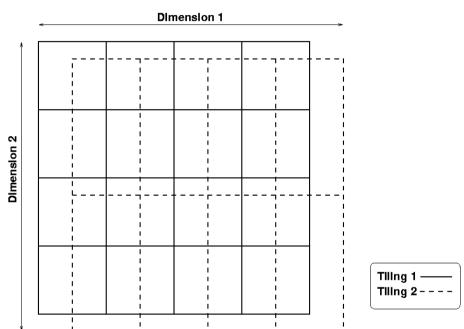
- RL infeasible for many real applications due to curse of dimensionality: |S| too big.
 - Memory limit
 - Time for learning is limited, i.e. impossible to visit all states
- FA may provide a way to "lift the curse:"
 - Memory needed to capture regularity in environment may be << |S|
 - No need to sweep thru entire state space: train on N "plausible" samples and then generalize to similar samples drawn from the same distribution
- Commonly used with Reinforcement Learning:
 - Artificial Neuronal Networks (ANNs)
 - Tile Coding
- FA: Compact representations of S X A -> R, providing a mapping from action-state correlations to expected reward
- Note: RL convergence guarantees are all based on look-up table representation, and do not necessarily hold with function approximation!

Function approximation Example

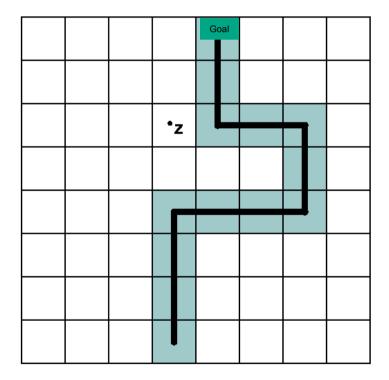


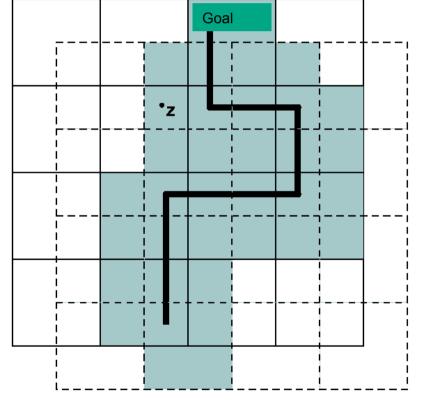
Function approximation Tile Coding

- Discretizations that differ in offset and size are overlaid with each other
- The values of each cell are weights
- Q(s,a) = Sum of the weights of all tiles activated by (s,a)



Look-up table vs. Tile Coding





Look-up table

Tiling with 2 discretizations

Tile Coding – Memory reduction

- Use many tilings with different offset
- Combine only correlating variables within a single tiling
 - Note variables are taken from the state and action vector
- Example:
 - 12 variables, 20 discretization intervals:
 - 20¹² values in memory
 - Combining 4 correlating variables, each:
 - 3 * 20⁴ values in memory
 - 5 discretization intervals, but 24 tilings instead of 3:
 - 24 * 5⁴ = 15000 values in memory

Tile Coding vs. ANNs

- Function approximation with tile coding
 - is linear (good convergence behavior!)
 - Mostly explicit knowledge representation
 - Unlikely to overwrite already learned knowledge
 - Easier to visualize
 - Expert knowledge about correlations needed
- Function approximation with ANNs
 - Non-linear: convergence can be a problem
 - Implicit knowledge representation
 - Learned knowledge can be "deleted"
 - Unreadable by human beings
 - Automatic learning of correlation

Hierarchical Learning

- Simultaneous acting and learning on multiple layers of the hierarchy
- Basic idea:
 - Sub-tasks are modelled as single MDPs
 - Actions on higher layers initiate Sub-MDPs on lower layers
- However, MDP model requires actions to be executed within discrete time steps
- → Usage of Semi Markov Decision Processes (SMDPs)

SMDPs I

- In SMDPs, actions are allowed to continue for more than one time step
- SMDPs are an extension to MDPs by adding the time distribution F
 - F is defined by p(t |s, a), and returns the probability of reaching the next SMDP state after time t, when behavior a is taken in state s
 - Q-Learning has been extended for learning in SMDPs
 - The method is guaranteed to converge when similar conditions as for standard Q-Learning are met

SMDPs II

 The update rule for SMDP Q-Learning is defined by:

$$Q_{k+1}(s_t, a_t) := (1 - \alpha) Q_k(s_t, a_t) + \alpha \left[r + \gamma^t \max_{a \in A} Q_k(s_{t+1}, a_{t+1}) \right]$$

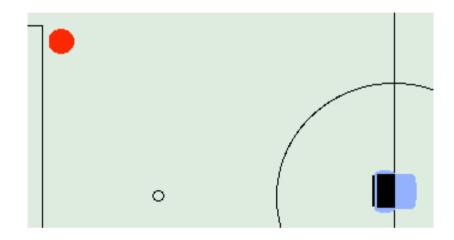
- Where t denotes the sampled time of executing the behavior and r its accumulated discounted reward received during execution
- Like the transition model *T*, the time model *F* is implicitly learned from experience online

Case Study: RL in robot soccer

- World model generated at 100Hz from extracted position data, e.g., ball, player, and opponent position, ...
- Stochastic actions: turn left/right, drive forward/backward, kick
- RL parameters: $\gamma=1.0$ (finite horizon), a=0.1 (small since actions are very stochastic), $\epsilon=0.05$ (small since traces are comparably long), $\lambda=0.8$ (typical value)
- World model serves as basis for the action selection
 - Shoot goal, dribbling, etc.
 - Actions/Behaviors are realized by modules that directly send commands to the motors
- Goals:
 - Learning of single behaviors
 - Learning of the action selection

Case Study: RL in robot soccer Acceleration of learning with a simulator

Learning of behaviours Example "ApproachBall" I



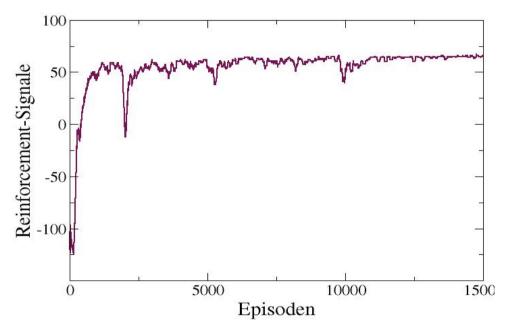
- State space: Angle and distance to ball, current translational velocity
- Actions: Setting of translational and rotational velocities

Learning of behaviours Example "ApproachBall" II

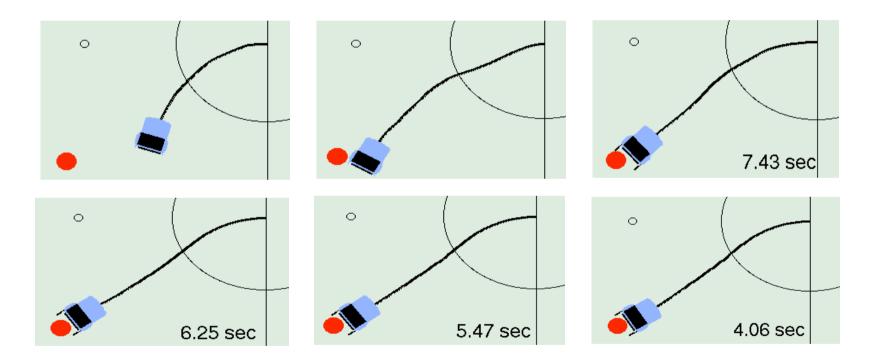
- Reward function:
 - Modelled as MDPs
 - +100: termination if the player touches the ball with reduced velocity of if stops close to and facing the ball
 - -100: termination if the ball is out of the robot's field of view or if the player kicks the ball away
 - -1: else

Learning performance

- x-axis
 - Time (# of episode)
- y-axis:
 - averaged rewards per episode (smoothed)
- Successful playing after 800 episodes



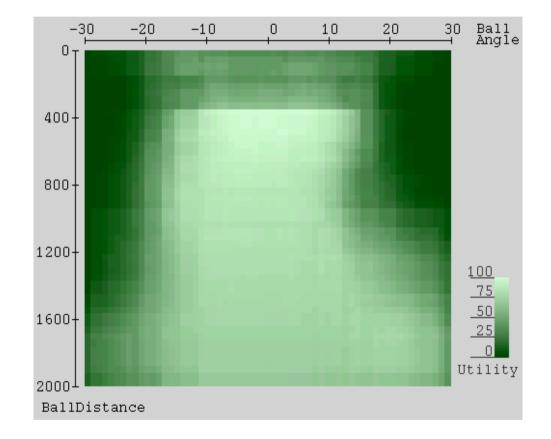
Learning after some steps



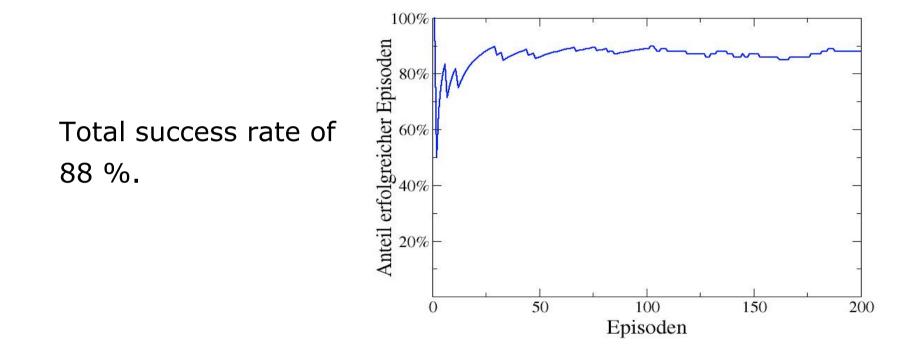
The behaviour after 10, 100, 500, 1000, 5000 and 15000 episodes

Visualization of the value function

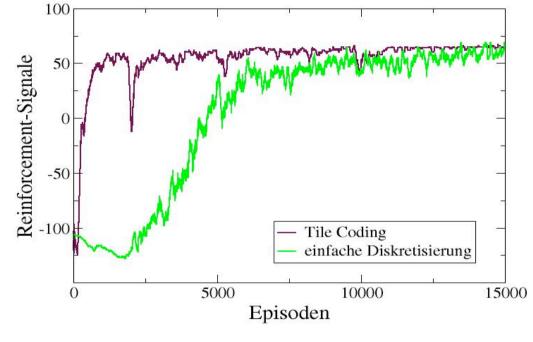
- x-axis: Ball angle
- y-axis: Ball distance
- for a translational velocity of 1 m/s



Transfer on the real robot platform

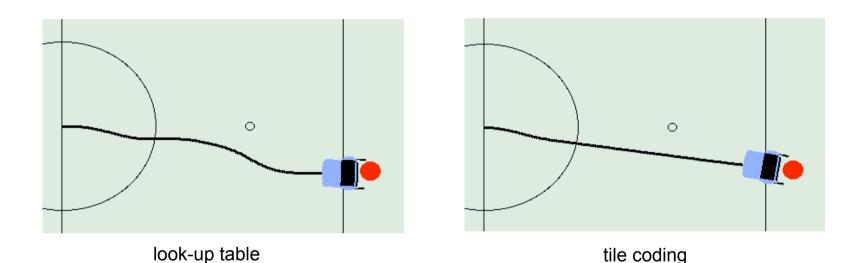


Comparing look-up table and tile coding based discretization



Tile coding leads to more efficient learning

Comparing look-up table and tile coding based discretization



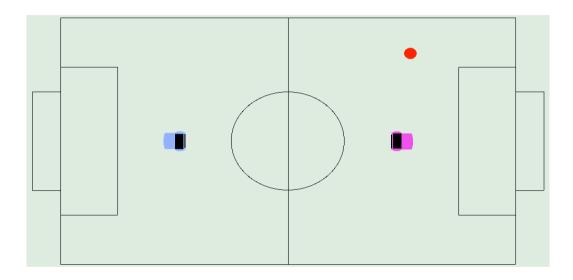
The resulting behaviour after learning: Function approximation leads to smoother execution

Learning Action Selection

- With an appropriate set of trained behaviours, a complete soccer game can be played
- Trained behaviours:
 - SearchBall, ApproachBall, BumpAgainstBall, DribbleBall, ShootGoal, ShootAway, FreeFromStall
- Finally, the right selection of behaviours within different situations has to be learned

Example:

Playing against a hand-coded CS-Freiburg player (world champion 98/00/01)



- State space: Distance and angle to goal, ball, and opponent
- Actions: Selection of one of the listed behaviours

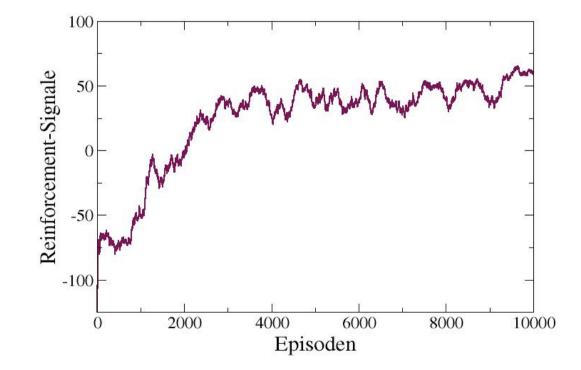
Example:

Playing against a hand-coded CS-Freiburg player (world champion 98/00/01)

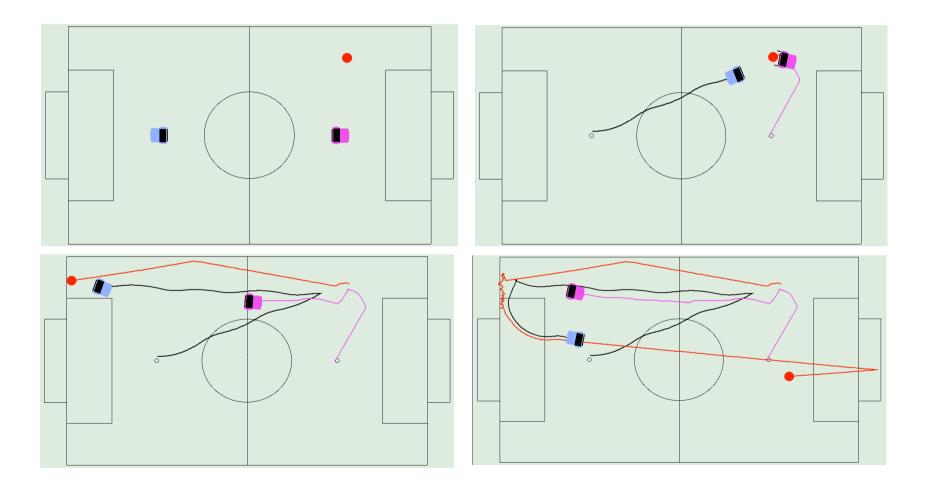
- Modelled as SMDPs
- Reward function:
 - +100 for each scored goal
 - -100 for each received goal
 - -1 for each passed second

Learning performance

- Learning on both layers
 - Successful
 play after
 3500
 episodes



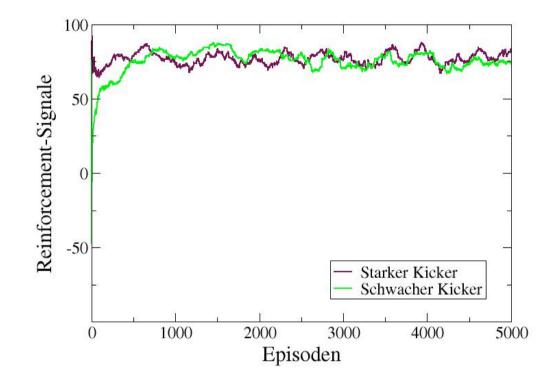
One example episode



Blue: Learner, Pink: Hard-coded

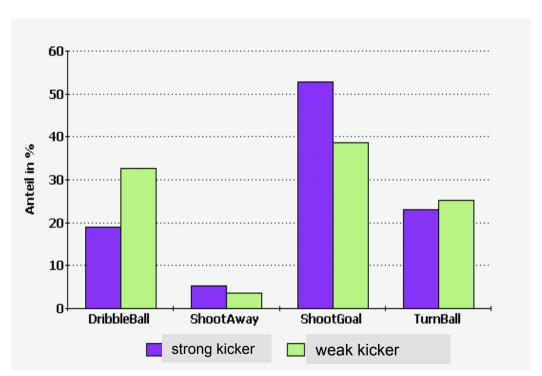
Adaption to sudden changes/defects

- Performance during continuous learning
 - once with the same (strong) kicking device (brown)
 - once with a replaced (weak) kicking device (green)
- The "weak" kicker curve increases

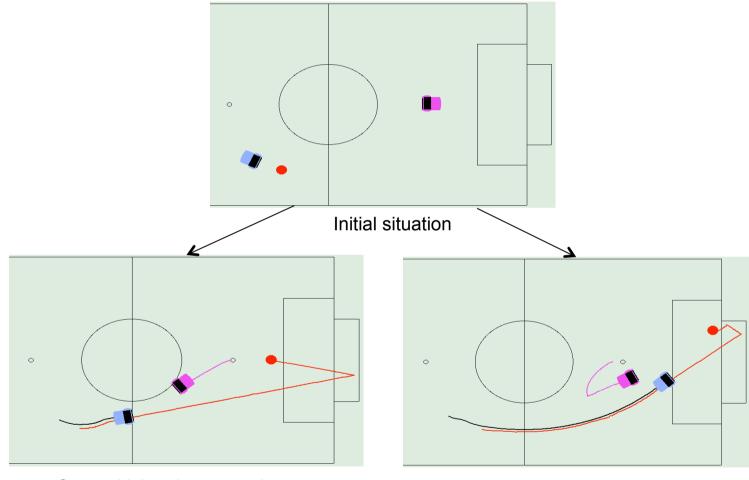


Adaption to sudden changes/defects Selected behaviours during offensive

- The distribution of chosen behaviours changes...
 - The player with the weak kicker tends
 dribble more frequently
 - The player with the strong kicker prefers shooting behaviours



Adaption to sudden changes/defects Behaviour with strong and weak kicker

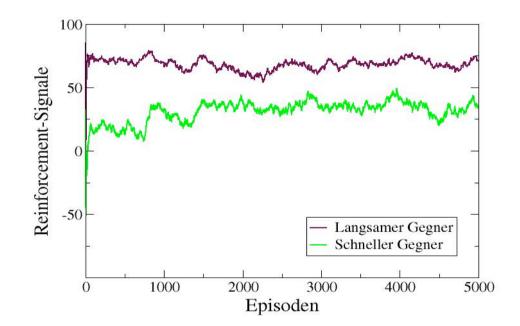


Strong kicker: better to shoot

Weak kicker: better to dribble

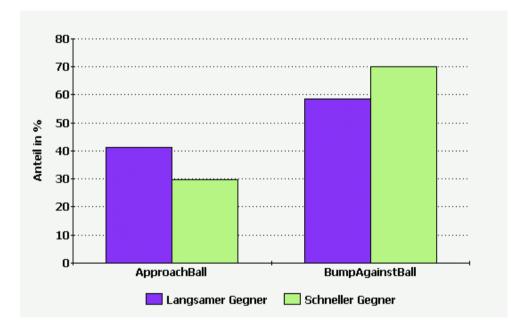
Adaption to a different opponent

- Performance during continuous learning
 - once with the same (slow) opponent (brown)
 - once with a replaced (faster) opponent (green)
- The "faster" opponent curve increases



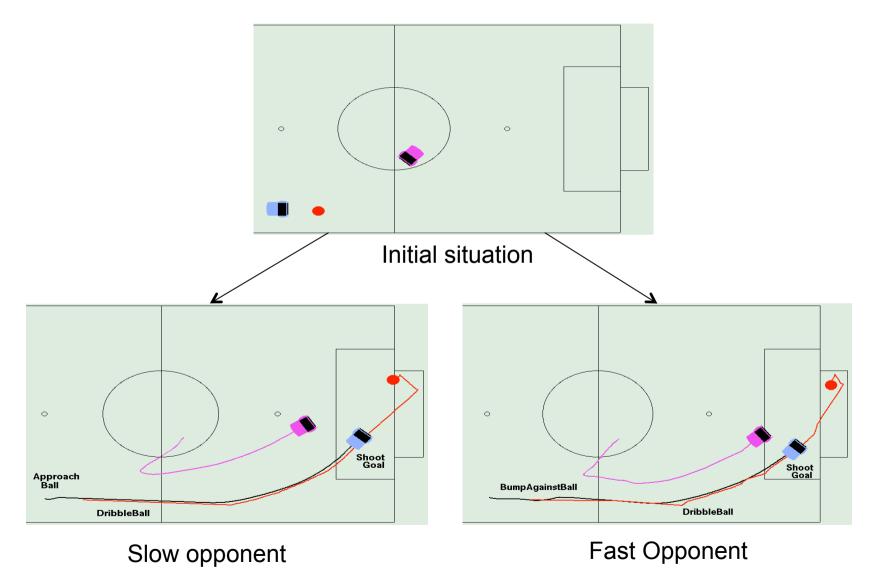
Adaption to a different opponent Selected behaviours during offensive

- The distribution of chosen behaviours changes again...
 - The player selects more often
 "BumpAgainstBall" in order to win time



Adaption to a different opponent

Behaviours against a slow and a fast opponent

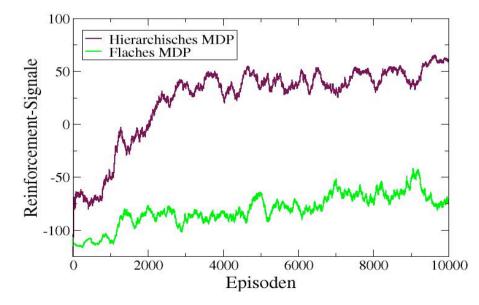


Some comments on adaption

- Re-learning takes automatically place without
 - user input to the system
 - the agent's knows nothing about the different concepts
 - no "performance gap" during to the re-learning

Hierarchical vs. Flat MDPs

- In the "flat" MDP we consider a single behaviour that takes as input all state variables
 - Learning takes much longer
 - Adaption unlikely …



Transfer on the real robot platform Achieved score

- Learner: 0.75 goals/minute
- CS-Freiburg player: 1.37 goals/minute
- Good result, but could still be improved...
 - Better (more realistic) simulation
 - Learning of additional skills
 - etc ...

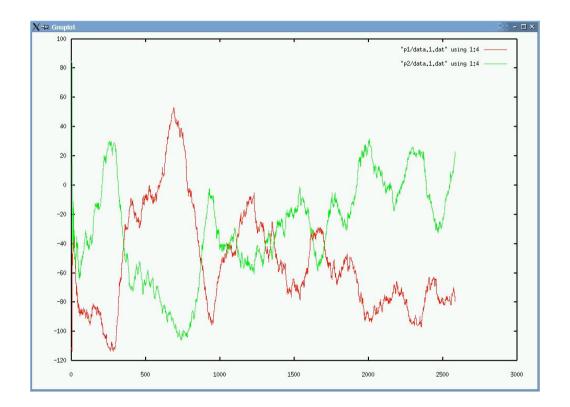
Video Result

Player executes *learned* behaviors and action selection

Multi-agent Learning revised

- So far we considered a relaxed version of the multi-agent learning problem:
 - Other agents were considered as stationary, i.e. executing a fixed policy
 - What if other agents are adapting to changes as well?
 - In this case we are facing a much more difficult learning problem with a moving target function
 - Furthermore, we did not consider multi-agent cooperation
 - Agents were choosing their actions greedily in that they maximized their individual reward
 - What if a team of agents shares a joint reward, e.g. scoring a goal in soccer together?

Example: Two robots learn playing soccer simultaneously



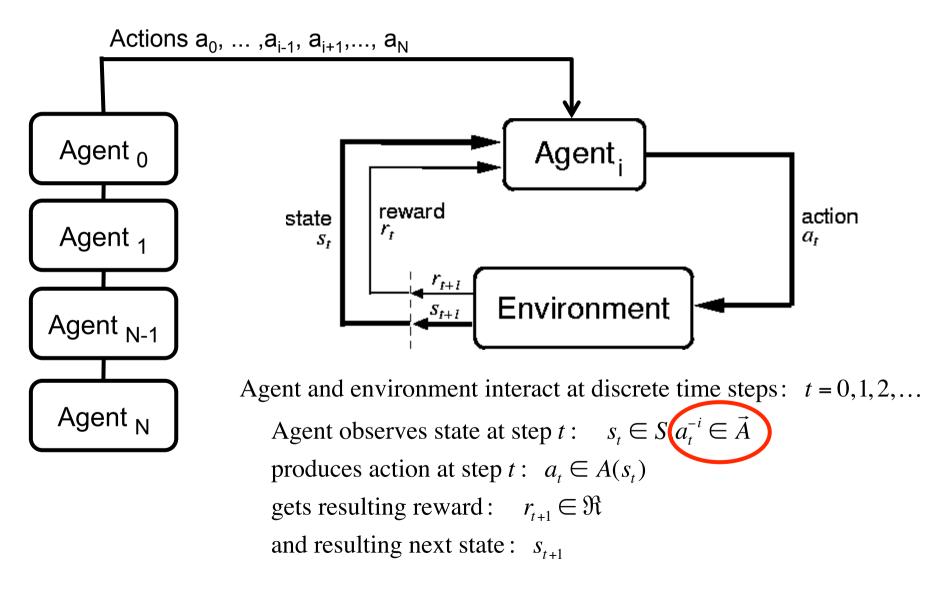
Multi-agent environments are nonstationary, thus violating the traditional assumption underlying single-agent learning approaches

Joint-Action Learners

Cooperation by learning joint-action values

- Consider the case that we have 2 offenders in the soccer game instead of one
 - The optimal policy depends on the joint action
 - For example, if robot A approaches the ball, the optimal action of robot B would be to do something else, e.g. going to the support position
- Solution: each agent learns a Q-Function of the joint action space: Q(s, <a₁, a₂,..., a_n>)
- Observation or communication of actions performed by the team mates is required!

The Agent-Environment Interface for Joint-Action learners



Joint-Action Learners Opponent Modeling

- Maintain an explicit model of the opponents/team-mates for each state
- Q-values are updated for all possible joint actions at a given state
- Also here the key assumption is that the opponent is stationary
- Opponent modeling by counting frequencies of the joint actions they executed in the past
- Probability of joint action a_i: $P(a'_{-i}) = \frac{C(a'_{-i})}{\sum_{a_{-i} \in A_{-i}} C(a_{-i})}$
- where C(a_{-i}) is the number of times the opponent has played action a_{-i}

Joint-Action learners

Opponent Modeling Q learning for agent i

- (1) Let $\alpha_0 \in (0, 1]$ be the initial learning rate, and ϵ be the initial exploration rate. Initialize $Q(s, \vec{a})$ arbitrarily, $C(s, a_{-i}) \leftarrow 0 \forall s \in S, \forall a_{-i} \in A_{-i}, n(s) \leftarrow 0 \forall s \in S.$
- (2) Repeat,
 - (a) Observe state $s, n(s) \leftarrow n(s) + 1$
 - (b) From state s select action a_i with probability (1ϵ) by solving

$$\operatorname{argmax}_{a_i} \sum_{a_{-i}} \frac{C(s, a_{-i})}{n(s)} Q(s, \langle a_i, a_{-i} \rangle),$$

and a random action with probability ϵ .

(c) Observing the opponent's action a_{-i} , the reward $R(s, a_i)$, and the next state s',

$$\begin{array}{rcl} Q(s, \langle a_i, a_{-i} \rangle) & \leftarrow & (1 - \alpha)Q(s, \langle a_i, a_{-i} \rangle) + \alpha(R(s, a_i) + \gamma V(s') \\ & C(s, a_{-i}) & \leftarrow & C(s, a_{-i}) + 1 \end{array}$$

where

$$V(s') = \max_{a_i} \sum_{a_{-i}} \frac{C(s', a_{-i})}{n(s')} Q(s', \langle a'_i, a_{-i} \rangle))$$

(d) Decay α and ϵ as per Q-learning.

Markov Games

- Also known as Stochastic Games or MMDPs
- Each state in a stochastic game can be considered as a matrix game* with payoff for player *i* of joint action *a* in state *s* determined by R_i(s, a)
- After playing the matrix game and receiving the payoffs, the players are transitioned to another state (or matrix game) determined by their joint action

* See slides from lecture 5: Game Theory

Minimax-Q

- Extension of traditional Q-Learning to zero-sum stochastic games
- Also here the the Q function is extended to maintain the value of joint actions
- Difference: The Q function is incrementally updated from the function Value_i
- Value, computes the expected payoff for player i if all players play the unique Nash equilibrium
- Using this computation, the Minimax-Q algorithm learns the player's part of the Nash equilibrium strategy

Summary

- RL can be used for learning online and model-free MDPs
 - In the past, different tasks, such as playing back gammon or robot soccer, have been solved surprisingly well
- However, it also suffers under the "curse of dimensionality", hence, success highly depends on an adequate representation or hierarchical decomposition
- Standard RL methods are in general not well suited for MA problems (but sometimes they work surprisingly well)
- The approach of Joint-Action learners allows to improve coordination among agents
- Stochastic games are a straightforward extension of MDPs and Game Theory
 - However, they assume that games are stationary and fully specified, enough computer power to compute equilibrium is available, and other agents are also game theorists...
 - ... which rarely holds in real applications

Literature

- Reinforcement Learning
 - R. S. Sutton, A. G. Barto, Reinforcement Learning, MIT Press, 1998, online at: http://www.cs.ualberta.ca/~sutton/book/the-book.html
- Hierarchical Q-Learning
 - A. Kleiner, M. Dietl, and B. Nebel. Towards a Life-Long Learning Soccer Agent, In RoboCup 2002: Robot Soccer World Cup VI, (G. A. Kaminka, P. U. Lima, and R. Rojas, eds.), 2002, pp. 126-134.
- Joint-Action learners
 - W. Uther, M. Veloso, Adversarial reinforcement learning, Tech. rep., Carnegie Mellon University, unpublished (1997).
 - C. Claus, C. Boutilier, The dyanmics of reinforcement learning in cooperative multiagent systems, in: Proceedings of the Fifteenth National Conference on Artificial Intelligence, AAAI Press, Menlo Park, CA, 1998.
 - M. Bowling, M. Veloso, Variable learning rate and the convergence of gradient dynamics, in: Proceedings of the Eighteenth International Con- ference on Machine Learning, Williams College, 2001, pp. 27–34.