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Reinforcement Learning 

•  Learning from interaction with an external 
environment or other agents 

•  Goal-oriented learning 
•  Learning and making observations are 

interleaved  
•  Process is modeled as MDP or variants 



Key Features of RL 

•  Learner is not explicitly told which actions to 
take 

•  Possibility of delayed reward (sacrifice short-
term gains for greater long-term gains) 

•  Model-free: Models are learned online, i.e., 
have not to be defined in advance! 

•  Trial-and-Error search 
•  The need to exploit and explore, i.e., to 

perform the best known action or any arbitrary 
action … 



Some Notable RL Applications 

•  TD-Gammon: Tesauro 
•  world’s best backgammon program 

•  Elevator Control: Crites & Barto 
•  high performance down-peak elevator controller 

•  Dynamic Channel Assignment: Singh & 
Bertsekas, Nie & Haykin 

•  high performance assignment of radio channels to 
mobile telephone calls 

•  … 



Some Notable RL Applications 
TD-Gammon 

Start with a random network 
Play very many games against self 
Learn a value function from this simulated experience 

This produces arguably the best player in the world 

Action selection 
by 2–3 ply search 

Value 

TD error 

Tesauro, 1992–1995 

Effective branching factor 400 



Some Notable RL Applications 
Elevator Dispatching 

10 floors, 4 elevator cars 

STATES: button states;   positions, 
directions, and motion states of 
cars; passengers in cars & in 
halls 

ACTIONS:  stop at, or go by, next 
floor 

REWARDS: roughly, –1  per time 
step for each person waiting 

Conservatively about 10     states 22 

Crites and Barto, 1996 



Some Notable RL Applications 
Performance Comparison Elevator Dispatching 



Q-Learning (1) 



Q-Learning (2) 

•  At time t the agent performs the following 
steps: 
– Observe the current state st  
– Select and perform action at 

– Observe the subsequent state st+1 

– Receive immediate payoff rt 

– Adjust Q-value for state st 



Q-Learning (3) 
Update and Selection 

•  Update function: 

•  Where k denotes the version of the Q function, and α 
denotes a learning step size parameter that should decay 
over time   

•  Intuitively, actions can be selected by:  



Q-Learning (4) 
Algorithm 



The Exploration/Exploitation Dilemma 

•  Suppose you form estimates 

•  The greedy action at time t is: 

•  You can’t exploit all the time; you can’t explore all the time 
•  You can never stop exploring; but you should always reduce 

exploring 

action value estimates 



e-Greedy Action Selection 

•  Greedy action selection: 

•  e-Greedy: 

–  Continuously decrease of ε during each episode 
necessary! 

{

 the simplest way to try to balance 
exploration and exploitation 



Eligibility Traces (1) 

•  Convergence speed of Q-Learning and other RL 
methods can be improved by eligibility traces 

•  Idea: simultaneous update of all Q values of 
states that have been visited within the current 
episode 

•  A whole trace can be updated from the effect of one 
step 

•  The influence of states on the past is controlled by 
the parameter λ  

•  Q-Learning with eligibility traces is denoted by 
Q(λ) 



Eligibility Traces (2) 

•  An eligibility trace defines the state-action pair’s responsibility for 
the current error in Q-values and is denoted by e(s, a)   

–  e(s, a) is a scalar value and initialized with 0 

•  After observing state s and selecting action a, e(s,a) is updated for 
every Q value according to: 

•  After each action execution, we update the whole Q-table by 
applying the standard update rule, however with step-size e(s,a)*α 
instead of α 

•  Note that this can be implemented mach faster by keeping all states 
visited during an episode in memory and applying the update to 
only those  



Eligibility Traces (3) 

Normal Q-Learning:  
Slow update, after each 
step only one Q value 
is updated 

Learning with eligibility traces: 
Updated all Q values of 
states that have been visited 
within the current episode 

r=100 

r=-1 



Function approximation 
Motivation 

•  RL infeasible for many real applications due to curse of dimensionality: |S| 
too big. 

–  Memory limit 

–  Time for learning is limited, i.e. impossible to visit all states 

•  FA may provide a way to “lift the curse:” 
–  Memory needed to capture regularity in environment may be << |S| 

–  No need to sweep thru entire state space: train on N “plausible” samples and then 
generalize to similar samples drawn from the same distribution 

•  Commonly used with Reinforcement Learning: 
–  Artificial Neuronal Networks (ANNs) 

–  Tile Coding 

•  FA: Compact representations of S X A -> R, providing a mapping from 
action-state correlations to expected reward  

•  Note: RL convergence guarantees are all based on look-up table 
representation, and do not necessarily hold with function approximation! 



Function approximation 
Example 

Table                              Generalizing Function Approximator 

State            V State            V 

s 
s 
s 
. 
. 
. 

s 

1 

2 

3 

N 

Train 
here 



Function approximation 
Tile Coding 

•  Discretizations that 
differ in offset and 
size are overlaid with 
each other 

•  The values of each cell 
are weights 

•  Q(s,a) = Sum of the 
weights of all tiles 
activated by (s,a) 



Look-up table vs. Tile Coding 

Goal 
Goal 

Look-up table 

Tiling with 2 discretizations 



Tile Coding – Memory reduction 

•  Use many tilings with different offset 
•  Combine only correlating variables within a single tiling 

–  Note variables are taken from the state and action vector 
•  Example: 

–  12 variables, 20 discretization intervals: 
•  2012 values in memory 

–  Combining 4 correlating variables, each: 
•  3 * 204 values in memory 

–  5 discretization intervals, but 24 tilings instead of 3: 
•  24 * 54 = 15000 values in memory 



Tile Coding vs. ANNs 

•  Function approximation with tile coding 
–  is linear (good convergence behavior!) 
–  Mostly explicit knowledge representation 

•  Unlikely to overwrite already learned knowledge  
•  Easier to visualize 

–  Expert knowledge about correlations needed 

•  Function approximation with ANNs 
–  Non-linear: convergence can be a problem 
–  Implicit knowledge representation 

•  Learned knowledge can be “deleted” 
•  Unreadable by human beings 

–  Automatic learning of correlation 



Hierarchical Learning  

•  Simultaneous acting and learning on multiple 
layers of the hierarchy  

•  Basic idea: 
– Sub-tasks are modelled as single MDPs 
– Actions on higher layers initiate Sub-MDPs on 

lower layers 
•  However, MDP model requires actions to be 

executed within discrete time steps 

 Usage of Semi Markov Decision Processes 
(SMDPs) 



SMDPs I 

•  In SMDPs, actions are allowed to continue 
for more than one time step 

•  SMDPs are an extension to MDPs by adding 
the time distribution F 
–  F is defined by p(t |s, a), and returns the 

probability of reaching the next SMDP state 
after time t, when behavior a is taken in state s 

–   Q-Learning has been extended for learning in 
SMDPs  

–  The method is guaranteed to converge when 
similar conditions as for standard Q-Learning 
are met 



SMDPs II 

•  The update rule for SMDP Q-Learning is defined 
by: 

•  Where t denotes the sampled time of executing 
the behavior and r its accumulated discounted 
reward received during execution 

•  Like the transition model T, the time model F is 
implicitly learned from experience online 



Case Study: RL in robot soccer 

•  World model generated at 100Hz from extracted position data, e.g., 
ball, player, and opponent position, …  

•  Stochastic actions: turn left/right, drive forward/backward, kick 

•  RL parameters: γ=1.0 (finite horizon), α=0.1 (small since actions 
are very stochastic), ε=0.05 (small since traces are comparably 
long), λ=0.8 (typical value) 

•  World model serves as basis for the action selection 
–  Shoot goal, dribbling, etc. 
–  Actions/Behaviors are realized by modules that directly send commands 

to the motors 

•  Goals: 
–  Learning of single behaviors 

–  Learning of the action selection  



Case Study: RL in robot soccer 
Acceleration of learning with a simulator 



Learning of behaviours 
Example "ApproachBall" I 

•  State space: Angle and distance to ball, 
current translational velocity 

•  Actions: Setting of translational and rotational 
velocities 



Learning of behaviours 
Example "ApproachBall" II 

•  Reward function: 
– Modelled as MDPs 
– +100: termination if the player touches the ball 

with reduced velocity of if stops close to and 
facing the ball 

–  -100: termination if the ball is out of the robot's 
field of view or if the player kicks the ball away 

–   -1: else 



Learning performance 

•  x-axis 
–  Time (# of episode) 

•  y-axis: 
–  averaged rewards 

per episode 
(smoothed) 

•  Successful playing after 
800 episodes 



Learning after some steps 

The behaviour after 10, 100, 500, 1000, 5000  
and 15000 episodes 



Visualization of the value function 

•  x-axis: Ball angle 
•  y-axis: Ball 

distance 
•  for a translational  
 velocity of 1 m/s 



Transfer on the real robot platform 

Total success rate of  

88 %. 



Comparing look-up table and tile 
coding based discretization  

•  Tile coding leads to more efficient learning 



Comparing look-up table and tile 
coding based discretization  

The resulting behaviour after learning:  
Function approximation leads to smoother  
execution 

look-up table tile coding 



Learning Action Selection 

•  With an appropriate set of trained behaviours, 
a complete soccer game can be played 

•  Trained behaviours: 
– SearchBall, ApproachBall, BumpAgainstBall, 

DribbleBall, ShootGoal, ShootAway, 
FreeFromStall 

•  Finally, the right selection of behaviours within 
different situations has to be learned 



Example:  
Playing against a hand-coded CS-Freiburg player (world 
champion 98/00/01) 

•  State space: Distance and angle to goal, ball, 
and opponent 

•  Actions: Selection of one of the listed 
behaviours 



Example:  
Playing against a hand-coded CS-Freiburg player (world 
champion 98/00/01) 

•  Modelled as SMDPs 
•  Reward function: 

– +100 for each scored goal 
–  -100 for each received goal 
–  -1 for each passed second 



Learning performance 

•  Learning on 
both layers 
– Successful 

play after  
3500 
episodes 



One example episode 

Blue: Learner, Pink: Hard-coded 



Adaption to sudden changes/defects 

•  Performance during 
continuous learning  
–  once with the same 

(strong) kicking 
device (brown) 

–  once with a 
replaced (weak) 
kicking device 
(green) 

•  The "weak" kicker 
curve increases 



Adaption to sudden changes/defects 
Selected behaviours during offensive 

•  The distribution of 
chosen behaviours 
changes...  
–  The player with the 

weak kicker tends 
dribble more 
frequently 

–  The player with the 
strong kicker 
prefers shooting 
behaviours strong kicker weak kicker 



Adaption to sudden changes/defects 
Behaviour with strong and weak kicker 

Strong kicker: better to shoot Weak kicker: better to dribble 

Initial situation 



Adaption to a different opponent 

•  Performance during 
continuous learning  
–  once with the same 

(slow) opponent 
(brown) 

–  once with a replaced 
(faster) opponent 
(green) 

•  The "faster" opponent 
curve increases 



Adaption to a different opponent 
Selected behaviours during offensive 

•  The distribution of 
chosen behaviours 
changes again...  
–  The player selects 

more often 
"BumpAgainstBall" in 
order to win time 



Adaption to a different opponent 
Behaviours against a slow and a fast opponent 

Fast Opponent Slow opponent 

Initial situation 



Some comments on adaption 

•  Re-learning takes automatically place without 
–  user input to the system 
–  the agent's knows nothing about the different 

concepts  
–  no "performance gap" during to the re-learning 



Hierarchical vs. Flat MDPs 

•  In the "flat" MDP we consider a single 
behaviour that takes as input all state 
variables 
–  Learning takes much longer 
– Adaption unlikely ... 



Transfer on the real robot platform 
Achieved score 

•  Learner: 0.75 goals/minute 
•  CS-Freiburg player: 1.37 goals/minute 
•  Good result, but could still be improved... 

– Better (more realistic) simulation 
–  Learning of additional skills 
–  etc ... 



Video Result 
Player executes learned behaviors and action selection 



Multi-agent Learning revised 

•  So far we considered a relaxed version of the 
multi-agent learning problem: 
–  Other agents were considered as stationary, i.e. 

executing a fixed policy 
•  What if other agents are adapting to changes as well? 
•  In this case we are facing a much more difficult learning 

problem with a moving target function   

–  Furthermore, we did not consider multi-agent 
cooperation 

•  Agents were choosing their actions greedily in that they 
maximized their individual reward 

•  What if a team of agents shares a joint reward, e.g. scoring 
a goal in soccer together? 



Example: Two robots learn playing 
soccer simultaneously  

Multi-agent environments are non-
stationary, thus violating the traditional 

assumption underlying single-agent 
learning approaches 



Joint-Action Learners 
Cooperation by learning joint-action values 

•  Consider the case that we have 2 offenders in 
the soccer game instead of one 
–  The optimal policy depends on the joint action 
–  For example, if robot A approaches the ball, the 

optimal action of robot B would be to do 
something else, e.g. going to the support 
position 

•  Solution: each agent learns a Q-Function of 
the joint action space: Q(s,<a1,a2,…,an>) 

•  Observation or communication of actions 
performed by the team mates is required! 



The Agent-Environment Interface for 
Joint-Action learners 

  

€ 

Agent and environment interact at discrete time steps:   t = 0,1, 2,…
     Agent observes state at step t :     st ∈ S,at

− i ∈
 
A 

     produces action at step t :   at ∈ A(st )
     gets resulting reward :     rt +1 ∈ ℜ

     and resulting next state :   st +1

i 
Agent 0 

Agent 1 

Agent N-1 

Agent N 

Actions a0, ... ,ai-1, ai+1,..., aN 



Joint-Action Learners 
Opponent Modeling 

•  Maintain an explicit model of the opponents/team-mates for 
each state 

•  Q-values are updated for all possible joint actions at a given 
state 

•  Also here the key assumption is that the opponent is 
stationary 

•  Opponent modeling by counting frequencies of the joint 
actions they executed in the past 

•  Probability of joint action a-i: 

•  where C(a−i) is the number of times the opponent has played 
action a−i 



Joint-Action learners 
Opponent Modeling Q learning for agent i 



Markov Games 

•  Also known as Stochastic Games or MMDPs 
•  Each state in a stochastic game can be 

considered as a matrix game* with payoff for 
player i of joint action a in state s determined 
by Ri(s, a) 

•  After playing the matrix game and receiving 
the payoffs, the players are transitioned to 
another state (or matrix game) determined by 
their joint action 

* See slides from lecture 5: Game Theory 



Minimax-Q 

•  Extension of traditional Q-Learning to zero-sum 
stochastic games 

•  Also here the the Q function is extended to 
maintain the value of joint actions 

•  Difference: The Q function is incrementally 
updated from the function Valuei 

•  Valuei computes the expected payoff for player i if 
all players play the unique Nash equilibrium 

•  Using this computation, the Minimax-Q algorithm 
learns the player's part of the Nash equilibrium 
strategy 



Summary 

•  RL can be used for learning online and model-free MDPs 
–  In the past, different tasks, such as playing back gammon or robot 

soccer, have been solved surprisingly well 

•  However, it also suffers under the "curse of dimensionality", 
hence, success highly depends on an adequate representation or 
hierarchical decomposition 

•  Standard RL methods are in general not well suited for MA 
problems (but sometimes they work surprisingly well) 

•  The approach of Joint-Action learners allows to improve 
coordination among agents 

•  Stochastic games are a straightforward extension of MDPs and 
Game Theory 

–  However, they assume that games are stationary and fully specified, 
enough computer power to compute equilibrium is available, and 
other agents are also game theorists… 

–  ... which rarely holds in real applications  
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