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Introduction 

•  What are peer-to-peer networks ? 
•  Mainly known from file sharing systems in the Internet, such 

as Napster, Gnutella, and BitTorrent 
•  “Peers” are equally ranked partners, i.e., no one is above the 

others and no one centrally controls information exchange 

•  Peer-to-Peer networks are not client-server networks! 
–  Here a privileged node (server) controls the other nodes (clients) 

•  Peer-to-Peer networks are overlay networks of the Internet 
–  A network protocol in the application layer of the OSI model 

located above the network layer (e.g. IP) and transport layer 
(e.g. TCP)  

•  In contrast to client-server, peer-to-peer scales-up with the 
number of nodes! 



Introduction 
Global Internet Traffic Shares 1993-2004 

Source: Ipoque 2007 / Lecture Slides C. Schindelhauer  



Introduction 
P2P share Germany 2007 
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Development of P2P Networks 

•  Napster (1999-2000) 
–  Central index server (all queries to server) 

– Guarantee to find files 

–  Stopped by court decision 

•  Gnutella (2000) 
– No single point of failure 

– No guarantee that files are found 
–  Flooding query model (queries involve many nodes!) 

•  FreeNet (2000) 
–  Fully decentralized 

– Heuristic key based routing 

– No guarantee that files are found 

•  BitTorrent (2001)  
–  First one to adopt DHT technology 

– Attains both the decentralization of Gnutella and Freenet, but also 
efficiency and completeness of Napster 



Napster 

•  Client-Server structure (not really 
a P2P network) 

•  Server stores lists of clients an 
files 

•  Files themselves are stored on 
each client’s local hard disk 

•  Downloading a file: 
–  Client queries filename on server 

–  Server replies the owner of the file 

–  Client downloads directly from owner

•  Comments:  
–  Central structure enables censorship 

and is vulnerable 

–  Napster does not scale up! 

+  Files are always found if they are in 
the network   



Gnutella 
Bootsrapping / Connecting 

•  Initially, the client software holds a 
list of peers 

•  When bootsrapping, the client tries to 
connect to one node of the list 

•  From a found active node, up to N 
neighbors are queried (by sending a 
ping message) 

–  The ping message contains a number 
named Time To Live (TTL) entry, which 
is decreased each time when passing a 
node 

–  The message is not further routed 
when TTL=0 

•  From the returns of active peers 
(pong message) the list of peers is 
updated (and stored for the next 
bootstraping process) 

•  From the list the client randomly 
selects k peers as its neighbors 



Gnutella 
Query 

•  Queries (for files to download) 
are sent to all neighbors 

•  Queries are forwarded by each 
node until a maximum hop-
distance (TTL entry) 

•  After a successful query (a node 
returned a queryHit message), 
the file is directly downloaded 
from that node 

•  Comments:  
+  Gnutella is scalable, and very 

robust and failsafe against 
attacks  

–  The depth-limited search (TTL 
value) only queries a fractions of 
the network 

–  When increasing the search 
depth, high messages density is 
the result, and thus high latency 
of queries   



Distributed Hash-Table (DHT) I 

•  What is hashing in general? 
–  To assign keys (e.g. filenames) evenly to a much smaller set (e.g. peers 

in the network) 

–  In general, a hash function               maps keys from K to hash values 
from Q   

–  Example: We want to map filenames of songs to 5 nodes: 
•  Hash function f(x) = x mod 5, since we have 5 nodes 

•  The ASCII string of music.mp3 corresponds to the decimal number 
870920545682538843149  

•  Therefore, the hash value can be computed by f(870920545682538843149) = 
4 

•  However, (conv.) Hash Tables can not be applied to P2P nets: 
–  Nodes cannot be directly addressed such as memory. They can only be 

addressed by following the links of the network 

–  Inserting and deleting a peer also implies readjusting the hash function 

–  Therefore, inserting and deleting nodes is inefficient 
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Distributed Hash-Table (DHT) II 
Implementation in CANs 

•  A DHT is a distributed data structure holding the mapping 
from keys (e.g. MD5 sums) to file locations (e.g. IPs) 

•  In Content Addressable Networks (CANs) Distributed Hash 
Tables are used were 

–  hash values are in the two dimensional space of a square Q: 

–  Note: values can also be defined for a hyper cube, i.e. d>2 

–  Q is partitioned into rectangles where each rectangle belongs to one 
peer 

–  Each peer is responsible for all files assigned to its rectangle 

–  Bootstraping: 
•  Initially, the whole square is owned by the first peer 

•  When inserting a new peer p, a point z in Q is chosen randomly 
•  The owner p’ of the rectangle around z is queried 

•  The rectangle of p’ is halved and the network structure (list of neighbors of 
each peer) is adjusted 
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Distributed Hash-Table (DHT) IV 
Inserting Nodes into the CAN 

(a) (b) (c) 

(d) (e) 



Distributed Hash-Table (DHT) III 
Assignment of data to nods in CAN 

The Hash function 
has to guarantee that 
data (e.g. filenames, 
MD5s) are equally 
distributed on the 

square 



CAN Structure and Routing 

•  Local connections 
–  Each peer maintains connections to other peers neighboring its rectangle 

–  When inserting a new node, neighbor peers are adjusting their information 
accordingly 

•  Routing in CAN 
–  First, compute the position P of the data by the hash function 

–  Second, forward the message to the neighbor closest to P until reaching the 
maintaining node 

–  Expected number of hops when squares are equally sized:   

•  When peers are leaving… 
–  … they typically do not announce it 

–  Thus, peers continuously test their neighborhood with a ping message 

–  The first neighbor that detects a missing peer takes over its area 

–  Therefore, peers can be responsible for many rectangles 

–  However, repeated insertions and deletions lead to a fragmentation of the 
network!  
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CAN Fragmentation When Nodes Are 
Leaving 

Peer 2 and Peer 8 are 
leaving the network 

Peer 4 takes over the area of 
Peer 8 and Peer 6 the one of 

Peer 2 



CAN Defragmentation I 
Network from last slide represented as binary tree 

Total square Q 

Half squares [0.5,0)x [0,1) 
and [0,0.5)x [0,1) 

Leaves containing peers 



CAN Defragmentation II 
Simple Case 

•  Defragmentation can be 
initiated by peers having more 
than one rectangle 

•  This is done by handing over 
their smallest rectangle A to 
another peer 

•  Simple case:  
•  the brother tree of A consists 

of a single leaf B only 

•  Then A can be handed over to 
the peer (P16) in charge of B 

•  Both rectangles are 
subsequently merged by this 
peer 

A B 



CAN Defragmentation III 
Difficult Case 

•  Difficult case:  
•  the brother tree of A 

consists not of a single leaf  

•  Then the peer (p6) 
performs Depth First Search 
(DFS) until it finds two 
neighboring leaves 

•  Both leaves are merged and 
now controlled by a single 
peer (p13) 

•  The released peer (p11) is 
then assigned to A  

A 

DFS 

A 



Case-study: DHTs For Mobile Robot 
Teams Solving Intra-Logistics Tasks 
Motivation 

•  A remarkably high degree of automation has been reached in 
production and intra-logistics nowadays 

•  However, handcarts and forklifts manually steered by humans 
are still indispensable in many of situations 

–  For example, boxes filled with small parts by a automated picking system 
have to be delivered to packing stations  

•  Fixed installations exists, for example, conveyors either 
overhead- or floor-based   
–  Drawback: when the business model of the company 

changes existing installations have to be redesigned 

•  The Vision: 
–  To build-up a team of autonomous and decentralized units 

communicating on a low-range-basis with each other  
–  A team consisting of hundreds of robots organizes material 

flows autonomously and decentralized 



Existing Intra-Logistics System: KIVA 



The KIVA System 

•  Strengths: 
•  Comparably cheap robots (no laser scanner) 

•  Cheap localization via barcodes in the ground 
•  Robots optimize their controller online for reducing misalignments 
•  Simplified path planning due to grid structure of the shelves  
•  Virtual highways: Multiple paths are joined to one highway 

•  Drawbacks: 
•  Centrally controlled (might not scale-up) 
•  Cannot operate in environments with humans 
•  Cannot be integrated in arbitrary environments, i.e. needs a large 

hangar-like structure 
•  Environment has to be engineered (barcodes)  



Karis (Kleinskalige Autonomes Redundantes 
Intralogistiksystem) 

•  Goal:  
–  Team of 100 decentralized “elements” to 

accomplish autonomously transportation 
tasks 

•  Features: 
–  Automatic load and unload at assembly 

chains 

–  Automatic battery recharging via the ground  

–  Mechanism to couple with stations or other 
vehicles 

•  Challenges:  
–  Navigation and coordination of decentralized 

teams 

KARIS element with conveyer 

The Vision: KARIS elements 
teaming up for carrying larger 

goods or building assembly lines 



Karis Navigation I 
Monte-Carlo Localization (MCL) 

13.01.2005  24 

Measuring the distance (blue) to surrounding 
objects (grey) with a laser range finder 

Particel-Filter: Method to compute the robot pose, 
where the estimate represented by a set of 
particles (red). Each particle represents a 
posssible pose of the robot 

Prediction step: For each particle a position is 
sampled according to the motion model 

Corection step: Each particle is weighted according 
to the current observation (LRF) and the sensor 
model 

Selection: New particles are chosen with a 
probability proportional to their weight 



Karis Navigation II 
Monte-Carlo Localization (MCL) & A* Planning 



Karis Navigation III 
Larger GridMap generated at a logistics company  

3rd floor 

2nd  floor 

Google Map 
Image 



DHTs for assigning robots to stations 
Problem Description 

•  Boxes are queued at loading stations  
–  coming from an outer infrastructure such as trucks or automated 

shelves  

•  Robots have to deliver boxes between loading stations 
•  Wish list: 

–  Minimal worst case time delivery  
–  Maximal efficiency (e.g. minimize waiting or blocking of robots)  
–  Truly decentralized & autonomous to avoid single point of failure 
–  Low network traffic, (i.e. no broadcasts ála Gnutella) 

•  Challenges: 
–  Travel times between stations can change (i.e. new obstacles in the 

path, wheel malfunctions, etc.) 
–  Robots can be inoperable 
–  Load, i.e., number of boxes arriving at stations can vary 

•  Claim:  
–  DHT solution can solve these three problems 



DHTs for assigning robots to stations 
Performance Metric 

Computation of efficiency ei : 

Throughput rate Tr:  
 number of boxes dispatched per minute 

     (can simply be counted over time)  

Max. possible throughput rate Tr-max:  
 MIN( # boxes arriving , max due to latency)  

In other words: relation between current 
performance and max possible 
performance. 
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DHTs for assigning robots to stations 
Weighted Distance 

NQ   current queue length of station i 
NC   # of robots assigned to the station i 
Ndelivered  # of totally delivered packages (bounded 20min) 
ei    efficiency of station i 

Mobile nodes selects at each time the station with min(Di) 

€ 

wi =
1
ei

NQ − NC

Ndelivered
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Di =
log di( )
wi

, for di > dmin

Computed & 
published by 
stations (SSI) 

Weight expresses how 
eligible a station is for 

being served 



Mobile Content Addressable Network (MCAN) 
Message Traffic and Network Repair 

•  Geographic Routing:  
–  Locations of stationary nodes (loading stations) given 
–  Routing to neighbor which is nearest to destination 
–  Can generally not route to mobile nodes since their 

location changes!  

•  Stations broadcast Station Status Info (SSI) reflecting their 
statistics 
–  Each mobile node forwards the SSI to its neighbors  
–  However, TTL of SSI messages is limited to the area defined 

by Di 

–  Therefore, no network wide broadcast!  

•  Automatic network repair  
–  When memorized SSIj of station j is too old, move towards 

station j 



Mobile Content Addressable Network (MCAN) 
Bootstraping / Construction 

•  MCAN construction: 
–  Mobile node started in the network area 
–  Search for the network, i.e., contact the nearest node in 

communication range 
–  Receive SSIs from all stations via the contact node and 

compute for each SSI the Di = f(rx, ry, SSIi)  
–  Select station sj with min(Di) 
–  Send REQ to sj and go towards region of sj 
–  When in neighbor range of sj: negotiate for a delivery 

task (Contract-Net Protocol) 



Visualization of max(Di) 



Simulation Results I 
Environments In USARSim 



Simulation Results II 
Comparing DHT Solution with the Baseline 

Baseline DHT 

The baseline approach assigns robots according to their distance to 
stations. Robots receive task offers from all stations and decide for 

the station with the shortest distance. 



Simulation Results III 
Adaption to Sudden Change 

Running with 18 robots. After 
 30 min 10 robots were killed 

Change of station load: Till 40 
min running with 4box/sec, then, 
6 stations with 2/sec and 5/sec   



Simulation Results IV 
Visualization of max(Di) when station load changes 

12 stations with 4 boxes 
per minute 

6 stations with 2 boxes per 
minute and six stations 
with 5 boxes per minute 



Real-World Results I 
Experiments in 101 building 

Team of 3 robots DHT distribution of robots 
to 3 stations 



Real-World Results  
Efficiency from 3 robots with 4 stations 



Real-World Results  
Video 



Summary 

•  The development of peer-to-peer systems on the Internet 
indicates the need for decentralized solutions when the 
number of clients increases 

•  Decentralized Hash Tables have proven to be a strong 
mechanism for this problem 

•  In the future they might also play an important role in 
multi agent systems, at least, when the number of agents 
is significantly large 
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