
9.  Peer-to-Peer Networks for
team coordination

Napster, Gnutella, DHTs, Case Study:
DHT-based team coordination

 Alexander Kleiner, Bernhard Nebel

Introduction to Multi-Agent
Programming

Contents

•  Introduction
•  P2P systems: Napster, Gnutella, & Co.
•  Distributed Hash Tables (DHTs)
•  Case-study: DHT-based team coordination in

logistics
•  Summary

P2P Netzwerke: Algorithmen Und Methoden

By Peter Mahlmann und Christian Schindelhauer

Springer, Berlin (Gebundene Ausgabe - 12. Juli 2007)

Many illustrations have been taken from the book above.

Lecture Material

Introduction

•  What are peer-to-peer networks ?
•  Mainly known from file sharing systems in the Internet, such

as Napster, Gnutella, and BitTorrent
•  “Peers” are equally ranked partners, i.e., no one is above the

others and no one centrally controls information exchange

•  Peer-to-Peer networks are not client-server networks!
–  Here a privileged node (server) controls the other nodes (clients)

•  Peer-to-Peer networks are overlay networks of the Internet
–  A network protocol in the application layer of the OSI model

located above the network layer (e.g. IP) and transport layer
(e.g. TCP)

•  In contrast to client-server, peer-to-peer scales-up with the
number of nodes!

Introduction
Global Internet Traffic Shares 1993-2004

Source: Ipoque 2007 / Lecture Slides C. Schindelhauer

Introduction
P2P share Germany 2007

Source: Ipoque 2007 / Lecture Slides C. Schindelhauer

Development of P2P Networks

•  Napster (1999-2000)
–  Central index server (all queries to server)

– Guarantee to find files

–  Stopped by court decision

•  Gnutella (2000)
– No single point of failure

– No guarantee that files are found
–  Flooding query model (queries involve many nodes!)

•  FreeNet (2000)
–  Fully decentralized

– Heuristic key based routing

– No guarantee that files are found

•  BitTorrent (2001)
–  First one to adopt DHT technology

– Attains both the decentralization of Gnutella and Freenet, but also
efficiency and completeness of Napster

Napster

•  Client-Server structure (not really
a P2P network)

•  Server stores lists of clients an
files

•  Files themselves are stored on
each client’s local hard disk

•  Downloading a file:
–  Client queries filename on server

–  Server replies the owner of the file

–  Client downloads directly from owner

•  Comments:
–  Central structure enables censorship

and is vulnerable

–  Napster does not scale up!

+  Files are always found if they are in
the network

Gnutella
Bootsrapping / Connecting

•  Initially, the client software holds a
list of peers

•  When bootsrapping, the client tries to
connect to one node of the list

•  From a found active node, up to N
neighbors are queried (by sending a
ping message)

–  The ping message contains a number
named Time To Live (TTL) entry, which
is decreased each time when passing a
node

–  The message is not further routed
when TTL=0

•  From the returns of active peers
(pong message) the list of peers is
updated (and stored for the next
bootstraping process)

•  From the list the client randomly
selects k peers as its neighbors

Gnutella
Query

•  Queries (for files to download)
are sent to all neighbors

•  Queries are forwarded by each
node until a maximum hop-
distance (TTL entry)

•  After a successful query (a node
returned a queryHit message),
the file is directly downloaded
from that node

•  Comments:
+  Gnutella is scalable, and very

robust and failsafe against
attacks

–  The depth-limited search (TTL
value) only queries a fractions of
the network

–  When increasing the search
depth, high messages density is
the result, and thus high latency
of queries

Distributed Hash-Table (DHT) I

•  What is hashing in general?
–  To assign keys (e.g. filenames) evenly to a much smaller set (e.g. peers

in the network)

–  In general, a hash function maps keys from K to hash values
from Q

–  Example: We want to map filenames of songs to 5 nodes:
•  Hash function f(x) = x mod 5, since we have 5 nodes

•  The ASCII string of music.mp3 corresponds to the decimal number
870920545682538843149

•  Therefore, the hash value can be computed by f(870920545682538843149) =
4

•  However, (conv.) Hash Tables can not be applied to P2P nets:
–  Nodes cannot be directly addressed such as memory. They can only be

addressed by following the links of the network

–  Inserting and deleting a peer also implies readjusting the hash function

–  Therefore, inserting and deleting nodes is inefficient

€

f :K →Q

Distributed Hash-Table (DHT) II
Implementation in CANs

•  A DHT is a distributed data structure holding the mapping
from keys (e.g. MD5 sums) to file locations (e.g. IPs)

•  In Content Addressable Networks (CANs) Distributed Hash
Tables are used were

–  hash values are in the two dimensional space of a square Q:

–  Note: values can also be defined for a hyper cube, i.e. d>2

–  Q is partitioned into rectangles where each rectangle belongs to one
peer

–  Each peer is responsible for all files assigned to its rectangle

–  Bootstraping:
•  Initially, the whole square is owned by the first peer

•  When inserting a new peer p, a point z in Q is chosen randomly
•  The owner p’ of the rectangle around z is queried

•  The rectangle of p’ is halved and the network structure (list of neighbors of
each peer) is adjusted

€

x,y()∈ 0,1[) × 0,1[)

Distributed Hash-Table (DHT) IV
Inserting Nodes into the CAN

(a) (b) (c)

(d) (e)

Distributed Hash-Table (DHT) III
Assignment of data to nods in CAN

The Hash function
has to guarantee that
data (e.g. filenames,
MD5s) are equally
distributed on the

square

CAN Structure and Routing

•  Local connections
–  Each peer maintains connections to other peers neighboring its rectangle

–  When inserting a new node, neighbor peers are adjusting their information
accordingly

•  Routing in CAN
–  First, compute the position P of the data by the hash function

–  Second, forward the message to the neighbor closest to P until reaching the
maintaining node

–  Expected number of hops when squares are equally sized:

•  When peers are leaving…
–  … they typically do not announce it

–  Thus, peers continuously test their neighborhood with a ping message

–  The first neighbor that detects a missing peer takes over its area

–  Therefore, peers can be responsible for many rectangles

–  However, repeated insertions and deletions lead to a fragmentation of the
network!

€

O n()

CAN Fragmentation When Nodes Are
Leaving

Peer 2 and Peer 8 are
leaving the network

Peer 4 takes over the area of
Peer 8 and Peer 6 the one of

Peer 2

CAN Defragmentation I
Network from last slide represented as binary tree

Total square Q

Half squares [0.5,0)x [0,1)
and [0,0.5)x [0,1)

Leaves containing peers

CAN Defragmentation II
Simple Case

•  Defragmentation can be
initiated by peers having more
than one rectangle

•  This is done by handing over
their smallest rectangle A to
another peer

•  Simple case:
•  the brother tree of A consists

of a single leaf B only

•  Then A can be handed over to
the peer (P16) in charge of B

•  Both rectangles are
subsequently merged by this
peer

A B

CAN Defragmentation III
Difficult Case

•  Difficult case:
•  the brother tree of A

consists not of a single leaf

•  Then the peer (p6)
performs Depth First Search
(DFS) until it finds two
neighboring leaves

•  Both leaves are merged and
now controlled by a single
peer (p13)

•  The released peer (p11) is
then assigned to A

A

DFS

A

Case-study: DHTs For Mobile Robot
Teams Solving Intra-Logistics Tasks
Motivation

•  A remarkably high degree of automation has been reached in
production and intra-logistics nowadays

•  However, handcarts and forklifts manually steered by humans
are still indispensable in many of situations

–  For example, boxes filled with small parts by a automated picking system
have to be delivered to packing stations

•  Fixed installations exists, for example, conveyors either
overhead- or floor-based
–  Drawback: when the business model of the company

changes existing installations have to be redesigned

•  The Vision:
–  To build-up a team of autonomous and decentralized units

communicating on a low-range-basis with each other
–  A team consisting of hundreds of robots organizes material

flows autonomously and decentralized

Existing Intra-Logistics System: KIVA

The KIVA System

•  Strengths:
•  Comparably cheap robots (no laser scanner)

•  Cheap localization via barcodes in the ground
•  Robots optimize their controller online for reducing misalignments
•  Simplified path planning due to grid structure of the shelves
•  Virtual highways: Multiple paths are joined to one highway

•  Drawbacks:
•  Centrally controlled (might not scale-up)
•  Cannot operate in environments with humans
•  Cannot be integrated in arbitrary environments, i.e. needs a large

hangar-like structure
•  Environment has to be engineered (barcodes)

Karis (Kleinskalige Autonomes Redundantes
Intralogistiksystem)

•  Goal:
–  Team of 100 decentralized “elements” to

accomplish autonomously transportation
tasks

•  Features:
–  Automatic load and unload at assembly

chains

–  Automatic battery recharging via the ground

–  Mechanism to couple with stations or other
vehicles

•  Challenges:
–  Navigation and coordination of decentralized

teams

KARIS element with conveyer

The Vision: KARIS elements
teaming up for carrying larger

goods or building assembly lines

Karis Navigation I
Monte-Carlo Localization (MCL)

13.01.2005 24

Measuring the distance (blue) to surrounding
objects (grey) with a laser range finder

Particel-Filter: Method to compute the robot pose,
where the estimate represented by a set of
particles (red). Each particle represents a
posssible pose of the robot

Prediction step: For each particle a position is
sampled according to the motion model

Corection step: Each particle is weighted according
to the current observation (LRF) and the sensor
model

Selection: New particles are chosen with a
probability proportional to their weight

Karis Navigation II
Monte-Carlo Localization (MCL) & A* Planning

Karis Navigation III
Larger GridMap generated at a logistics company

3rd floor

2nd floor

Google Map
Image

DHTs for assigning robots to stations
Problem Description

•  Boxes are queued at loading stations
–  coming from an outer infrastructure such as trucks or automated

shelves

•  Robots have to deliver boxes between loading stations
•  Wish list:

–  Minimal worst case time delivery
–  Maximal efficiency (e.g. minimize waiting or blocking of robots)
–  Truly decentralized & autonomous to avoid single point of failure
–  Low network traffic, (i.e. no broadcasts ála Gnutella)

•  Challenges:
–  Travel times between stations can change (i.e. new obstacles in the

path, wheel malfunctions, etc.)
–  Robots can be inoperable
–  Load, i.e., number of boxes arriving at stations can vary

•  Claim:
–  DHT solution can solve these three problems

DHTs for assigning robots to stations
Performance Metric

Computation of efficiency ei :

Throughput rate Tr:
 number of boxes dispatched per minute

 (can simply be counted over time)

Max. possible throughput rate Tr-max:
 MIN(# boxes arriving , max due to latency)

In other words: relation between current
performance and max possible
performance.

€

ei =
Tr
Trmax

DHTs for assigning robots to stations
Weighted Distance

NQ current queue length of station i
NC # of robots assigned to the station i
Ndelivered # of totally delivered packages (bounded 20min)
ei efficiency of station i

Mobile nodes selects at each time the station with min(Di)

€

wi =
1
ei

NQ − NC

Ndelivered

€

Di =
log di()
wi

, for di > dmin

Computed &
published by
stations (SSI)

Weight expresses how
eligible a station is for

being served

Mobile Content Addressable Network (MCAN)
Message Traffic and Network Repair

•  Geographic Routing:
–  Locations of stationary nodes (loading stations) given
–  Routing to neighbor which is nearest to destination
–  Can generally not route to mobile nodes since their

location changes!

•  Stations broadcast Station Status Info (SSI) reflecting their
statistics
–  Each mobile node forwards the SSI to its neighbors
–  However, TTL of SSI messages is limited to the area defined

by Di

–  Therefore, no network wide broadcast!

•  Automatic network repair
–  When memorized SSIj of station j is too old, move towards

station j

Mobile Content Addressable Network (MCAN)
Bootstraping / Construction

•  MCAN construction:
–  Mobile node started in the network area
–  Search for the network, i.e., contact the nearest node in

communication range
–  Receive SSIs from all stations via the contact node and

compute for each SSI the Di = f(rx, ry, SSIi)
–  Select station sj with min(Di)
–  Send REQ to sj and go towards region of sj
–  When in neighbor range of sj: negotiate for a delivery

task (Contract-Net Protocol)

Visualization of max(Di)

Simulation Results I
Environments In USARSim

Simulation Results II
Comparing DHT Solution with the Baseline

Baseline DHT

The baseline approach assigns robots according to their distance to
stations. Robots receive task offers from all stations and decide for

the station with the shortest distance.

Simulation Results III
Adaption to Sudden Change

Running with 18 robots. After
 30 min 10 robots were killed

Change of station load: Till 40
min running with 4box/sec, then,
6 stations with 2/sec and 5/sec

Simulation Results IV
Visualization of max(Di) when station load changes

12 stations with 4 boxes
per minute

6 stations with 2 boxes per
minute and six stations
with 5 boxes per minute

Real-World Results I
Experiments in 101 building

Team of 3 robots DHT distribution of robots
to 3 stations

Real-World Results
Efficiency from 3 robots with 4 stations

Real-World Results
Video

Summary

•  The development of peer-to-peer systems on the Internet
indicates the need for decentralized solutions when the
number of clients increases

•  Decentralized Hash Tables have proven to be a strong
mechanism for this problem

•  In the future they might also play an important role in
multi agent systems, at least, when the number of agents
is significantly large

Literature

•  Peter Mahlmann und Christian Schindelhauer, P2P
Netzwerke: Algorithmen Und Methoden, Springer 2007

•  Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker,
S. A scalable content-addressable network, Computer
Communication Review. Volume 31., Dept. of Elec. Eng. and
Comp. Sci., University of California, Berkeley (2001) 161–
172.

•  David Karger, Eric Lehman, Tom Leighton, Mathhew Levine,
Daniel Lewin, Rina Panigrahy, Consistent Hashing and
Random Trees: Distributed Caching Protocols for
Relieving Hot Spots on the World Wide Web, STOC 1997

•  D. Sun, A. Kleiner, C. Schindelhauer, Decentralized Hash
Tables For Mobile Robot Teams Solving Intra-Logistics
Tasks, to appear AAMAS 2009

