
7.  Working together

Coalitions and Role Assignment
 Alexander Kleiner, Bernhard Nebel

Introduction to Multi-Agent
Programming

Contents

•  Introduction
•  Coalition formation

– Case study: ResQ Freiburg task allocation
•  Dynamic Role Assignment

– Case study: CS-Freiburg
•  Summary

Coalition Formation
Introduction

•  Necessary when tasks are more efficiently solved by a
cooperating group of agents
–  E.g. ambulances can faster rescue victims if they are in a

larger group
•  Assignment of groups to tasks is necessary when tasks

cannot be performed by a single agent
–  E.g. a single fire brigade cannot extinguish a large fire

•  A group of agents is called a coalition
•  A coalition structure is a partitioning of the set of

agents into disjoint coalitions
•  An agent participates in only one coalition
•  A coalition may consist of only a single agent
•  Generally, coalitions consist of heterogeneous agents

Coalition Formation
Example

Coalition Formation
Example

Applications for coalition formation

•  In e-commerce, buyers can form coalitions to purchase a
product in bulk and take advantage of price discounts
(Tsvetovat et al., 2000)

•  In Real Time Strategy (RTS) games groups of heterogeneous
agents can jointly attack bases of the opponent. Mixture of
agents has to be according to the defence strategy of the
opponent

•  Distributed vehicle routing among delivery companies with
their own delivery tasks and vehicles (Sandholm 1997)

•  Wide-area surveillance by autonomous sensor networks
(Dang 2006)

•  In Rescue, team formation to solve particular sub-problems,
e.g. larger robots deploy smaller robots within confined
spaces

Coalition Formation
Definition I

•  Coalition formation includes three activities:
–  Coalition structure generation

•  Partitioning of the agents into exhaustive and disjoint
coalitions

•  Inside the coalitions, agents will coordinate their activities,
but agents will not coordinate between coalitions

–  Solving the optimization problem in each coalition:
•  pooling the tasks and resources of the agents in the coalition

and solving the joint problem
•  The coalition objective could be to maximize the monetary

value, or the overall expected utility
–  Dividing the value of the generated solution:

•  In the end, each agent will receive a value (money or utility)
as a result of participating in the coalition

•  In some problems, the coalition value the agents have to
share is negative, being a shared cost

Discussed in
this lecture

Coalition Formation
Definition II

•  A group of agents S ⊆ A is called a coalition, where A
denotes the set of all agents and S ≠ ∅
–  The coalition of all the agents is called grand coalition

•  A coalition structure (CS) partitions the set of agents
into coalitions
–  CS∗ is the social welfare maximizing coalition structure

•  The value of each coalition S is given by a function vS
–  Each coalition value is independent of non-members

actions

Coalition structure generation

•  The value of a coalition structure is given by:

•  The goal is to maximize the social welfare of the
set of agents A by finding a coalition structure
that satisfies:

V(CS) =
S CS

vS

CS* = argmax
CS Partitions(A)

V(CS)

Special Coalition Values

•  The coalition values are super-additive iff for every pair
of disjoint coalitions S, T ⊆ A: vS∪T ≥ vS + vT
–  If coalition values are super-additive, then the coalition

structure containing the grand coalition gives the highest
value

–  Agents cannot do worse by coordination

•  The coalition values are sub-additive iff for every pair
of disjoint coalitions S, T ⊆ A: vS∪T < vS + vT
–  If coalition values are sub-additive, then the coalition

structure {{a} | a ∈ A} in which no agent cooperates
gives the highest value

•  Is the ambulance rescue task in the RoboCup Rescue
domain super-additive, sub-additive, or none of both?

Coalition structure generation
Example

A = { 1 , 2 , 3 , 4 }

The input is all possible coalitions and their values:

395 {1, 2, 3, 4} 316

297

335

272

{1, 2, 3}

{1, 2, 4}

{1, 3, 4}

{2, 3, 4}

189

210

203

171

215

182

{1, 2}

{1, 3}

{1, 4}

{2, 3}

{2, 4}

{3, 4}

92

96

87

105

{1}

{2}

{3}

{4}

vs CL4 vs CL3 vs CL2 vs CL1

For N agents the number of possible coalitions is 2N-1
but the number of possible coalition structures is NN/2

Coalition graph

•  For 4 agents: A = { 1 , 2 , 3 , 4 }

•  Nodes represent coalition structures

•  Arcs represent either merges (downwards) or splits (upwards)

Coalition Structure Search I

•  To search the whole coalition graph for the optimal
coalition is intractable (in practice up from |A|>15)

•  Can we approximate the search by visiting only a
subset of L nodes?

•  One requirement is to guarantee that the found
coalition structure is within a worst case bound from
optimal:

 k*V(CSL
) ≥ V(CS)

CSL* = argmax
CS L

V(CS)

Coalition Structure Search II

•  Theorem: to bound k for some subset N of the coalition
structures, it suffices to search the lowest two levels of the
coalition structure graph
–  With this search, the bound is k = |A|, this bound is tight, and

the number of nodes searched is n = 2|A|−1

–  No other search algorithm (than the one that searches the
bottom two levels) can establish a bound k while searching only
n = 2|A|−1 nodes or fewer

•  Intuition:
–  The lowest two levels of the coalition graph are the only two

levels in which all possible coalitions occur
•  A level l consists of coalition structures containing l coalitions
•  Hence, if l > 2, the largest coalition in the level contains |A|
− l + 1 agents since the smallest possible coalition contains
1 agent

Coalition Structure Search III

•  Algorithm:
– Search the bottom two levels of the coalition

structure graph
– Continue with breadth-first search from the top

of the graph as long as there is time left, or
until the entire graph has been searched

– Return the coalition structure that has the
highest welfare among those seen so far

•  Note the search can be distributed among self-
interested agents

Case study: ResQ Freiburg task
allocation

•  Problem description:
–  N ambulance teams have to rescue M civilians after an earthquake
–  Civilians are characterized by Buriedness, Damage and Hit-points

•  Buridness is proportional to the required resources (ambulance cycles)
•  As more hit-points as more likely the civilian dies
•  The amount of damage increases the growth of hit-points, i.e.

accelerates the time of death
–  Costs are the time to rescue a civilian, composed of the coalition’s joint

travel time to reach the victim, and the time needed for the rescue
–  The overall utility is the number of rescued civilians (the civilians

brought to a refuge)
•  We considered the ambulance rescue task as super-additive

–  The rescue operation itself is super-additive
–  Assumption: travel costs are the same for every agent
–  However, consider the situation of 2 victims at two different locations

that could both be rescued by a single agent but will die within a short
amount of time

–  Maybe not the optimal solution!

ResQ Freiburg task allocation
Task allocation

•  The problem reduces to assign a sequence R of rescue tasks
to the entire set of agents A (here the ambulances):
–  R = <r1, r2, …, rN> where ri denotes a rescue task and i the

position in the sequence

•  U(R) denotes the predicted utility (the number of survivors)
when executing sequence R

•  Hence, the problem is find the optimal sequence from the set
of all possible sequences
–  R* = arg max U(R)

•  Enumerating all possible sequences is impossible within
limited time (the world model changes frequently, altering
the current sequence)

•  Greedy solutions
–  Prefer victims that can be rescued fast (small buridness)
–  Prefer urgent victims (high damage)

ResQ Freiburg task allocation
Implementation

•  Non-allocated agents (e.g. police & fire brigades)
continuously search unexplored locations and update
information (e.g. buridness, health) about known victims

•  The ambulance station (agent)
–  predicts for each known victim the lifetime and costs for rescue
–  simulates rescue sequences, selected by a genetic algorithm,

over the set of known victims
–  When a better sequence has been found, the rescue sequence of

agents in the field is altered
•  Life time prediction

–  Learning of a decision tree for the classification of victims into
will die and will survive

–  Adaptive Boosting (Ada Boost) for the regression learning of the
life time prediction (previously on data sets)

–  Calculation of confidence values with respect to the age of
information (e.g. as older the information as more unreliable the
prediction)

ResQ Freiburg task allocation
Genetic Optimization

•  Local search, i.e. hill climbing, that continuously improves
the current best solution (selection)

•  Solutions are represented by strings (DNA) that are locally
modified for finding better outcomes (mutation)
–  For example 543261  534261

•  Offsprings are generated by a crossing operation
–  For example “one-point crossover”

•  Genetic pool is initialized with greedy solutions (e.g. prefer
urgent victims or prefer victims that can be rescued fast)

•  Elitism: Keep best two solutions in the genetic pool
•  Anytime execution:

–  Number of genetic pool generations can be adjusted according
to CPU usage

–  Optimization can anytime be stopped at current best solution

ResQ Freiburg task allocation
Results RoboCup 2004 cont.

Number of saved civilians by greedy
and genetic sequence optimization

on different maps

ResQ Freiburg task allocation
Results RoboCup 2004

Number of rescued civilians

Task Allocation For Fire Brigades

•  Fires have to be clustered in order to define tasks
–  For each cluster a utility has to be computed, e.g. # of victims nearby,

of neighboring houses
–  For each cluster the # of needed fire brigades has to be computed

•  Problem: How to assign fire brigades to fire clusters efficiently?
–  Auctions are problematic due to communication constraints of the

domain
–  Coalition formation

•  Is the problem is super additive?
•  Plays the sequence an important role?

•  Some more problems:
–  Some fires are more dangerous than others due to their firyness
–  Some fires can be much faster extinguished than others due to size and

material of the building
–  It is advantageous to prefer “border fires” in order to stop fire spread
–  Logistics: How to optimally place fire brigades around fires in order to

avoid that they block each other?
•  Maybe a “task” for the exercises

ResQ Freiburg task allocation
Example Animation

Dynamic Role Assignment
Introduction

•  Role assignment is a computational cheap mechanism to efficiently
coordinate agents
–  Individual roles are assign according to the team formation
–  Can be applied in domains with N pre-defined tasks and M

robots that can potentially be assigned to each task
–  Particularly suited in dynamic domains, such as robot soccer,

where the optimal assignment depends on the current world
state

•  Example domain robot soccer:
–  The goal is to avoid swarm behavior and inference

•  do not attack your own team mates
•  do not get into the way of an attacking or defending robot

–  Task decomposition and task (re-)allocation
•  the player which is closest to the ball should go to the ball
•  If one player cannot do his task, another should take over

–  Joint execution: passing the ball

Dynamic Role Assignment
General Algorithm

•  Assumptions:
–  There are N available roles (not necessarily distinct)
–  There is a fixed ordering {1, 2, …, N} of the roles. Role 1 must be assigned first,

followed by role 2, etc.
–  Each agent can be assigned to only one role
–  The utility uij reflects how appropriate agent i is for role j given the current state

•  Role assignment algorithm:

for all agents in parallel
 I := ∅; // Committed assignments with ordering
 for each role j = 1,…,N

 compute utility ui,j; // Own preference of agent i

 broadcast ui,j; // To all other agents

 end;

 Wait until all ui,j are received //From all the other agents
 for each role j = 1,…,N

 assign role j to agent i* = arg maxi∉I {ui,j};
 I := I ∪ { i* }; // Add assignment
 end;

end.

Case Study: CS-Freiburg
Dynamic roles

•  Each player can have one of four roles:
–  goalie (fixed)

•  special hardware setup  unable to change its role
–  active player: in charge of dealing with the ball

•  can approach the ball or to bring the ball forward
towards the opponent goal

–  strategic player: defender
•  maintains a position back in its own half

–  supporter: serves the team
•  in defensive play it complements the team’s

defensive formation
•  in offensive play it presents itself to receive a pass

close to the opponents goal

Case Study: CS-Freiburg
Role Utilities

•  Placement: each role has a
preferred location, which depends
on the situation:

–  ball position, position of team mates
and opponents

–  defensive situation or attack
–  computed by potential fields

•  Utility for each role:
–  “Negative utility (costs)” for reaching

the preferred location of the role
–  Costs are computed from partial

costs for distance (ud), turn angle
(ut), objects on the path (uo)

–  Weighted sum to ensure utilities
between 0..1 :Uij= wdud+wtut+wouo

active
Role:

strategic
role:

supporter
role:

Case Study: CS-Freiburg
Dynamic Role Assignment

•  Each player computes the utility for each role and
broadcasts it to the other players

•  Given all utilities, each player tries to maximize the group
utility
–  under the assumption that all team members do the same

•  Group utility:
–  Consider all possible assignments and compute the summed

utility from each agents’ individual utility for its assigned role
–  Take the assignment with the highest utility sum as solution

•  Roles are reassigned only when
–  the role change is significant, i.e. the new utility >> old utility

(hysteresis factor to avoid oscillation)
–  two players agree (by communication)

•  Note that opinion about global position can differ (even
with a global world model)
–  Agents might “lie” without intention

Case Study: CS-Freiburg
Example for Role Switching I

Attack against
Osaka (Japan).
The attacking
robot is blocked
by a defender and
consequently
replaced by an
unblocked player.

Case Study: CS-Freiburg
Example for Role Switching II

Defense against
Artisti Veneti
(Italy).
The roles active
and strategic
player are
switched a
couple of times

Case Study: CS-Freiburg
Joint Execution: A Pass . . . that was Unsuccessful

A pass in the semi-
final against the
Italian ART Italy
team (RoboCup
1999). This was
based on standard
plan: “if it is not
possible to score
directly, wait until
supporter arrives,
then make the
pass”

Case Study: CS-Freiburg
Demo Webplayer

See www.cs-freiburg.de

Summary

•  Action selection and coordination are essential when
acting in groups
–  If implemented efficiently, you can win a robotic

soccer or rescue agent world championship
•  Coalition formation is the process of finding the “social

welfare” coalition structure among a set of agents
–  The search can be computational expensive when

dealing with more than 15 agents
–  In practice, domain dependent heuristics are

necessary for pruning the search tree (i.e.
constraining the split and merge arcs)

•  Dynamic role assignment is an efficient and cheap
method for team coordination
–  However, the protocol requires truthful participants
–  Due to world model inconsistencies, this assumption

can be violated

Literature

•  M. Woolridge: An Introduction to Multi-Agent-Systems,
Wiley, 2001, 294 pages

•  Gerhard Weiss Multiagent Systems: A Modern Approach
to Distributed Artificial Intelligenc, The MIT Press, pages
201-258

•  A. Kleiner, M. Brenner, T. BrÃ¤uer, C. Dornhege, M.
Göbelbecker, M. Luber, J. Prediger, J. Stückler, and B. Nebel
Successful Search and Rescue in Simulated Disaster
Areas Robocup 2005: Robot Soccer World Cup IX pp.
323-334, 2005

•  T. Weigel, J.-S. Gutmann, M. Dietl, A. Kleiner and B. Nebel
CS- Freiburg: Coordinating Robots for Successful
Soccer Playing IEEE Transactions on Robotics and
Automation 18(5):685-699, 2002

