
5.  Agent Communication

Speech Acts, KIF, KQML,
FIPA, JADE, IPC

 Alexander Kleiner, Bernhard Nebel

Introduction to Multi-Agent
Programming

Contents

•  Introduction
•  Speech Acts
•  Agent Communication Languages

– KQML, KIF, FIPA, and Jade
•  IPC (Inter Process Communication)

– Case Study: Rescue Freiburg communication
•  Summary

Introduction

•  Communication in concurrent systems:
–  Synchronization of multiple processes

•  E.g., solving the “lost update scenario”:
–  Two processes p1 and p2 access the shared variable v
–  During modifying of v by p1, p2 reads v and writes back the old value
–  Update from p1 is lost

•  Communication in OOP
–  Method invocation between different modules

•  E.g., object o2 invokes method m1 on object o1 by executing the
code o1. m1(arg), where “arg” is the argument to communicate

•  Which objects makes the decision about the execution of m1?
•  Communication in MAS?

–  Autonomous agents have control over both state and behavior
–  Methods are executed according to the agent’s self-interest
–  However, agents can perform communicative actions, i.e. attempt to

influence other agents
–  Agent communication implies interaction, i.e. agents perform

communication acts

Speech Acts I

•  Most treatment of communication in MAS is inspired
from speech act theory

•  The theory of speech acts is generally recognized to
have begun with the work of the philosopher John
Austin: “How to Do Things with Words” (Austin, 1962)

•  Speech act theory studies the pragmatic use of
language
–  an attempt to account for how language is used by people

every day to achieve their goals and intentions

•  Speech act theory treats communication as action
–  speech actions are performed by agents just like other

actions, in the furtherance of their intentions

Speech Acts II

•  Austin noticed that some utterances are rather
like ‘physical actions’ that appear to change
the state of the world

•  For example:
–  declaring war
–  ‘I now pronounce you man and wife’

•  Austin identified a number of performative
verbs, which correspond to various different
types of speech acts
–  Examples of performative verbs are request,

inform, and promise

Speech Acts III

•  Searle (1969) extended Austin’s work and identified the
following five key classes of possible types of speech acts:
–  Representatives:

commits the speaker to the truth of an expression, e.g., ‘It is
raining’ (informing)

–  Directives:
attempts to get the hearer to do something e.g., ‘please make
the tea’ (requesting)

–  Commissives:
which commit the speaker to do something, e.g., ‘I promise to…
’ (promising)

–  Expressives:
whereby a speaker expresses a mental state, e.g., ‘thank
you!’ (thanking)

–  Declarations:
effect change of state, such as “declaring war” (declaring)

•  Cohen and Perrault (1979) started to modeling speech acts in a
planning system (STRIPS formalism)

Agent Communication Languages I
KQML and KIF

•  Agent communication languages (ACLs) are
standard formats for the exchange of
messages

•  KSE (Knowledge Sharing Effort) in early 1990s
designed two ACLs with different purpose
–  The Knowledge Query and Manipulation

Language (KQML), which is an 'outer' language
for agent communication

–  The Knowledge Interchange Format (KIF), a
language for expressing content, closely based
on First Order Logic

Knowledge Interchange Format (KIF)

•  KIF allows agents to express
–  properties of things in a domain, e.g., “Michael is a

vegetarian”
–  relationships between things in a domain, e.g., “Michael

and Janine are married”
–  general properties of a domain, e.g., “All students are

registered for at least one course” (quantification ∀)
•  Examples:

–  “The temperature of m1 is 83 Celsius”:
(= (temperature m1) (scalar 83 Celsius))

–  “An object is a bachelor if the object is a man and is not
married”:
(defrelation bachelor (?x) :=
 (and (man ?x) (not (married ?x))))

–  “Any individual with the property of being a person also
has the property of being a mammal”:
(defrelation person (?x) :=> (mammal ?x))

Knowledge Query and Manipulation
Language (KQML) I

•  KQML defines communicative verbs, or performatives, for
example:
–  ask-if (‘is it true that. . . ’)
–  perform (‘please perform the following action. . . ’)
–  tell (‘it is true that. . . ’)
–  reply (‘the answer is . . . ’)

•  Each message has a performative (the „class“ of a message)
and a number of parameters

(ask-one
 :content (PRICE IBM ?PRICE)
 :receiver stockServer
 :language LPROLOG
 :ontology NYSE-TICKS

)

Asking about the price of IBM stock

Terminology

KQML II
Parameters of messages

Parameter Meaning

 :content
 :language
 :ontology
 :force
 :reply-with
 :in-reply-to
 :sender
 :receiver

content of the message
formal language the message is in
terminology the message is based on
will sender ever deny content of message?
reply expected? identifier of reply?
id of reply
sender
receiver

KQML III
Example dialogs

Talking about motors

Query reference q1

Asking about torque of
motor 1

Answer: “It is 12kgf”

Streaming of messages,
e.g. request all available
knowledge

Indication of “End of
Stream”

KQML IV
Criticisms

•  The basic KQML performative set was overly
large and not standardized
–  different implementations of KQML were

developed that could not, in fact, interoperate

•  The language was missing the performative
commissives
– Commissives are crucial for agents coordinating

their actions.

•  These criticisms - amongst others - led to the
development of a new language by the FIPA
consortium

Agent Communication Languages II
Foundation for Intelligent Physical Agents (FIPA)

•  FIPA is the organization for developing standards in multi-
agent systems. It was officially accepted by the IEEE at its
eleventh standards committee in 2005

•  FIPA’s goal in creating agent standards is to promote inter-
operable agent applications and agent systems

•  FIPA ACL‘s syntax and basic concepts are very similar to
KQML, for example:

(inform
 :sender agent1
 :receiver agent2
 :content (price good2 150)
 :language sl
 :ontology hpl-auction

)

FIPA ACL
Set of Performatives in FIPA ACL

FIPA ACL Performatives
Requesting Information

query-if

query-ref

direct query for the truth of a statement

direct query for the value of an expression

subscribe sender asks to be notified when statement
changes

FIPA ACL Performatives
Passing Information

confirm
disconfirm

confirm truth of content (recipient was unsure)

confirm falsity of content (recipient was unsure)

inform together with request most important performative;
basic mechanism for communicating information; sender
wants recipient to believe info; sender believes info itself

inform-ref informs other agent about value of expression (in its
content parameter); typically content of request
message (thus asking the receiver to give me value of
expression)

FIPA ACL Performatives
Negotiation

accept-proposal sender accepts proposal made by other agent

cfp call for proposals; initiates negotiation between
agents; content-parameter contains action
(desired to be done by some other agent) (e.g.:
„sell me car“) and condition (e.g.: „price <
1000$“)

reject-proposal sender does not accept proposal

propose make proposal

FIPA ACL Performatives
Performing Actions

cancel

agree sender agrees to carry out requested action

follows request; indicates intention behind
request is not valid any more

request

request-when

request-whenever

issue request for an action

issue request to do action if and when a
statement is true

issue request to do action if and whenever
a statement is true

refuse reject request

FIPA Interaction Protocols (IPs)

•  FIPARequest

•  FIPAQuery

•  FIPARequestWhen

•  FIPAContractNet

•  FIPAIteratedContractNet

•  FIPAAuctionEnglish

•  FIPAAuctionDutch

•  FIPABrokering

•  FIPARecruiting

•  FIPASubscribe

•  FIPAPropose

FIPA defined IPs are:

Interaction Protocols (IPs) are standardized exchanges of
performatives according to well known situations

FIPA Interaction Protocols (IPs)
FIPA IP Example: Request

Initiator Participant

Request

Refuse

Agree

Failure

Inform-Done

Inform-Results

A
ccept Proposal

FIPA Interaction Protocols (IPs)
FIPA IP Example: Contract Net

Initiator

Participant

Request

R
efuse

cfp

Dead line

N
ot understood

Propose

R
eject Proposal

Failure

Inform
 done

Inform
-ref

Ontologies

•  Ontologies ground the
terminology used by the
agents
–  For example, an agent

wants to buy a screw. But
what means then “size”?
Is it in inch or
centimeter?

•  Very important in the
Internet, sometimes
encoded by XML
–  In contrast to HTML,

whose meta-language
mainly describes the page
layout, XML allows to tag
data with semantics 
semantic web

Plain HTML vs. XML

Java Agent Development Framework (JADE)

•  Open Source project originated by Telecom (TILAB),
currently governed by an international board, e.g.
Motorola, France Telecom, Whitestein, …

•  JADE allows the rapid creation of distributed, multi-
agent systems in Java

•  High interoperability through FIPA compliance
•  JADE includes:

–  A library for developing agents (which implements
message transport and parsing)

–  A runtime environment allowing multiple, parallel and
concurrent agent activities

–  Graphical tools that support monitoring, logging, and
debugging

–  Yellow Pages, a directory where agents can register their
capabilities and search for other agents and services

JADE II
Connectivity

Image taken from the Jade Tutorial

JADE III
Code Example

public class AgentThatSearchesAndUseAService
 extends jade.core.Agent

{
 public void setup()
 {
 DFAgentDescription dfd = new DFAgentDescription();
 dfd.setType(“SearchedService");
 DFAgentDescription[] agents = DFService.search(this,dfd);
 ACLMessage msg = new ACLMessage(ACLMessage.REQUEST);
 msg.addReceiver(agents[0].getAID();
 msg.setContent(“execute service");
 send(msg);
 System.out.println(blockingReceive());
 }

}

Note DF means “Directory Faciliator”, an agent for
accessing the yellow pages

JADE IV
Behaviors

•  JADE Behaviors
–  A behavior is basically an event handler, a method which

describes how an agent reacts to an event: the reception
of a message or a Timer interrupt

–  The Event Handler code is placed in a method called
action. Every behavior is scheduled following a round
robin algorithm.

•  Methods of the agents involving behaviors:
–  addBehaviour & removeBehaviour

•  Examples of Behaviors already included in JADE:
–  SimpleBehavior - CyclicBehavior
–  TickerBehavior - WakerBehavior
–  ReceiverBehavior - SequentialBehavior
–  ParallelBehavior - FSMBehavior

JADE V
Debugging: “Dummy Agent”

•  Functionalities:
–  compose and send a

custom messages

–  load/save the queue of
messages from/to a file

Image taken from the Jade Tutorial

JADE VI
Debugging: “Sniffer Agent”

•  Functionalities:
–  display the flow of

interactions between
selected agents

–  display the content of
each exchanged
message

–  save/load the data
flow

Image taken from the Jade Tutorial

JADE VII
Debugging: “Log Manager Agent”

•  Functionalities:
–  browse all Logger

objects on its container
(both JADE-specific and
application-specific)

–  modify the logging level

–  add new logging
handlers (e.g. files)

Image taken from the Jade Tutorial

Inter Process Communication (IPC)

•  NOT an ACL but an efficient tool within fully cooperative
& distributed environments

•  Platform-independent library for distributed network-
based message passing, runs with C,C++, Lisp, and
JAVA

•  Provides facilities for client/server and publish /
subscribe communication
–  Communication takes place either point-to-point or via a

“central” thread, whereas the latter allows data logging
and visualization

•  Marshalling and passing of complex data structures
•  Has been used by our group during RoboCup, the Sick

Race, and the TechX challenge

IPC Communication Models I
Publish/Subscribe

Central Module A Module B

Module C

Publish(A)

Define(B)

Subscribe(A)

Subscribe(B)

Define(C)

Publish(C)

Define(A)

Publish(B)

• Modules are processes executed
simultaneously on a computer

• Each module can handle multiple
messages at the same time

Publish/Subscribe
Module Architecture

module MODULE_C
static: quit, dataA, dataB
quit ← false
dataA ← NULL
dataB ← NULL

CONNECT-TO-CENTRAL()
SUBSCRIBE-HANDLER(msgHandlerA, dataA)
SUBSCRIBE-HANDLER(msgHandlerB, dataB)
DEFINE_MESSAGE(msgC)
while (not quit) do

 listen_for_messages()
 dataC ← PROCESS-DATA(dataA, dataB)
 PUBLISH-DATA(dataC)

End

Function msgHandlerA(dataA)
 UPDATE-DATA(dataA)

End

Function msgHandlerB(dataB)
 UPDATE-DATA(dataB)

End

Distributed execution

IPC_connectModule("moduleA", "host1:101");
IPC_subscribe(msg1);

…

IPC_connectModule("moduleA", "host1:102");
IPC_publishData(msg2);

Host 1 Host 2

Central
port: 102

Central
 port: 101

IPC_connectModule("moduleB", "host1:101");
IPC_publishData(msg1);

…
IPC_connectModule("moduleD", "host2:101");
IPC_publishData(msg4);
…

IPC_connectModule("moduleC", "host1:102");
IPC_subscribe(msg2);
…
IPC_connectModule("moduleC", "host2:101");
IPC_subscribe(msg4);
…
IPC_connectModule("moduleC", "host1:102");
IPC_publishData(msg3);

msg4

msg2

msg4

msg3

Central
port: 101

msg1 msg1

msg2

Module A

Module B Module D

Module C

IPC Data Formats
Examples in C

#define RESCUE_BATTERY_STATUS_NAME "rescue_battery_status"

#define RESCUE_BATTERY_STATUS_FMT "{double, double, double, string}"

typedef struct {

 double level; ///< [V]

 double capacityLeft; ///< [0, 1] How full is the battery (estimated)

 double timestamp;

 char* host;

} rescue_battery_status_message;

#define RESCUE_JOYPAD_BUTTON_NAME "rescue_joypad_button"

#define RESCUE_JOYPAD_BUTTON_FMT "{int, double, string}"

//AUTOLOGGER LOGGER_PRINTF "Jb "

typedef struct {

 int button;

 double timestamp;

 char* host;

} rescue_joypad_button_message;

...

IPC Example I
Autonomous Lurker Robot

IPC Example I
Lurker Communication Graph

IPC Example I
Video Lurker Exploration (IROS`07)

IPC Example II
Autonomous team of Zerg Robots

IPC Communication Models II
Parameter Daemon

•  In a complex system composed of various modules,
global parameters have to be handled somehow

•  A parameter daemon is a separate module that reads
parameters from a single configuration file
–  Stores specific parameters (typically fixed during

runtime), but also module status information and
commands (changing during runtime)

•  Communication through “parameter changes”
–  Can be considered as blackboard system
–  Modules can install handler for parameter changes

•  Implemented by publish/subscribe

Parameter Daemon
Examples

Interface for mission control:
each module‘s action state can
be set and the status read

Specific parameters of
“stairsDetector”

Summary

•  ACLs provide standards for communication
among selfish agents, e.g. within an open
systems

•  Motivated from the theory of speech acts,
communication is implemented in terms of
actions

•  The FIPA ACL can be considered as the de facto
standard for agent communication
–  The JADE framework implements it in JAVA

•  IPC offers all necessary functionality within fully
cooperative and distributed environments
–  It is very efficient and simple to use

Literature

•  M. Woolridge: An Introduction to Multi-Agent-Systems,
Wiley, 2001, 294 pages

•  Searle, J.R., Speech Acts Cambridge University Press, 1969
•  FIPA:

–  Website http://www.fipa.org
–  Agent Interaction Protocols (http://www.fipa.org/

repository/ips.php3)‏
•  JADE

–  Website http://sharon.cselt.it/projects/jade/
–  Tutorial: http://www.iro.umontreal.ca/~vaucher/Agents/

Jade/ JadePrimer.html
•  IPC:

–  Website http://www.cs.cmu.edu/afs/cs/project/TCA/www/ipc/
ipc.html

