
4.  Search Algorithms and Path-
finding

Uninformed & informed search, online
search, ResQ Freiburg path planner

 Alexander Kleiner, Bernhard Nebel

Introduction to Multi-Agent
Programming

Contents

•  Problem-Solving Agents
•  General Search (Uninformed search)
•  Best-First Search (Informed search)

– Greedy Search & A*
•  Online Search

– Real-Time Adaptive A*
•  Case Study: ResQ Freiburg path planner
•  Conclusion

Problem-Solving Agents

  Goal-based agents

Formulation: goal and problem

Given: initial state

Task: To reach the specified goal (a state)
through the execution of appropriate
actions.

 Search for a suitable action sequence and
execute the actions

A Simple Problem-Solving Agent

Problem Formulation

•  Goal formulation
World states with certain properties

•  Definition of the state space
important: only the relevant aspects  abstraction

•  Definition of the actions that can change the world
state

•  Determination of the search cost (search costs, offline
costs) and the execution costs (path costs, online
costs)

Note: The type of problem formulation can have a
big influence on the difficulty of finding a solution.

Problem Formulation for the Vacuum
Cleaner World

•  World state space:
2 positions, dirt or no dirt
  8 world states

•  Successor function
(Actions):
Left (L), Right (R), or Suck (S)

•  Goal state:
no dirt in the rooms

•  Path costs:
one unit per action

The Vacuum Cleaner State Space

States for the search: The world states 1-8.

Example: Missionaries and Cannibals

•  Three missionaries and three cannibals are on one side
of a river that they wish to cross.

•  A boat is available that can hold at most two people and
at least one.

•  You must never leave a group of missionaries
outnumbered by cannibals on the same bank.

Informal problem description:

 Find an action sequence that brings
everyone safely to the opposite bank.

Formalization of the M&C Problem

State space: triple (x,y,z) with 0 ≤ x,y,z ≤ 3, where x,y,
and z represent the number of missionaries, cannibals
and boats currently on the original bank.

Initial State: (3,3,1)

Successor function: From each state, either bring one
missionary, one cannibal, two missionaries, two
cannibals, or one of each type to the other bank.

Note: Not all states are attainable (e.g., (0,0,1)), and
some are illegal.

Goal State: (0,0,0)

Path Costs: 1 unit per crossing

General Search

From the initial state, produce all successive states step
by step  search tree.

(3,3,1)

(2,3,0) (3,2,0) (2,2,0) (1,3,0) (3,1,0)

(3,3,1) (a) initial state

(b) after expansion

of (3,2,0)

of (3,3,1)

(c) after expansion (3,3,1)

(2,3,0) (3,2,0) (2,2,0) (1,3,0) (3,1,0)

(3,3,1)

Implementing the Search Tree
Data structure for nodes in the search tree:

State: state in the state space

Node: Containing a state, pointer to predecessor, depth, and path cost, action

Depth: number of steps along the path from the initial state

Path Cost: Cost of the path from the initial state to the node

Fringe: Memory for storing expanded nodes. For example, s stack or a queue

General functions to implement:

Make-Node(state): Creates a node from a state

Goal-Test(state): Returns true if state is a goal state

Successor-Fn(state): Implements the successor function, i.e. expands a set of
new nodes given all actions applicable in the state

Cost(state,action): Returns the cost for executing action in state

Insert(node, fringe): Inserts a new node into the fringe

Remove-First(fringe): Returns the first node from the fringe

General Tree-Search Procedure

Make-
Node

Search Strategies

Uninformed or blind searches:

No information on the length or cost of a path to
the solution.

• breadth-first search, uniform cost search,
depth-first search,

• depth-limited search, Iterative deepening
search, and

• bi-directional search.

In contrast: informed or heuristic approaches

Criteria for Search Strategies

Completeness:

Is the strategy guaranteed to find a solution when there is
one?

Time Complexity:

How long does it take to find a solution?

Space Complexity:

How much memory does the search require?

Optimality:

Does the strategy find the best solution (with the lowest
path cost)?

Breadth-First Search (1)

Nodes are expanded in the order they were
produced . fringe = Enqueue-at-end() (FIFO).

•  Always finds the shallowest goal state first.

•  Completeness.

•  The solution is optimal, provided the path cost is a non-
decreasing function of the depth of the node (e.g., when
every action has identical, non-negative costs).

Breadth-First Search (2)

The costs, however, are very high. Let b be the maximal
branching factor and d the depth of a solution path. Then the
maximal number of nodes expanded is

b + b2 + b3 + … + bd + (bd+1 – b) ∈ O(bd+1)

Example: b = 10, 10,000 nodes/second, 1,000 bytes/node:
Depth Nodes Time Memory

2 1,100 .11 seconds 1 megabyte

4 111,100 11 seconds 106 megabytes

6 107 19 minutes 10 gigabytes

8 109 31 hours 1 terabyte

10 1011 129 days 101 terabytes

12 1013 35 years 10 petabytes

14 1015 3,523 years 1 exabyte

Note: One could easily perform the goal test BEFORE expansion, then
the time & space complexity reduces to O(bd)

Uniform Cost Search

Modification of breadth-first search to always expand the
node with the lowest-cost g(n).

Always finds the cheapest solution, given that
g(successor(n)) >= g(n) for all n.

Depth-First Search
Always expands an unexpanded node at the greatest depth
fringe = Enqueue-at-front (LIFO).

Example (Nodes at depth 3 are assumed to have no
successors):

Iterative Deepening Search (1)

•  Combines depth- and breadth-first searches
•  Optimal and complete like breadth-first search, but requires

less memory

Iterative Deepening Search (2)
Example

Iterative Deepening Search (3)
Number of expansions

Iterative Deepening Search (d)b + (d-1)b2 + … + 3bd-2 + 2bd-1 + 1bd

Breadth-First-Search b + b2 + … + bd-1 + bd + bd+1 - b

Breadth-First-Search 10 + 100 + 1,000 + 10,000 + 999,990

= 1,111,100

Iterative Deepening Search 50 + 400 + 3,000 + 20,000 + 100,000

= 123,450

Example: b = 10, d = 5

For b = 10, only 11% of the nodes expanded by breadth-first-search
are generated, so that the time complexity is considerably lower.

Time complexity: O(bd) Memory complexity: O(b·d)

 Iterative deepening in general is the preferred uninformed search
method when there is a large search space and the depth of the
solution is not known.

Bidirectional Search

As long as forwards and backwards searches are
symmetric, search times of O(2·bd/2) = O(bd/2) can be
obtained.

E.g., for b=10, d=6, instead of 111111 only 2222 nodes!

Comparison of Search Strategies
Time complexity, space complexity, optimality, completeness

b branching factor
d depth of solution,
m maximum depth of the search tree,
l depth limit,
C* cost of the optimal solution,
∈ minimal cost of an action

Superscripts:
a) b is finite
b) if step costs not less than ∈
c) if step costs are all identical
d) if both directions use breadth-

first search

Problems With Repeated States

•  Tree search ignores what happens if nodes are repeatedly visited
–  For example, if actions lead back to already visited states
–  Consider path planning on a grid

•  Repeated states may lead to a large (exponential) overhead

•  (a) State space with d+1 states, were d is the depth
•  (b) The corresponding search tree which has 2d nodes

 corresponding to the two possible paths!
•  (c) Possible paths leading to A

Graph Search

•  Add a closed list to the tree search algorithm
•  Ignore newly expanded state if already in

closed list
•  Closed list can be implemented as hash table
•  Potential problems

– Needs a lot of memory
– Can ignore better solutions if a node is visited

first on a suboptimal path (e.g. IDS is not
optimal anymore)

Best-First Search

Search procedures differ in the way they determine the
next node to expand.

Uninformed Search: Rigid procedure with no
knowledge of the cost of a given node to the goal.

Informed Search: Knowledge of the cost of a given
node to the goal is in the form of an evaluation function
f or h, which assigns a real number to each node.

Best-First Search: Search procedure that expands the
node with the “best” f- or h-value.

General Algorithm

When h is always correct, we do not need to search!

Greedy Search

A possible way to judge the “worth” of a node is to estimate its
distance to the goal.

h(n) = estimated distance from n to the goal

The only real condition is that h(n) = 0 if n is a goal.

A best-first search with this function is called a greedy search.

The evaluation function h in greedy searches is also called a
heuristic function or simply a heuristic.

In all cases, the heuristic is problem-specific and focuses the
search!

Route-finding problem: h = straight-line distance between two
locations.

Greedy Search Example

Greedy Search from Arad to Bucharest

However: AradSibiuFagrarasBucharest = 450
 AradSibiuRimnicuPitestiBucharest = 418 !

A*: Minimization of the estimated
path costs

A* combines the greedy search with the uniform-cost-
search, i.e. taking costs into account.

g(n) = actual cost from the initial state to n.

h(n) = estimated cost from n to the next goal.

f(n) = g(n) + h(n), the estimated cost of the cheapest
solution through n.

Let h*(n) be the true cost of the optimal path from n to
the next goal.

h is admissible if the following holds for all n :

h(n) ≤ h*(n)

We require that for optimality of A*, h is admissible
(straight-line distance is admissible).

A* Search Example

A* Search from Arad to Bucharest

f=220+193

=413

Heuristic Function Example

h1 = the number of tiles in the wrong position
h2 = the sum of the distances of the tiles from their goal

 positions (Manhatten distance)

Empirical Evaluation

•  d = distance from goal
•  Average over 100 instances

A* Implementation Details

•  How to code A* efficiently?
•  Costly operations are:

–  Insert & lookup an element in the closed list
–  Insert element & get minimal element (f-value) from open

list
•  The closed list can efficiently be implemented as a hash

set
•  The open list is typically implemented as a priority

queue, e.g. as
–  Fibonacci heap, binomial heap, k-level bucket, etc.
–  binary-heap with O(log n) is normally sufficient

•  Hint: see priority queue implementation in the “Java
Collection Framework”

Online search

•  Intelligent agents usually don‘t know the state
space (e.g. street map) exactly in advance
–  Environment can dynamically change!
–  True travel costs are experienced during

execution
•  Planning and plan execution are interleaved
•  Example: RoboCup Rescue

–  The map is known, but roads might be blocked
from building collapses

–  Limited drivability of roads depending on traffic
volume

•  Important issue: How to reduce computational
cost of repeated A* searches!

Online search

•  Incremental heuristic search
–  Repeated planning of the complete path from current state to goal
–  Planning under the free-space assumption
–  Optimized versions reuse information from previous planning episodes:

•  Focused Dynamic A* (D*) [Stenz95]
–  Used by DARPA and NASA

•  D* Lite [Koenig et al. 02]
–  Similar as D* but a bit easier to implement (claim)

–  In particular, these methods reuse closed list entries from previous
searches

–  All Entries that have been compromised by weight updates (from
observation) are adjusted accordingly

•  Real-Time Heuristic search
–  Repeated planning with limited look-ahead (agent centered search)
–  Solutions can be suboptimal but faster to compute
–  Updated of heuristic values of visited states

•  Learning Real-Time A* (LRTA*) [Korf90]
•  Real-Time Adaptive A* (RTAA*) [Koenig06]

Real-Time Adaptive A* (RTAA*)

•  Executes A* plan with
limited lookahead

•  Learns better informed
heuristic H(s) from
experience (initially h(s),
e.g. Euclidian distance)

•  Lookahed defines trade-
off between optimality
and computational cost

while (scurr ∉ GOAL)

 astar(lookahead);

 if (s’ = FAILURE) then

 return FAILURE;

 for all s ∈ CLOSED do

 H(s) := g(s’)+h(s’)-g(s);

 end;

 execute(plan);

end;

return SUCCESS;

s‘: last state expanded during
previous A* search

Real-Time Adaptive A* (RTAA*)
Example

G S

s‘

s

After first A* planning with
lookahead until s’:

g(s‘)=7, h(s‘)=6, f(s‘)=13

g(s)=2, h(s)=3

Update of each element in
CLOSED list, e.g.:

 H(s) = g(s‘) + h(s‘) – g(s)

 H(s) = 7 + 6 - 2 = 11

Real-Time Adaptive A* (RTAA*)
A* vs. RTAA*

A* expansion

RTAA* expansion (inf. Lookahead)

3 8

5 5

h(s)

g(s) f(s)

H(s)

Case Study: ResQ Freiburg path planner
Requirements

•  Rescue domain has some special features:
–  Interleaving between planning and execution is within

large time cycles
–  Roads can be merged into “longroads”

•  Planner is not used only for path finding, also for task
assignment
–  For example, prefer high utility goals with low path costs
–  Hence, planner is frequently called for different goals

•  Our decision: Dijkstra graph expansion on longroads

Case Study: ResQ Freiburg path planner
Longroads

•  RoboCup Rescue maps consist of buildings, nodes,
and roads
–  Buildings are directly connected to nodes
–  Roads are inter-connected by crossings

•  For efficient path planning, one can extract a graph of
longroads that basically consists of road segments
that are connected by crossings

Longroad

Case Study: ResQ Freiburg path planner
Approach

•  Reduction of street network to longroad network
•  Caching of planning queries (useful if same queries are

repeated)
•  Each agent computes two Dijkstra graphs, one for each

nearby longroad node
•  Selection of optimal path by considering all 4 possible

plans
•  Dijkstra graphs are recomputed after each perception

update (either via direct sensing or communication)
•  Additional features:

–  Parameter for favoring unknown roads (for exploration)
–  Two more Dijkstra graphs for sampled time cost (allows

time prediction)

Case Study: ResQ Freiburg path planner
Dijkstra‘s Algorithm (1)

Single Source Shortest Path, i.e. finds the
shortest path from a single node to all other
nodes

Worst case runtime O(|E| log |V|), assuming
E>V, where E is the set of edges and V the
set of vertices

– Requires efficient priority queue

Case Study: ResQ Freiburg path planner
Dijkstra‘s Algorithm (2)

Graph expansion

Extracting path to target

Pseudo code taken from Wikipedia

Pseudo code taken from Wikipedia

Summary
•  Before an agent can start searching for solutions, it must formulate

a goal and then use that goal to formulate a problem.

•  A problem consists of five parts: The state space, initial situation,
actions, goal test, and path costs. A path from an initial state to a
goal state is a solution.

•  A general search algorithm can be used to solve any problem.
Specific variants of the algorithm can use different search
strategies.

•  Search algorithms are judged on the basis of completeness,
optimality, time complexity, and space complexity.

•  Heuristics focus the search
•  Best-first search expands the node with the highest worth (defined

by any measure) first.
•  With the minimization of the evaluated costs to the goal h we

obtain a greedy search.
•  The minimization of f(n) = g(n) + h(n) combines uniform and

greedy searches. When h(n) is admissible, i.e., h* is never
overestimated, we obtain the A* search, which is complete and
optimal.

•  Online search provides method that are computationally more
efficient when planning and plan execution are tightly coupled

Literature

•  On my homepage:
–  A. Kleiner, M. Brenner, T. Bräuer, C. Dornhege, M. Göbelbecker, M. Luber, J.

Prediger, J. Stückler, and B. Nebel Successful Search and Rescue in Simulated
Disaster Areas Robocup 2005: Robot Soccer World Cup IX pp. 323-334, 2005

•  Homepage of Tony Stentz:
–  A. Stentz The focussed D* algorithm for real-time replanning Proc. of the Int.

Join Conference on Artificial Intelligence, p. 1652-1659, 1995.

•  Homepage of Sven Koenig:
–  S. Koenig and X. Sun. Comparing Real-Time and Incremental Heuristic

Search for Real-Time Situated Agents Journal of Autonomous Agents and
Multi-Agent Systems, 2009

–  S. Koenig and M. Likhachev Real-Time Adaptive A* Proceedings of the
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS), 281-288, 2006

–  S. Koenig and M. Likhachev. Fast Replanning for Navigation in Unknown
Terrain Transactions on Robotics, 21, (3), 354-363, 2005.

•  Harder to find, also explained in the AIMA book (2nd ed.):
–  R. Korf. Real-time heuristic search. Artificial Intelligence, 42(2-3):189-211, 1990.

–  Demo search code in Java on the AIMA webpage http://aima.cs.berkeley.edu/

