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Problem-Solving Agents

- Goal-based agents
Formulation: goal and problem
Given: initial state

Task: To reach the specified goal (a state)
through the execution of appropriate
actions.

- Search for a suitable action sequence and
execute the actions



A Simple Problem-Solving Agent

function SIMPLE-PROBLEM-SOLVING-AGENT( percept) returns an action
inputs: percept, a percept
static: seq, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state < UPDATE-STATE(state, percept)

if seq is empty then do
goal «<— FORMULATE-GOAL(state)
problem <— FORMULATE-PROBLEM(state, goal)
seq < SEARCH( problem)

action «— FIRST(seq)

seq < REST(seq)

return action




Problem Formulation

Goal formulation
World states with certain properties

Definition of the state space
important: only the relevant aspects - abstraction

Definition of the actions that can change the world
state

Determination of the search cost (search costs, offline
costs) and the execution costs (path costs, online
costs)

Note: The type of problem formulation can have a
big influence on the difficulty of finding a solution.




Problem Formulation for the Vacuum
Cleaner World

o World state space:
2 positions, dirt or no dirt 1
- 8 world states

e Successor function 3

(Actions):

Left (L), Right (R), or Suck (S)

3]

o Goal state:
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&

no dirt in the rooms .
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o Path costs:
one unit per action



The Vacuum Cleaner State Space
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States for the search: The world states 1-8.



Example: Missionaries and Cannibals

Informal problem description:

Three missionaries and three cannibals are on one side
of a river that they wish to cross.

A boat is available that can hold at most two people and
at least one.

You must never leave a group of missionaries
outnumbered by cannibals on the same bank.

- Find an action sequence that brings
everyone safely to the opposite bank.



Formalization of the M&C Problem

State space: triple (x,y,z) with 0 = X,y,z < 3, where X,y,
and z represent the number of missionaries, cannibals
and boats currently on the original bank.

[nitial State: (3,3,1)
Successor function: From each state, either bring one

missionary, one cannibal, two missionaries, two
cannibals, or one of each type to the other bank.

Note: Not all states are attainable (e.g., (0,0,1)), and
some are illegal.

Goal State: (0,0,0)

Path Costs: 1 unit per crossing



General Search

From the initial state, produce all successive states step
by step = search tree.

(a) initial state (3,3,1)

(b) after expansion (3,3,1)

(2370) (3,2,0) (2,2,0) (1370)(3,1,0)

(c) after expansion (3,3,1)

(2370) (3,2,0) (2,2,0) (13;0)(3,1,0)

(3,3,1)



Implementing the Search Tree

Data structure for nodes in the search tree:

State: state in the state space

Node: Containing a state, pointer to predecessor, depth, and path cost, action
Depth: number of steps along the path from the initial state

Path Cost: Cost of the path from the initial state to the node

Fringe: Memory for storing expanded nodes. For example, s stack or a queue

General functions to implement:
Make-Node(state): Creates a node from a state
Goal-Test(state): Returns true if state is a goal state

Successor-Fn(state): Implements the successor function, i.e. expands a set of
new nodes given all actions applicable in the state

Cost(state,action): Returns the cost for executing action in state
Insert(node, fringe): Inserts a new node into the fringe

Remove-First(fringe): Returns the first node from the fringe



General Tree-Search Procedure

function TREE-SEARCH( problem, fringe) returns a solution, or failure

fringe «— INSERT(MAKE-NODE(INITIAL-STATE[ problem]), fringe)
loop do
if EMPTY?( fringe) then return failure
node «— REMOVE-FIRST( fringe)
if GOAL-TEST[ problem] applied to STATE[node] succeeds
then return SOLUTION(node)
fringe «— INSERT-ALL(EXPAND(node, problem), fringe)

function EXPAND( node, problem) returns a set of nodes

successors «+— the empty set
for each (action, result) in SUCCESSOR-FN[ problem](STATE[node]) do

( s «— a new NODE
STATE[ 8] « result
Make- PARENT-NODE][s] < node

Node 9 ACTION[s] « action
PATH-COST[s] < PATH-COST[node] + STEP-COST(node, action, s)

DEPTH[s] < DEPTH[node] + |
add s to successors
return successors




Search Strategies

Uninformed or blind searches:

No information on the length or cost of a path to
the solution.

e breadth-first search, uniform cost search,
depth-first search,

e depth-limited search, Iterative deepening
search, and

e bi-directional search.

In contrast: informed or heuristic approaches



Criteria for Search Strategies

Completeness:

Is the strategy guaranteed to find a solution when there is
one?

Time Complexity:

How long does it take to find a solution?

Space Complexity:

How much memory does the search require?

Optimality:

Does the strategy find the best solution (with the lowest
path cost)?



Breadth-First Search (1)

Nodes are expanded in the order they were
produced . fringe = Enqueue-at-end() (FIFO).

AN

e Always finds the shallowest goal state first.

e Completeness.

e The solution is optimal, provided the path cost is a non-
decreasing function of the depth of the node (e.g., when
every action has identical, non-negative costs).



Breadth-First Search (2)

The costs, however, are very high. Let b be the maximal

branching factor and d the depth of a solution path. Then the
maximal number of nodes expanded is

b+ b?>+ b3+ ..+ b+ (b1 -b) € O(b*1)
Example: b = 10, 10,000 nodes/second, 1,000 bytes/node:

Depth Nodes Time Memory
2 1,100 .11 seconds 1 megabyte
4 111,100 11 seconds 106 megabytes
6 107 19 minutes 10 gigabytes
8 10° 31 hours 1 terabyte
10 1011 129 days 101 terabytes
12 1013 35 years 10 petabytes
14 101> 3,523 years 1 exabyte

Note: One could easily perform the goal test BEFORE expansion, then
the time & space complexity reduces to O(b9)



Uniform Cost Search

Modification of breadth-first search to always expand the
node with the lowest-cost g(n).

S@

(a) (b)

Always finds the cheapest solution, given that
g(successor(n)) >= g(n) for all n.



Depth-First Search

Always expands an unexpanded node at the greatest depth
fringe = Enqueue-at-front (LIFO).

Example (Nodes at depth 3 are assumed to have no
SuUCCessors):

Y
IR



Iterative Deepening Search (1)

« Combines depth- and breadth-first searches

« Optimal and complete like breadth-first search, but requires
less memory

function ITERATIVE-DEEPENING-SEARCH( problem) returns a solution sequence
inputs: problem, a problem

for depth + 0 to oo do

if DEPTH-LIMITED-SEARCH( problem, depth) succeeds then return its result
end
return failure




Iterative Deepening Search (2)
Example

Limit=0 @

Limit=1 @

R



Iterative Deepening Search (3)

Number of expansions
Iterative Deepening Search (d)b + (d-1)b2 + ... + 3bd-2 + 2bd-1 + 1pd

Breadth-First-Search b+ b2+ ..+ bdl 4+ pd+ pd+l-p

Example: b =10,d =5

Breadth-First-Search 10 + 100 + 1,000 + 10,000 + 999,990
= 1,111,100

Iterative Deepening Search 50 + 400 + 3,000 + 20,000 + 100,000
= 123,450

For b = 10, only 11% of the nodes expanded by breadth-first-search
are generated, so that the time complexity is considerably lower.
Time complexity: O(bd) Memory complexity: O(b-d)

-2 Iterative deepening in general is the preferred uninformed search
method when there is a large search space and the depth of the
solution is not known.



Bidirectional Search

ﬁm e
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As long as forwards and backwards searches are

symmetric, search times of O(2:b%2) = O(b%2) can be
obtained.

E.g., for b=10, d=6, instead of 111111 only 2222 nodes!



Comparison of Search Strategies

Time complexity, space complexity, optimality, completeness

Criteri Breadth- Uniform- Depth- Depth- Iterative Bidirectional
on . . . : .

First Cost First Limited  Deepening (if applicable)
Complete? Yes® Yes®? No No Yes® Yes®4
Time Oty o®Ic/dy o™ o(v*) O(b%) O(b4/?)
Space oM™ty oMl /)y O@mm)  Obr) O(bd) O(b%/?)
Optimal? Yes® Yes No No Yes® Yes¢?

b branching factor

d depth of solution,

m maximum depth of the search tree,
| depth limit,

C* cost of the optimal solution,

€ minimal cost of an action

Superscripts:

a) b is finite

b) if step costs not less than &
c) if step costs are all identical

d) if both directions use breadth-
first search



Problems With Repeated States

Tree search ignores what happens if nodes are repeatedly visited
— For example, if actions lead back to already visited states
— Consider path planning on a grid

 Repeated states may lead to a large (exponential) overhead

(a) (b) (c)

« (a) State space with d+1 states, were d is the depth

« (b) The corresponding search tree which has 29 nodes
corresponding to the two possible paths!

* (c) Possible paths leading to A



Graph Search

Add a c/osed list to the tree search algorithm

[gnore newly expanded state if already in
closed list

Closed list can be implemented as hash table
Potential problems
— Needs a lot of memory

— Can ignore better solutions if a node is visited

first on a suboptimal path (e.g. IDS is not
optimal anymore)



Best-First Search

Search procedures differ in the way they determine the
next node to expand.

Uninformed Search: Rigid procedure with no
knowledge of the cost of a given node to the goal.

Informed Search: Knowledge of the cost of a given
node to the goal is in the form of an evaluation function
f or h, which assigns a real number to each node.

Best-First Search: Search procedure that expands the
node with the “best” - or h-value.



General Algorithm

function BEST-FIRST-SEARCH( problem, EVAL-FN) returns a solution sequence
inputs: problem, a problem
Eval-Fn, an evaluation function

Queueing-Fn + a function that orders nodes by EVAL-FN
return GENERAL-SEARCH( problem, Queueing-Fn)

When h is always correct, we do not need to search!




Greedy Search

A possible way to judge the “worth” of a node is to estimate its
distance to the goal.

h(n) = estimated distance from n to the goal
The only real condition is that A(n) = 0 if n is a goal.

A best-first search with this function is called a greedy search.

The evaluation function h in greedy searches is also called a
heuristic function or simply a heuristic.

—>1In all cases, the heuristic is problem-specific and focuses the
search!

Route-finding problem: h = straight-line distance between two
locations.



Greedy Search Example

] Oradea

Arad

Sibiu 99 Fagaras

118

80
Timisoara . Rimnicu Vilcea
111 M Lugo] Pitesti
]
70
] Mehadia 101
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d Craiova

Neamt
- 87
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92
] Vaslui
211 142
98 .
85 1 =] Hirsova
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Straight-line distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366
0
160
242
161
178
71
151
226
244
241
234
380
98
193
253
329
80
199
374



Greedy Search from Arad to Bucharest

Arad ®)

h=366 However: Arad-> Sibiu—>Fagraras—>Bucharest = 450
Arad Arad= Sibiu=>Rimnicu=> Pitesti->Bucharest = 418 !

Sibiu Timisoara Zerind
h=253 h=329 h=374

Arad

Sibiu Zerind

h=374

Timisoara
h=329

Arad

Arad Fagaras Oradea Rimnic
h=366 h=178 h=380 h=193

Sibiu

Zerind
h=374

Timisoara
h=329

Arad Fagaras
h=366 h=380 h=193
Sibiu

h=253 =0



A*: Minimization of the estimated
path costs

A* combines the greedy search with the uniform-cost-
search, i.e. taking costs into account.

g(n) = actual cost from the initial state to n.
h(n) = estimated cost from n to the next goal.

f(n) = g(n) + h(n), the estimated cost of the cheapest
solution through n.

Let h*(n) be the true cost of the optimal path from n to
the next goal.

h is admissible if the following holds for all n :
h(n) = h*(n)

We require that for optimality of A*, h is admissible
(straight-line distance is admissible).



A* Search Example
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234
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98
193
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80
199
374



A* Search from Arad to Bucharest

Arad g Arad Arad
[=0+366
=366
f=140+253 f=118+329  f=75+374 (183 %
-303 —447 —419 f=ﬂ‘§7§+3.9 I=Z2;-374
Arad
=280+366 {=2394178 {=146+4380 f=220+193

=646 =417 =526 =413

Arad

Arad

Zerind

1=75+374
=449

Zerind

f=118+329 f=75+374
=447 =449

f=118+329
=447
Arad

=280+366 {=239+178 =146+380
=646 =417 =526
Sibiu Craiova
=300+ 253 f=366+160

f=280+4366  f=239+178  f=146+380
=646 =417 =526

Craiova Pitesti
f=366+160 =317+98

Pitesti Sibiu

=300+ 253

Rimnicu
Bucharest
f=220+193 f:g(])gq-l% f=455 +160 f=418+0
=615 =418

=413



Heuristic Function Example

5 4 1 2 3
6 1 8 8 4
7 3 2 7 6 <
Start State Goal State
h, = the number of tiles in the wrong position
h, = the sum of the distances of the tiles from their goal

positions (Manhatten distance)



Empirical Evaluation

d = distance from goal

Average over 100 instances

Search Cost Effective Branching Factor

d IDS A*(hy) A*(hy) IDS A*(hy) A*(hy)

2 10 6 6 2.45 1.79 1.79

4 112 13 12 2.87 1.48 1.45

6 680 20 18 273 1.34 1.30

8 6384 39 25 2.80 1.33 1.24
10 47127 93 39 2.79 1.38 1.22
12 364404 227 73 2.78 1.42 1.24
14 3473941 539 113 2.83 1.44 1.23
16 - 1301 211 - 1.45 1.25
18 - 3056 363 - 1.46 1.26
20 - 7276 676 - 1.47 1.27
22 - 18094 1219 - 1.48 1.28
24 - 39135 1641 - 1.48 1.26




A* Implementation Details

« How to code A* efficiently?

« Costly operations are:
— Insert & lookup an element in the closed list
— Insert element & get minimal element (f-value) from open
list

 The closed list can efficiently be implemented as a hash
set

« The open list is typically implemented as a priority
gqueue, e.g. as

— Fibonacci heap, binomial heap, k-level bucket, etc.
— binary-heap with O(log n) is normally sufficient

« Hint: see priority queue implementation in the “Java
Collection Framework”



Online search

- Intelligent agents usually don't know the state
space (e.g. street map) exactly in advance

— Environment can dynamically change!

— True travel costs are experienced during
execution

« Planning and plan execution are interleaved

« Example: RoboCup Rescue

— The map is known, but roads might be blocked
from building collapses

— Limited drivability of roads depending on traffic
volume

 Important issue: How to reduce computational
cost of repeated A* searches!




Online search

« Incremental heuristic search

Repeated planning of the complete path from current state to goal
Planning under the free-space assumption
Optimized versions reuse information from previous planning episodes:

« Focused Dynamic A* (D*) [Stenz95]
— Used by DARPA and NASA
« D* Lite [Koenig et al. 02]

— Similar as D* but a bit easier to implement (claim)

In particular, these methods reuse closed list entries from previous
searches

All Entries that have been compromised by weight updates (from
observation) are adjusted accordingly

« Real-Time Heuristic search

Repeated planning with limited look-ahead (agent centered search)
Solutions can be suboptimal but faster to compute

Updated of heuristic values of visited states
« Learning Real-Time A* (LRTA*) [Korfo0]
« Real-Time Adaptive A* (RTAA*) [Koenig06]



Real-Time Adaptive A*¥ (RTAA*)

Executes A* plan with
limited lookahead

Learns better informed
heuristic H(s) from
experience (initially h(s),
e.g. Euclidian distance)

Lookahed defines trade-

off between optimality
and computational cost

while (s & GOAL)

curr
astar (lookahead) ;

if (s’ = FAILURE) then
return FAILURE;
for all s &€ CLOSED do
H(s) := g(s’)+h(s’)-g(s);
end;
execute (plan);
end;

return SUCCESS;

s‘: last state expanded during
previous A* search




Real-Time Adaptive A*¥ (RTAA¥*)
Example

After first A* planning with

lookahead until s’;

g(s')=7, h(s")=6, f(s)=13

9(s)=2, h(s)=3 i

-

Update of each element in
CLOSED list, e.g.:

H(s) = g(s’) + h(s’) — g(s)
H(s)=7 +6-2 =11

——>

-+

w
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Case Study: ResQ Freiburg path planner

Requirements

« Rescue domain has some special features:

— Interleaving between planning and execution is within
large time cycles

— Roads can be merged into “longroads”

« Planner is not used only for path finding, also for task
assignment

— For example, prefer high utility goals with low path costs
— Hence, planner is frequently called for different goals

« Qur decision: Dijkstra graph expansion on longroads



Case Study: ResQ Freiburg path planner

Longroads

« RoboCup Rescue maps consist of buildings, nodes,

and roads

— Buildings are directly connected to nodes
— Roads are inter-connected by crossings

« For efficient path planning, one can extract a graph of
longroads that basically consists of road segments

that are connected by crossings

rl

bl

nl

® Longroad



Case Study: ResQ Freiburg path planner
Approach

« Reduction of street network to longroad network

« Caching of planning queries (useful if same queries are
repeated)

« Each agent computes two Dijkstra graphs, one for each
nearby longroad node

. Slelection of optimal path by considering all 4 possible
plans

« Dijkstra graphs are recomputed after each perception
update (either via direct sensing or communication)

- Additional features:
— Parameter for favoring unknown roads (for exploration)

— Two more Dijkstra graphs for sampled time cost (allows
time prediction)



Case Study: ResQ Freiburg path planner
Dijkstra's Algorithm (1)

Single Source Shortest Path, i.e. finds the
shortest path from a single node to all other
nodes

Worst case runtime O(|E| log |V]), assuming
E>V, where E is the set of edges and V the

set of vertices
— Requires efficient priority queue



Case Study: ResQ Freiburg path planner
Dijkstra's Algorithm (2)

Graph expansion

; 1 function Dijkstra(Graph, source):

y 2 for each vertex v in Graph: // Initializations

v 3 dist[v] := infinity // Unknown distance function from source to v

. 4 previous[v] := undefined // Previous node in optimal path from source

v 5 dist[source] := 0 // Distance from source to source

. 6 Q := the set of all nodes in Graph // All nodes in the graph are unoptimized - thus are in Q
L7 while @ is not empty: // The main loop

- u := node in Q with smallest dist[]

: 9 remove u from Q

10 for each neighbor v of u: // where v has not yet been removed from Q.

Co11 alt := dist[u] + dist_between(u, v) // be careful in 1st step - dist[u] iIs infinity yet
v12 if alt < dist[v] // Relax (u,v)

» 13 dist[v] := alt

C 14 previous[v] := u

i 15 return previous(]

Pseudo code taken from Wikipedia

Extracting path to target

empty sequence

target

h11e defined previous[u]

insert u at the beginning of S
= previous([ul

=EC W
II -I-I

Pseudo code taken from Wikipedia



Summary

- Before an agent can start searching for solutions, it must formulate
a goal and then use that goal to formulate a problem.

« A problem consists of five parts: The state space, initial situation,
actions, goal test, and path costs. A path from an initial state to a
goal state is a solution.

A general search algorithm can be used to solve any problem.
Specific variants of the algorithm can use different search
strategies.

« Search algorithms are judged on the basis of completeness,
optimality, time complexity, and space complexity.

« Heuristics focus the search

- Best-first search expands the node with the highest worth (defined
by any measure) first.

- With the minimization of the evaluated costs to the goal h we
obtain a greedy search.

« The minimization of f(n) = g(n) + h(n) combines uniform and
greedy searches. When h(n) is admissible, i.e., h* is never
ovg_restllmated, we obtain the A* search, which is complete and
optimal.

« Online search provides method that are computationally more
efficient when planning and plan execution are tightly coupled
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