
3.  Fundamental Agent
Architectures

Logic-Based, Reactive, and Hybrid
Architectures, CS-Freiburg Case Study

Alexander Kleiner, Bernhard Nebel

Introduction to Multi-Agent
Programming

Contents

•  Introduction

•  Logic-Based Architectures
•  Reactive Architectures

–  Subsumption Architecture
–  Behavior Networks

•  Hybrid Architectures
•  Case Study: Action Selection of the CS-Freiburg soccer

team
•  Conclusion

Introduction
History of development

1956-1985: Originally agents were mainly based on symbolic
reasoning
–  Researches concluded the weakness of this approach for

time-constrained domains
1985-present: Research on reactive agents

–  Decision making based on syntactic manipulation of the
representation

–  The idea that intelligent behavior is seen as innately linked to
the environment an agent occupies - intelligent behavior is
not disembodied, but is a product of the interaction the agent
maintains with its environment

–  the idea that intelligent behavior emerges from the
interaction of various simpler behaviors

From 1990-present: a number of alternatives proposed: hybrid
architectures, which attempt to combine the best of reasoning
and reactive architectures

Logic-Based Architectures
Introduction

•  Traditional approach of building AI systems, known as
symbolic AI
–  Contains an explicitly represented, symbolic model of the

world
–  The state of the world is represented by a database of

predicates
•  Open(valve221)
•  Temperature(reactor4726,321)

–  Makes decisions about what actions to perform via
symbolic reasoning, e.g., logical deduction or theorem
proving

–  Idea that intelligent behavior can be generated by such
representation and manipulation of symbols

Logic-Based Architectures
Formal Model

•  Action selection by using theorem proving
•  Basic idea is to use logic to encode a theory stating the

best action to perform in any given situation
•  Let:

–  ρ be this theory (typically a set of rules)
–  Δ be a logical database that describes the current state of

the world
–  A be the set of actions the agent can perform
–  Δ, ρ├ φ mean that φ can be proven from Δ using ρ

•  We assume the automatic execution of the functions
–  see(s), which returns percepts according to the current

world state (not one-to-one!)
–  next(Δ, p), which updates the data base according to new

percepts

Logic-Based Architectures
Action Selection Algorithm

 function action {
 //try to find an action explicitly prescribed
 for each a ∈ A do {
 if Δ, ρ├ Do(a) then
 then return a
 }

 // try to find an action not excluded
 for each a ∈ A do {
 if Δ, ρ ├ ¬Do(a) then
 then return a
 }

 return NULL
}

Logic-Based Architectures
Example: Vacuum World (1)

•  Cleaning robot with
–  percepts P = {dirt, X,Y,θ}
–  Actions A = {turnRight, forward,
 suck}

•  Start: (0,0,North)
•  Goal: searching and cleaning dirt
Use of domain predicates to solve problem:

 In(x,y) agent is at (x, y)‏

 Dirt(x,y) there is dirt at (x, y)‏
 Facing(d) the agent is facing direction d

Logic-Based Architectures
Example: Vacuum World (2)

•  Set of rules p for solving the problem:
–  In(x,y) ∧ Dirt(x,y)  Do(suck)
–  In(0,0) ∧ Facing(north) ∧ ¬Dirt(0,0)  Do(forward)
–  In(0,1) ∧ Facing(north) ∧ ¬Dirt(0,1)  Do(forward)

–  In(0,2) ∧ Facing(north) ∧ ¬Dirt(0,2)  Do(turn)

–  In(0,2) ∧ Facing(east)  Do(forward)
–  …

•  In order to ensure always one single action, ¬Dirt(X,Y)
has to be explicitly checked

Logic-Based Architectures
Example: Vacuum World (3)

•  Advantages
–  Pro-active behavior (deliberation)
–  Elegant logical semantics

•  Problems:
– How to convert video camera input to Dirt(0, 1)?
–  Time complexity for reasoning

•  Time for reasoning can be non-instantaneous
•  During computation, the dynamic worlds might change

and thus the solution not valid anymore!
•  How to represent temporal information, e.g., how a

situation changes over time?

Plan-based Architectures

•  A variation of logic-based architectures
•  A planning system is responsible for

generating action sequences in order to reach
the goals

•  Special-purpose reasoning system geared
towards generating plans and based on that
selecting the right action

•  First system: STRIPS (in the 70’s)
•  These days: Numerous systems (e.g. our

system Fast Downward and extensions)

BDI Architectures
Introduction

•  Motivated from philosophy: theory of practical
reasoning requires belief, desire, and intention
(BDI)

•  Successful example: Procedurale Reasoning
System (PRS) (Georgeff & Lansky 1987)

12

Reactive Architectures
Brooks: Subsumption Architecture

•  Brooks´ Vision:
–  Intelligent behaviour can be generated without explicit

representations of the kind that symbolic AI proposes
–  Intelligent behaviour can be generated without explicit

abstract reasoning of the kind that symbolic AI proposes
–  Intelligence is an emergent property of certain complex

systems

•  Two key ideas:
–  Situatedness and embodiment. 'Real' intelligence is

situated in the world, not in disembodied systems such as
theorem provers or expert systems.

–  Intelligence and emergence. 'Intelligent' behaviour arises
as a result of an agent's interaction with its environment.
Also, intelligence is 'in the eye of the beholder' - it is not
an innate, isolated property.

Subsumption Architecture
Brooks’ Vision (1)

The new model:
perception and
action is all there
is. Cognition is only
in the eye of the
observer.

Original slides from R. Brooks held at the seminar “From Pixels to Predicates” (1983)

Subsumption Architecture
Brooks’ Vision (2)

The traditional model:
cognition intermediates
between perception and
action

Original slides from R. Brooks held at the seminar “From Pixels to Predicates” (1983)

Subsumption Architecture
Behaviors and Layered control

•  Decision making by a set of task accomplishing behaviors
–  Behaviors are direct mappings from observations to actions

•  Processing of raw sensor data
•  Direct coupling between observation and action, e.g. light

switch pressed  light on
•  Behaviors implemented as asynchronous finite state

machines
•  Multiple behaviors can “fire” simultaneously

–  mechanism for action selection: subsumption hierarchy
–  Behaviors organized in layers

•  Higher layer behaviors inhibit lower level ones
•  E.g., „Avoid obstacles“ lower layer (higher priority) than

„drive to goal“
•  Note behaviors are acting independently and communicate

asynchronously, however are not pro-active as in MAS

Subsumption Architecture
Layered Control

From Brooks, “A Robust Layered Control System for a
Mobile Robot”, 1985

For Example:
•  Level0: Avoid Obstacles
•  Level1: Wander aimlessly around
•  Level2: Heading towards goals points
•  Level3: Select unexplored locations as goals

•  A behavior fires if the environment is in state
s∈S and iff

Subsumption Architecture
Formal Model

•  A behavior is with , where P is
the set of percepts and A the set of actions

€

see(s)∈ c

•  The subsumption hierarchy is implemented by
the inhibition relation , denoting “b1 inhibits
b2”

Subsumption Architecture
Action Selection Algorithm

function action {

 // Compute the set of firing behaviors

 FB =

 // find action with highest priority

 for each do

 {
 if such that
 then return a

 }
 return NULL

}

 Time complexity: O(n2)

Subsumption Architecture
Steels’ Mars Explorer Experiment (1)

•  Steels 1990: Task of exploring a distant planet, more
concretely, to collect samples of a particular type of precious
rock.
–  The location of the rock samples is not known in advance, but

they are typically clustered in certain spots.
–  A number of autonomous vehicles are available that can drive

around the planet collecting samples and later reenter a mother
ship spacecraft to go back to Earth.

–  There is no detailed map of the planet available
–  No communication between the vehicles due to obstacles, such

as hills, valleys, etc.
•  Solution idea

–  Gradient field: Direction and distance to the mother ship can be
computed from an emitted radio signal

–  Indirect communication: Robots release “radioactive crumbs”
that can be detected by others (enables emergent behavior)

Subsumption Architecture
Steels’ Mars Explorer Experiment (2)

Individual agent‘s (goal-directed) behavior:

obstacle  changeDirection (1)
carryingSamples ∧ atTheBase  dropSamples (2)
carrying Samples ∧ ¬ atTheBase  travelUpGradient (3)
detectSample  pickUpSample (4)
TRUE  moveRandomly (5)

Subsumption hierarchy: (1) ≺ (2) ≺ (3) ≺ (4) ≺ (5)

Modification: Collaborative behavior: If sample is found, drop
„crumb trail“ while returning to ship (as guide for other
agents (special rocks appear in clusters!). Other agents will
weaken trail on way to samples. If sample cluster is empty 
no trail reinforcement  trail „dies“.

Subsumption Architecture
Steels’ Mars Explorer Experiment (3)

Modification: Collaborative behavior:

obstacle  changeDirection (1)
carryingSamples ∧ atTheBase  dropSamples (2)
carrying Samples ∧ ¬ atTheBase
  drop_2_Crumbs ∧ travelUpGradient (3‘)

detectSample  pickUpSample (4)
senseCrumbs  PickUp_1_Crumb ∧ travelDownGradient (6)
TRUE  moveRandomly (5)

subsumption hierarchy: (1) ≺ (2) ≺ (3‘) ≺ (4) ≺
(6) ≺ (5)

22

Subsumption Architecture
Pros and Cons (1)

•  Pro
–  Simplicity, i.e. modules

have high expressiveness
–  Computational tractability

–  Robustness against
failure, i.e. possibility of
modeling redundancies

–  Overall behavior emerges
from interactions

•  Cons
–  Behaviors are hard-coded

with respect to the
environment

–  Behavior emerges from
interactions  How to
engineer the system in
the general case?

–  How to model long-term
decisions?

–  How to implemented
varying goals?

–  Design approach does no
scale-up for large systems

Subsumption Architecture
Pros and Cons (2)

•  In practice, the subsumption architecture is not
sufficiently modular:

 … Because the upper layers interfere with the internal
functions of lower-level behaviors, they cannot be designed
independently and become increasingly complex. This also
means that even small changes to low-level behaviors or to
the vehicle itself cannot be made without redesigning the
whole system….

Hartley „Experiments with the Subsumption
Architecture“, ICRA 1991

Subsumption Architecture
Pros and Cons (3)

•  Is it here possible using the subsumption
architecture for reaching the mother ship?

a wall

Behavior Networks
Introduction

•  Composed of a set of competence modules
(Maes 1989)

•  Each module resembles behaviors like in
the subsumption architecture

•  Modules are defined
–  in terms of pre- and post-conditions

(similar to STRIPS formalisms)
– A real-value activation level (giving the

relevance within particular situations)
•  Modules are compiled into a spreading

network accordingly

•  P is a set propositional atoms generated from the world state

•  Behavior networks are tuples (P, G, M, Π), where
–  G ⊆ P is the goal specification
–  M is a finite set of competence modules,

 where m∈M is a tuple (pre, eff+, eff-, beh) with
•  pre ⊆ P denoting the preconditions
•  eff+, eff-

⊆
P
 denoting the positive and negative effects (with eff+ ∩ eff- = ∅)‏

•  beh an executable behavior

Behavior Networks
Definition

Behavior Networks
Definition

•  Competence modules are connected in a
network; “activation energy” goes from goals
to modules

•  A positive effect link connects a positive effect
p of a competence module to the precondition
p of another competence module

•  A negative effect link connects a negative
effect p of one competence module to the
precondition p of another competence module.

Behavior Networks
Activation flow

Module activation from situation

Activation of module k by satisfied
preconditions prek∩St , where Mp is the
set of modules activated by p and |prek|
the number of k’s inputs.

Module activation from goals

Activation by goals Gt satisfying positive
effects eff+ (or suppression from
negative effects eff- deleting goal
propositions Rt that are already active),
where Ne is the set of modules
generating effect e.

Fan effect Input normalization

Behavior Networks
Activation flow

Module activation from predecessors

Activation of module k from activated
modules E, where p is input of k and
also positive effect of predecessor l

Module activation from successors

Activation of module k from effect e that
satisfy precondition of successor l

Overall activation of module k:

Behavior Networks
Action selection

1.  Calculation of activation from goals end
situation

2.  Computation of inter-module activation
3.  Uniform reduction of activation of each

module to keep ∑ak constant
4.  Select module with highest activation abest

5.  If abest>θ then execute behavior
6.  If not, reduce θ by 10%, restart at 1.)

Behavior Networks
Network example

Competence module

Proposition

Legend:

Goal with importance

Negated (right) and
non-negated (left)
preconditions (bottom)
and effects
(top) with probability

Conjunction of relevance
conditions

Disjunction of relevance
conditions

Extended Behavior Networks (EBNs)‏

•  Decision theoretic action selection
•  Combine purely reactive acting with

deliberation
•  Modeling of continuous state variables

–  For example: “near goal”, goalDist= 1.2m
•  No feedback loops
•  No fan effect
•  Computational more expensive

Hybrid Architectures
Introduction

•  Neither completely deliberative nor completely reactive
approaches are suitable for building agents
–  Researchers concluded using hybrid systems, which attempt to

combine classical and alternative approaches

•  An obvious approach is to build agents out of two (or more)
subsystems:

–  a deliberative one, containing a symbolic world model, which
develops plans and makes decisions in the way proposed by
symbolic AI

–  a reactive one, which is capable of reacting to events without
complex reasoning

•  The combination of reactive and proactive behavior leads to
a class of architectures in which the various subsystems are
arranged into a hierarchy of interacting layers

Hybrid Architectures
Types of layers

•  Horizontal layering
Layers are each directly connected to the sensory input and
action output. In effect, each layer itself acts like an agent,
producing suggestions as to what action to perform.

•  Vertical layering
Sensory input and action output are each dealt with by at
most one layer each (mostly used nowadays)

Hybrid Architectures
Example Horizontal Layering: “TouringMachines” (1)

(Ferguson 1992)

Hybrid Architectures
Example Horizontal Layering: “TouringMachines” (2)

•  Reactive Layer. Subsumption-Architecture rules, e.g.:
 rule-1: kerb-avoidance
 if
 is-in-front(Kerb, Observer) and
 speed(Observer) > 0 and
 separation(Kerb, Observer) < KerbThreshHold
 then
 change-orientation(KerbAvoidanceAngle)

•  Planning Layer. Long-term behavior, e.g. plans trajectories (paths) to
goals

•  Modeling layer. Keeps and modifies environment model; selects new
goals for planning layer

•  Control subsystem. Exceeds control (e.g. by suppressing information
input to certain layers („censorship“)
 censor-rule-1:
 if
 entity(obstacle-6) in perception-buffer
 then
 remove-sensory-record(layer-R, entity(obstacle-6))

Hybrid Architectures
Example Vertical Layering: “InteRRaP”

•  Bottom-Up-Activation: If
lower level layer is not
competent for situation 
pass control to higher level

•  Top-Down-Execution:
Higher level layers make
use of “facilities” provided
by lower level layer

cooperation layer

plan layer

reactive layer

social knowledge

planning knowledge

world model

world interface

perceptual input action output

(Mueller 1995)

Case study: CS Freiburg Action Selection
Player architecture

100ms cycle

Case study: CS Freiburg Action Selection
Skill example: Dribbling

•  Consider points on arc around the
robot’s location

•  Compute utility according to
–  Distance to obstacles (+)
–  Heading angle difference (-)
–  Remaining angle to goal (-)

•  Select best angle

Case study: CS Freiburg Action Selection
Skill example: Inbound-shot

•  Consider possible shoot directions
with predicted reflections

•  Compute utility based on
–  Distance to obstacles (-)
–  Heading angle difference (-)
–  Distance to goal at end of line (-)

Case study: CS Freiburg Action Selection
Some basic skills

•  The state of the environment, as it is perceived by the
agent, is described via a number of continuously valued
propositions pi∈[0..1]

•  Competence modules are connected with goals if they
are able to influence goal conditions and also with each
other, if a competence module has an effect that is a
precondition of another

•  Goals are the source of activation. An action is selected
by considering each competence module’s executability
and received activation

•  The relevance condition role active (player has active
role) ensures that only one of these goals is relevant at
a time depending on the player’s current role

Case study: CS Freiburg Action Selection
Propositions

•  Are either binary p∈{true,
false} or continuous
p∈[0..1]
–  Continuous propositions

are generated by simple
fuzzification

•  Some examples:
–  Ball_present [0,1] true

ball position is known

double StraightUp(double x, double min,
double max)

{

 if(max == min)

 return 0.0;

 if(x < min)

 return 0.0;

 if(x > max)

 return 1.0;

 return((x - min) / (max - min));

}

Case study: CS Freiburg Action Selection
Propositions

•  Only non-conflicting goals; depending on role of player
 (e.g. active/support):

–  soccergoal
–  cooperate

•  Propositions
–  ball_present [0,1] true ball position is known
–  ball_near_own_goal as more active as ball is close to goal
–  …

•  Reflex behaviors
–  Some simple but important functionality can easier be realized by

 reactive situation-action rules
•  Robot gets stuck  FreeFromStall
•  10 seconds rule  GoToPos(FieldCenter)‏

•  Flexibility vs. Persistent
–  Persistence is necessary for successful soccer playing!
–  Achieved by intentionally disallowing undesired action sequences,

 such as ShootGoal  TribbleBall (see network slide)

Case Study
CS-Freiburg architecture

•  Network has basically non-conflicting goals
– Goal depends on role of player,
 e.g. support or active

– Difference to Dorer: Conflicting goal
 “have stamina” and “shoot goal”

•  Reflex behaviors
–  Situation-Action rules for urgent situations

•  Robot gets stuck: FreeFromStall
•  10 seconds rule: GoToPos(FieldCenter)‏

Case study: CS Freiburg Action Selection
The complete network

Summary

•  Logic-based (plan-based) systems can be slow
and it is not obvious how to generate symbols
from observations

•  Behavior-based approaches work bottom up,
directly coupling observations to behaviors

•  Subsumption architectures are more reactive
and more robust, but hard to engineer and it is
not obvious how to scale up

•  Hybrid architectures combine both approaches
–  behavior-based for low-level/time-critical

activities
–  logic-based for high-level mission planning

Literature

•  T. Weigel, J.-S. Gutmann, M. Dietl, A. Kleiner and B. Nebel CS-
Freiburg: Coordinating Robots for Successful Soccer Playing
IEEE Transactions on Robotics and Automation 18(5):685-699,
2002

•  K. Müller Roboterfußball: Multiagentensystem CS Freiburg,
Univ. Freiburg, 2001

•  K. Dorer Behavior Networks for Continuous Domains using
Situation-Dependent Motivations Proceedings of the 16th
International Joint Conference on Artificial Intelligence (IJCAI'99),
p. 1233-1238, Morgan Kaufmann, Stockholm

www.cs-freiburg.de

