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Introduction 
History of development 

1956-1985: Originally agents were mainly based on symbolic 
reasoning 
–  Researches concluded the weakness of this approach for 

time-constrained domains 
1985-present: Research on reactive agents 

–  Decision making based on syntactic manipulation of the 
representation 

–  The idea that intelligent behavior is seen as innately linked to 
the environment an agent occupies - intelligent behavior is 
not disembodied, but is a product of the interaction the agent 
maintains with its environment 

–  the idea that  intelligent behavior emerges from the 
interaction of various simpler behaviors 

From 1990-present: a number of alternatives proposed: hybrid 
architectures, which attempt to combine the best of reasoning 
and reactive architectures 



Logic-Based Architectures  
Introduction 

•  Traditional approach of building AI systems, known as 
symbolic AI 
–  Contains an explicitly represented, symbolic model of the 

world 
–  The state of the world is represented by a database of 

predicates 
•  Open(valve221) 
•  Temperature(reactor4726,321) 

–  Makes decisions about what actions to perform via 
symbolic reasoning, e.g., logical deduction or theorem 
proving 

–  Idea that intelligent behavior can be generated by such 
representation and manipulation of symbols 



Logic-Based Architectures 
Formal Model 

•  Action selection by using theorem proving 
•  Basic idea is to use logic to encode a theory stating the 

best action to perform in any given situation 
•  Let: 

–  ρ be this theory (typically a set of rules) 
–  Δ be a logical database that describes the current state of 

the world 
–  A be the set of actions the agent can perform 
–  Δ, ρ├ φ mean that φ can be proven from Δ using ρ


•  We assume the automatic execution of the functions 
–  see(s), which returns percepts according to the current 

world state (not one-to-one!) 
–  next(Δ, p), which updates the data base according to new 

percepts 



Logic-Based Architectures 
Action Selection Algorithm 

 function action     {   
  //try to find an action explicitly prescribed 
   for each a ∈ A do { 
    if Δ, ρ├ Do(a) then 
   then return a 
 } 

 // try to find an action not excluded 
   for each a ∈ A do { 
    if Δ, ρ ├ ¬Do(a) then 
   then return a 
  } 

  return NULL 
} 



Logic-Based Architectures 
Example: Vacuum World (1) 

•  Cleaning robot with  
–  percepts P = {dirt, X,Y,θ} 
–  Actions A = {turnRight, forward,  
                      suck} 

•  Start: (0,0,North) 
•  Goal: searching and cleaning dirt 
Use of domain predicates to solve problem: 

  In(x,y)  agent is at (x, y)‏ 

  Dirt(x,y)  there is dirt at (x, y)‏ 
  Facing(d)  the agent is facing direction d 



Logic-Based Architectures 
Example: Vacuum World (2) 

•  Set of rules p for solving the problem:  
–  In(x,y) ∧ Dirt(x,y)  Do(suck) 
–  In(0,0) ∧ Facing(north) ∧ ¬Dirt(0,0)  Do(forward) 
–  In(0,1) ∧ Facing(north) ∧ ¬Dirt(0,1)  Do(forward)

–  In(0,2) ∧ Facing(north) ∧ ¬Dirt(0,2)  Do(turn)

–  In(0,2) ∧ Facing(east)  Do(forward) 
–  … 

•  In order to ensure always one single action, ¬Dirt(X,Y) 
has to be explicitly checked  



Logic-Based Architectures 
Example: Vacuum World (3) 

•  Advantages 
–  Pro-active behavior (deliberation) 
–  Elegant logical semantics 

•  Problems: 
– How to convert video camera input to Dirt(0, 1)? 
–  Time complexity for reasoning 

•  Time for reasoning can be non-instantaneous 
•  During computation, the dynamic worlds might change 

and thus the solution not valid anymore! 
•  How to represent temporal information, e.g., how a 

situation changes over time? 



Plan-based Architectures 

•  A variation of logic-based architectures 
•  A planning system is responsible for 

generating action sequences in order to reach 
the goals 

•  Special-purpose reasoning system geared 
towards generating plans and based on that 
selecting the right action 

•  First system: STRIPS (in the 70’s) 
•  These days: Numerous systems (e.g. our 

system Fast Downward and extensions) 



BDI Architectures 
Introduction 

•  Motivated from philosophy: theory of practical 
reasoning requires belief, desire, and intention 
(BDI) 

•  Successful example: Procedurale Reasoning 
System (PRS) (Georgeff & Lansky 1987) 
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Reactive Architectures 
Brooks: Subsumption Architecture 

•  Brooks´ Vision: 
–  Intelligent behaviour can be generated without explicit 

representations of the kind that symbolic AI proposes 
–  Intelligent behaviour can be generated without explicit 

abstract reasoning of the kind that symbolic AI proposes 
–  Intelligence is an emergent property of certain complex 

systems 

•  Two key ideas: 
–  Situatedness and embodiment. 'Real' intelligence is 

situated in the world, not in disembodied systems such as 
theorem provers or expert systems. 

–  Intelligence and emergence. 'Intelligent' behaviour arises 
as a result of an agent's interaction with its environment. 
Also, intelligence is 'in the eye of the beholder' - it is not 
an innate, isolated property. 



Subsumption Architecture 
Brooks’ Vision (1) 

The new model: 
perception and 
action is all there 
is. Cognition is only 
in the eye of the 
observer. 

Original slides from R. Brooks held at the seminar “From Pixels to Predicates” (1983) 



Subsumption Architecture 
Brooks’ Vision (2) 

The traditional model: 
cognition intermediates 
between perception and 
action 

Original slides from R. Brooks held at the seminar “From Pixels to Predicates” (1983) 



Subsumption Architecture 
Behaviors and Layered control 

•  Decision making by a set of task accomplishing behaviors 
–  Behaviors are direct mappings from observations to actions 

•  Processing of raw sensor data 
•  Direct coupling between observation and action, e.g. light 

switch pressed  light on 
•  Behaviors implemented as asynchronous finite state 

machines 
•  Multiple behaviors can “fire” simultaneously  

–  mechanism for action selection: subsumption hierarchy 
–  Behaviors organized in layers  

•  Higher layer behaviors inhibit lower level ones  
•  E.g., „Avoid obstacles“ lower layer (higher priority) than 

„drive to goal“ 
•  Note behaviors are acting independently and communicate 

asynchronously, however are not pro-active as in MAS 



Subsumption Architecture 
Layered Control  

From Brooks, “A Robust Layered Control System for a 
Mobile Robot”, 1985 

For Example: 
•  Level0: Avoid Obstacles 
•  Level1: Wander aimlessly around 
•  Level2: Heading towards goals points 
•  Level3: Select unexplored locations as goals 



•  A behavior fires if the environment is in state 
s∈S and iff 

Subsumption Architecture 
Formal Model 

•  A behavior          is       with             , where P is 
the set of percepts and A the set of actions  

€ 

see(s)∈ c

•  The subsumption hierarchy is implemented by 
the inhibition relation         , denoting “b1 inhibits 
b2”   



Subsumption Architecture 
Action Selection Algorithm 

function action     {   

 // Compute the set of firing behaviors  

   FB =   

  // find action with highest priority     

 for each          do  

 { 
    if              such that      
  then return a 

  } 
 return NULL 

} 

 Time complexity: O(n2) 



Subsumption Architecture 
Steels’ Mars Explorer Experiment (1) 

•  Steels 1990: Task of exploring a distant planet, more 
concretely, to collect samples of a particular type of precious 
rock.  
–  The location of the rock samples is not known in advance, but 

they are typically clustered in certain spots.  
–  A number of autonomous vehicles are available that can drive 

around the planet collecting samples and later reenter a mother 
ship spacecraft to go back to Earth.  

–  There is no detailed map of the planet available 
–  No communication between the vehicles due to obstacles, such 

as hills, valleys, etc. 
•  Solution idea 

–  Gradient field: Direction and distance to the mother ship can be 
computed from an emitted radio signal 

–  Indirect communication: Robots release “radioactive crumbs” 
that can be detected by others (enables emergent behavior) 



Subsumption Architecture 
Steels’ Mars Explorer Experiment (2) 

Individual agent‘s (goal-directed) behavior: 

obstacle  changeDirection                         (1) 
carryingSamples ∧ atTheBase  dropSamples          (2) 
carrying Samples ∧ ¬ atTheBase  travelUpGradient  (3) 
detectSample  pickUpSample                        (4) 
TRUE  moveRandomly                                (5) 

Subsumption hierarchy:  (1) ≺  (2) ≺  (3)  ≺  (4)  ≺  (5) 

Modification: Collaborative behavior: If sample is found, drop 
„crumb trail“ while returning to ship (as guide for other 
agents (special rocks appear in clusters!). Other agents will 
weaken trail on way to samples. If sample cluster is empty  
no trail reinforcement  trail „dies“.  



Subsumption Architecture 
Steels’ Mars Explorer Experiment (3) 

Modification: Collaborative behavior: 

obstacle  changeDirection                         (1) 
carryingSamples ∧ atTheBase  dropSamples          (2) 
carrying Samples ∧ ¬ atTheBase  
  drop_2_Crumbs ∧ travelUpGradient              (3‘) 

detectSample  pickUpSample                        (4) 
senseCrumbs  PickUp_1_Crumb ∧ travelDownGradient  (6) 
TRUE  moveRandomly                                (5) 

subsumption hierarchy:  (1) ≺  (2) ≺  (3‘)  ≺  (4)  ≺  
(6) ≺  (5) 
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Subsumption Architecture  
Pros and Cons (1) 

•  Pro 
–  Simplicity, i.e. modules 

have high expressiveness 
–  Computational tractability 

–  Robustness against 
failure, i.e. possibility of 
modeling redundancies 

–  Overall behavior emerges 
from interactions 

•  Cons 
–  Behaviors are hard-coded 

with respect to the 
environment  

–  Behavior emerges from 
interactions  How to 
engineer the system in 
the general case? 

–  How to model long-term 
decisions? 

–  How to implemented 
varying goals? 

–  Design approach does no 
scale-up for large systems  



Subsumption Architecture  
Pros and Cons (2) 

•  In practice, the subsumption architecture is not 
sufficiently modular: 

    … Because the upper layers interfere with the internal 
functions of lower-level behaviors, they cannot be designed 
independently and become increasingly complex. This also 
means that even small changes to low-level behaviors or to 
the vehicle itself cannot be made without redesigning the 
whole system…. 

Hartley „Experiments with the Subsumption 
Architecture“, ICRA 1991 



Subsumption Architecture  
Pros and Cons (3) 

•  Is it here possible using the subsumption 
architecture for reaching the mother ship? 

a wall 



Behavior Networks 
Introduction 

•  Composed of a set of competence modules 
(Maes 1989) 

•  Each module resembles behaviors like in 
the subsumption architecture 

•  Modules are defined  
–  in terms of pre- and post-conditions 

(similar to STRIPS formalisms)  
– A real-value activation level (giving the 

relevance within particular situations) 
•  Modules are compiled into a spreading 

network accordingly  



•  P is a set propositional atoms generated from the world state 

•  Behavior networks are tuples (P, G, M, Π), where 
–  G ⊆ P is the goal specification 
–  M is a finite set of competence modules,  

 where m∈M is a tuple (pre, eff+, eff-, beh) with  
•  pre ⊆ P denoting the preconditions 
•  eff+, eff- 

⊆ 
P
 denoting the positive and negative effects (with eff+ ∩ eff- =  ∅)‏ 

•  beh an executable behavior 

Behavior Networks 
Definition 



Behavior Networks 
Definition 

•  Competence modules are connected in a 
network; “activation energy” goes from goals 
to modules 

•  A positive effect link connects a positive effect 
p of a competence module to the precondition 
p of another competence module 

•  A negative effect link connects a negative 
effect p of one competence module to the 
precondition p of another competence module. 



Behavior Networks 
Activation flow 

Module activation from situation 

Activation of module k by satisfied 
preconditions prek∩St , where Mp is the 
set of modules activated by p and |prek| 
the number of k’s inputs. 

Module activation from goals 

Activation by goals Gt satisfying positive 
effects eff+ (or suppression from  
negative effects eff- deleting goal 
propositions Rt that are already active), 
where Ne is the set of modules 
generating effect e. 

Fan effect Input normalization 



Behavior Networks 
Activation flow 

Module activation from predecessors 

Activation of module k from activated 
modules E, where p is input of k and 
also positive effect of predecessor l 

Module activation from successors 

Activation of module k from effect e that 
satisfy precondition of successor l 

Overall activation of module k: 



Behavior Networks 
Action selection 

1.  Calculation of activation from goals end 
situation 

2.  Computation of inter-module activation 
3.  Uniform reduction of activation of each 

module to keep ∑ak constant 
4.  Select module with highest activation abest 

5.  If abest>θ then execute behavior 
6.  If not, reduce θ by 10%, restart at 1.) 



Behavior Networks  
Network example 

Competence module 

Proposition 

Legend: 

Goal with importance 

Negated (right) and  
non-negated (left)  
preconditions (bottom)  
and effects  
(top) with probability 

Conjunction of relevance  
conditions 

Disjunction of relevance  
conditions 



Extended Behavior Networks (EBNs)‏ 

•  Decision theoretic action selection 
•  Combine purely reactive acting with 

deliberation 
•  Modeling of continuous state variables 

–  For example: “near goal”, goalDist= 1.2m 
•  No feedback loops 
•  No fan effect 
•  Computational more expensive 



Hybrid Architectures  
Introduction 

•  Neither completely deliberative nor completely reactive 
approaches are suitable for building agents 
–  Researchers concluded using hybrid systems, which attempt to 

combine classical and alternative approaches 

•  An obvious approach is to build agents out of two (or more) 
subsystems: 

–  a deliberative one, containing a symbolic world model, which 
develops plans and makes decisions in the way proposed by 
symbolic AI 

–  a reactive one, which is capable of reacting to events without 
complex reasoning 

•  The combination of reactive and proactive behavior leads to 
a class of architectures in which the various subsystems are 
arranged into a hierarchy of interacting layers 



Hybrid Architectures  
Types of layers 

•  Horizontal layering 
Layers are each directly connected to the sensory input and 
action output. In effect, each layer itself acts like an agent, 
producing suggestions as to what action to perform. 

•  Vertical layering 
Sensory input and action output are each dealt with by at 
most one layer each (mostly used nowadays) 



Hybrid Architectures  
Example Horizontal Layering: “TouringMachines” (1) 

(Ferguson 1992) 



Hybrid Architectures  
Example Horizontal Layering: “TouringMachines” (2) 

•  Reactive Layer. Subsumption-Architecture rules, e.g.: 
  rule-1: kerb-avoidance 
  if 
   is-in-front(Kerb, Observer) and 
   speed(Observer) > 0 and 
   separation(Kerb, Observer) < KerbThreshHold 
  then 
   change-orientation(KerbAvoidanceAngle) 

•  Planning Layer. Long-term behavior, e.g. plans trajectories (paths) to 
goals 

•  Modeling layer. Keeps and modifies environment model; selects new 
goals for planning layer 

•  Control subsystem. Exceeds control (e.g. by suppressing information 
input to certain layers („censorship“) 
  censor-rule-1: 
  if 
   entity(obstacle-6) in perception-buffer 
  then 
   remove-sensory-record(layer-R, entity(obstacle-6)) 



Hybrid Architectures  
Example Vertical Layering: “InteRRaP” 

•  Bottom-Up-Activation: If 
lower level layer is not 
competent for situation  
pass control to higher level 

•  Top-Down-Execution: 
Higher level layers make 
use of “facilities” provided 
by lower level layer 

cooperation layer 

plan layer 

reactive layer 

social knowledge 

planning knowledge 

world model 

world interface 

perceptual input action output 

(Mueller 1995) 



Case study: CS Freiburg Action Selection 
Player architecture 

100ms cycle 



Case study: CS Freiburg Action Selection 
Skill example: Dribbling 

•  Consider points on arc around the 
robot’s location 

•  Compute utility according to 
–  Distance to obstacles (+) 
–  Heading angle difference (-) 
–  Remaining angle to goal (-) 

•  Select best angle 



Case study: CS Freiburg Action Selection 
Skill example: Inbound-shot 

•  Consider possible shoot directions 
with predicted reflections 

•  Compute utility based on  
–  Distance to obstacles (-) 
–  Heading angle difference (-) 
–  Distance to goal at end of line (-) 



Case study: CS Freiburg Action Selection 
Some basic skills 

•  The state of the environment, as it is perceived by the 
agent, is described via a number of continuously valued 
propositions pi∈[0..1] 

•  Competence modules are connected with goals if they 
are able to influence goal conditions and also with each 
other, if a competence module has an effect that is a 
precondition of another 

•  Goals are the source of activation. An action is selected 
by considering each competence module’s executability 
and received activation 

•  The relevance condition role active (player has active 
role) ensures that only one of these goals is relevant at 
a time depending on the player’s current role 



Case study: CS Freiburg Action Selection 
Propositions 

•  Are either binary p∈{true, 
false} or continuous 
p∈[0..1] 
–  Continuous propositions 

are generated by simple 
fuzzification 

•  Some examples: 
–  Ball_present [0,1] true 

ball position is known 

double StraightUp(double x, double min, 
double max) 

{ 

  if(max == min) 

      return 0.0; 

  if(x < min) 

      return 0.0; 

  if(x > max) 

      return 1.0; 

  return((x - min) / (max - min)); 

} 



Case study: CS Freiburg Action Selection 
Propositions 

•  Only non-conflicting goals; depending on role of player  
 (e.g. active/support): 

–  soccergoal 
–  cooperate  

•  Propositions 
–  ball_present [0,1] true ball position is known 
–  ball_near_own_goal as more active as ball is close to goal 
–  … 

•  Reflex behaviors 
–  Some simple but important functionality can easier be realized by  

 reactive situation-action rules 
•  Robot gets stuck  FreeFromStall  
•  10 seconds rule  GoToPos(FieldCenter)‏ 

•  Flexibility vs. Persistent 
–  Persistence is necessary for successful soccer playing! 
–  Achieved by intentionally disallowing undesired action sequences,  

 such as ShootGoal  TribbleBall (see network slide) 



Case Study 
CS-Freiburg architecture 

•  Network has basically non-conflicting goals 
– Goal depends on role of player,  
 e.g. support or active 

– Difference to Dorer: Conflicting goal  
 “have stamina” and “shoot goal” 

•  Reflex behaviors 
–  Situation-Action rules for urgent situations 

•  Robot gets stuck: FreeFromStall  
•  10 seconds rule: GoToPos(FieldCenter)‏ 



Case study: CS Freiburg Action Selection 
The complete network 



Summary 

•  Logic-based (plan-based) systems can be slow 
and it is not obvious how to generate symbols 
from observations 

•  Behavior-based approaches work bottom up, 
directly coupling observations to behaviors 

•  Subsumption architectures are more reactive 
and more robust, but hard to engineer and it is 
not obvious how to scale up 

•  Hybrid architectures combine both approaches 
–  behavior-based for low-level/time-critical 

activities 
–  logic-based for high-level mission planning 
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