
Introduction to Multi-Agent
Programming

2.  Societies of Agents

Rational Agents, Contract nets,
Blackboard systems, Selfish Agents

Alexander Kleiner, Bernhard Nebel

2

Contents

•  Rational Agents
–  The structure of rational agents
–  Different classes of agents
–  Types of agent environments

•  Societies of Agents
–  Coordination through interaction

•  Contract Nets
•  Blackboard Systems

–  Selfish Agents
•  Introduction to Game Theory

3

Rational Agents

•  Perceive the environment through sensors
 ( Percepts)

•  Act upon the environment through actuators
( Actions)

•  Act rational with respect to a performance measure,
e.g. time, energy, money, ...

Examples: Humans and animals, robots and software
agents (softbots), temperature control, ABS, …

4

The Ideal Rational Agent

Rational behavior is dependent on

•  Performance measures (goals)

•  Percept sequences

•  Knowledge of the environment

•  Possible actions

Ideal rational agent: For each possible percept sequence, a
rational agent should select an action that is expected to
maximize its performance measure, given the evidence
provided by the percept sequence and whatever built-in
knowledge the agent has.

The ideal rational agent acts according to the function

Percept Sequence x World Knowledge  Action

5

Examples of Rational Agents

temperature,
pressure,
chemical
sensors

valves,
pumps,
heaters,
displays

refinery,
operators

maximize
purity, yield
safety

Refinery
controller

cameras,
speedometer,
GPS, ...

steering
wheel,
accelerator,
brake, horn

street map speed,
safety, ... taxi driver

camera, ultra-
sonic,
bumpers

wheels, suck
device household Cleaning

completeness
vacuum
cleaner

Color + thermo
camera, CO2 +
audio sensor

wheels or
tracks, pan-
tilt unit

rescue arena victims found rescue robot

color camera,
wheel odometry,
laser range
finder

wheels
(motors), kick-
device

soccer field
with other
players

goal ratio soccer robot

Sensors Actuators Environment Performance
Measure Agent Type

Example Roomba Cleaning Robot

7

Structure of Rational Agents (1)

Realization of the ideal mapping through an

•  Agent program, maps from percept histories
to actions f: P*  A , executed on an

•  Architecture which also provides and
interface to the environment (percepts,
actions)

 Agent = Architecture + Program

8

Structure of Rational Agents (2)
Example Skeleton

function Skeleton-Agent(percept) returns action
 static: memory, the agent's memory of the world

 memory ← Update-Memory(memory, percept)
 action ← Choose-Best-Action(memory)
 memory ← Update-Memory(memory, action)
 return action

Note:
•  Memory capacity can be zero
•  Performance measure is not part of the agent

9

The Simplest Design: Table-Driven
Agents

Problems:

•  The table can become very large

•  and it usually takes a very long time for the designer to
specify it (or to learn it)

•  … practically impossible

function TABLE-DRIVEN-AGENT(percept) returns action
 static: percept sequence, initially empty; a table indexed by
 percept sequences, initially fully specified

 append percept to the end of percept sequence
 action ← LOOKUP(percepts, table)
return action

10

A Simple Reflex Agent

function SIMPLE-REFLEX-AGENT(percept) returns action
 static: rules, a set of condition-action rules

 state ← INTERPRET-INPUT(percept)
 rule ← RULE-MATCH(state, rules)
 action ← RULE-ACTION[rule]
 return action

•  Uses extracted condition-
action rules

•  Rule matching
•  Percepts have to be

interpreted
•  Example fire fighters

domain:
If (tank_is_empty) then

return_to_refuge

11

Model-based Reflex Agents

function REFLEX-AGENT-WITH-STATE(percept) returns action
 static: rules, a set of condition-action rules
 state, a description of the current world

 state ← UPDATE-STATE(state, percept)
 rule ← RULE-MATCH(state, rules)
 action ← RULE-ACTION[rule]
 state ← UPDATE-STATE(state, action)
 return action

•  Updating of internal state
representing the history of
percepts

•  Prediction of effects of
actions given the state

•  Example fire fighters domain:
–  Update size of fire in a

district
–  Predict amount of water

needed to extinguish district

12

Utility-Goal-Based Agents (1)

•  Explicit goal
representation

•  Selection of goal with
highest expected
utility

•  Actions are generated
by planning to reach
goal state

function UTILITY-BASED-AGENT(percept) returns action
static: rules, state, goal
state ← UPDATE-STATE(state, percept)
goal ← FORMULATE-GOAL(state, perf-measure)
search-space ← FORMULATE-PROBLEM (state, goal)
plan ← SEARCH(search-space , goal)
while (plan not empty) do
 action ← RECOMMENDATION(plan, state)
 plan ← REMAINDER(plan, state)
 output action
End

13

Utility-Based Agents (2)
 Example: fire fighters domain

•  Each burning district instantiates
a goal

–  UPDATE_STATE updates the
fire parameters of each
district

•  Prediction of actions: time needed
to extinguish each district

•  Utility function: Civilians saved
from fire

–  FORMULATE_GOAL selects
district with highest expected
outcome

•  Planning to goals
–  SEARCH finds a path to a fire

district (e.g. by BFS, A*, ...),
and buildings to extinguish

14

Learning Agents (1)
•  Any agent can be transformed

into a learning agent
•  Learning element: responsible

for making improvements
•  Performance element: has to

select external actions
•  Critic: determines the

performance of the agent
•  Problem generator: suggests

informative actions
(exploration)

function LEARNING-REFLEX-AGENT(percept, reward) returns action
 static: rules, a set of condition-action rules

 state ← INTERPRET-INPUT(percept)
 rule ← RULE-MATCH(state, rules)
 action ← RULE-OR-EXPLORATIVE-ACTION[rule]
 rules ← RULES-CRITIC-UPDATE(reward, rules)
 return action

15

Learning Agents (2)
Example: fire fighters domain

•  Partially or fully blocked
roads cause more travel
time

•  Blockage of roads is
unknown at start-up time

•  Agents learn the travel
time needed for each road
segment during execution

•  Planer prefers fast roads,
i.e. those without or little
blockage

16

The Environment of Rational Agents

  accessible vs. inaccessible (fully observable vs. partially observable)
 Are the relevant aspects of the environment accessible to the sensors?

  deterministic vs. stochastic
 Is the next state of the environment completely determined by the current state
and the selected action? If only actions of other agents are nondeterministic,
the environment is called strategic.

  episodic vs. sequential
 Can the quality of an action be evaluated within an episode (perception +
action), or are future developments decisive for the evaluation of quality?

  static vs. dynamic
 Can the environment change while the agent is deliberating? If the environment
does not change but if the agent’s performance score changes as time passes
by the environment is denoted as semi-dynamic.

  discrete vs. continuous
 Is the environment discrete (chess positions) or continuous (robot positions)?

  single agent vs. multi-agent
 Which entities have to be regarded as agents? There are competitive and
cooperative scenarios.

17

Examples of Environments

Whether an environment has certain property also depends
on the conception of the designer.

single continuous semi episodic deterministic fully image analysis

single continuous dynamic episodic stochastic partially part-picking
robot

single continuous dynamic sequential stochastic partially refinery
controller

multi discrete dynamic sequential stochastic partially Interactive
English tutor

single continuous dynamic sequential stochastic partially medical
diagnosis

multi discrete static sequential stochastic fully backgammon

multi continuous dynamic sequential stochastic partially taxi driving

multi discrete static sequential stochastic partially poker

multi discrete semi sequential strategic fully Chess with a
clock

single discrete static sequential deterministic fully Crossword
puzzle

Agents Discrete Static Episodic Deterministic Observable Task

18

Summary
•  An agent is something that perceives and acts. It

consists of an architecture and an agent program.
•  An ideal rational agent always takes the action that

maximizes its performance given the percept sequence
and its knowledge of the environment.

•  An agent program maps from a percepts to actions.
•  There are a variety of designs

–  Reflex agents respond immediately to percepts
–  Goal-based agents work towards goals
–  Utility-based agents try to maximize their reward
–  Learning agents improve their behavior over time

•  Some environments are more demanding than others.
•  Environments that are partially observable,

nondeterministic, strategic, dynamic, and continuous and
multi-agent are the most challenging.

Societies of Agents (1)

•  Conventional AI focuses on one agent, what
happens when we consider more than one
agent?

•  An intelligent agent in a society is a rational
agent with the following abilities:
–  Reactivity: the ability to react on changes in the

environment in real time
–  Pro activeness: the ability to take the initiative

with respect to the goals, e.g. not driven by
events

–  Social ability: to interact (communicate,
cooperate, collaborate) with other agents (and
possibly humans) by some kind of agent-
communication language

20

Societies of Agents (2)
Is it not all just Artificial Intelligence (AI) ?

•  Do we need to solve all the problems of AI itself, e.g. to solve the
planning problem, the learning problem, ... in order to build an
agent?
–  ... In short, while we may draw upon AI techniques to build

agents, we do not need to solve all the problems of AI to build
an agent ...

–  Intelligent agents are 99% computer science and 1% AI (Etzioni,
1996)

–  “We made our agents dumber and dumber and dumber…until
finally they made money.” (Etzioni speaking about the
commercial experience with NETBOT)

•  Classical AI ignored social aspects of agency. These are important
parts of intelligent activity in real-world settings

21

Societies of Agents (3)
Influencing Disciplines

Game
Theory

AI Techniques

Social
Sciences

Distributed Systems
MAS

22

Attributes of MAS
attribute range

agents

number from two upward
uniformity homogeneous / heterogeneous

goals contradictory / complementary

architecture reactive / deliberative
abilities (sensors etc.) simple / advanced

interaction

frequency high / low
persistence short-term / long-term
level signal level / knowledge level
pattern decentralized / hierarchical
variability fixed / changeable
purpose competitive / cooperative

environment

predictability foreseeable / unforeseeable
accessibility limited / unlimited
dynamics low / high
diversity poor / rich
availability of resources restricted / ample

From Huhns & Singh 1998, “Agents and multi-agent systems: Themes, approaches and challenges”

23

Coordination Through Interaction (1)‏

Coordination

Competition Cooperation

Planning Negotiation Task decomposition Strategic acting

Common goals Individual goals

Neutral /
disjunctive

goals

Conflicting goals

24

Coordination Through Interaction (2)

•  Benevolent agents
–  e.g. team of fire brigades, robots exploring unknown

terrain
–  Agents are assumed to act truthfully
–  Cooperative distributed problem solving: agents can be

designed to help whenever asked for
–  Cooperation mechanisms are for example contract nets,

and blackboard system
•  Self-interested agents

–  e.g. from different organizations, Internet markets,
computer games

–  Agents assumed to work for their own benefit, possibly at
expense of others

–  Coordination by adequate mechanism design, e.g. Game
theory, Auctions

Task Decomposition and Assignment:
Contract Nets (1)

•  An agent that wants a task to be solved is the
manager

•  Agents able to solve the task are potential
contractors

•  The manager:
–  announces a task (the task specification)
–  receives and evaluates bids from potential

contractors
–  awards a contract to a suitable contractor
–  receives and synthesizes the results

Contract Nets (2)

•  The potential contractor:
–  receives task announcements
–  evaluates the capability to respond
–  responds with a bid or declines
–  perform task if the bid is accepted
–  report the results back

•  Roles are not specified in advance, but are
dynamic

•  In particular, a contractor might further
decompose a task and give some parts away to
other contractors!

Contract Nets (3)
Fire Brigade example

A

B

C

D

•  Fire brigade A needs help
to extinguish a building
–  Task specification:

needed amount of
water, the location of
the fire, and a deadline

•  Agent B and D submit
their bits
–  The bit contains

estimated costs for
traveling to the
location and for
refilling the tank

A

B

C

D

Contract Nets (4)
Fire Brigade example

•  The manager awards a
contract to the most
appropriate agent
–  For example, agent B,

which is closer to the
fire

•  The contractor sends
back a report after
finishing the task or
further subdivides the
task …

A

B

C

D Contract established

Contract Nets (5)
Limitations

•  Limitations:
–  Task decomposition and problem syntheses can

be non-trivial
–  Communication overhead
–  The awarded contractor might not be the best

choice, a better candidate could be temporarily
busy during award time

•  Efficiency modifications:
–  Focused addressing / direct contracts (e.g. team

structure)
–  Agent send status message, e.g. eligible but

busy, ineligible, uninterested, …

30

Task Decomposition and Assignment:
Blackboard Systems (1)

•  Data-driven approach to task assignment
-  A number of “experts” are sitting next to a blackboard
-  When one of the experts sees that she can contribute
something, she writes this on the blackboard
-  This continues until the “solution” comes up on the
blackboard

•  Mainly used for distributed problem solving, e.g. speech
recognition

•  Requires a common interaction language
•  Event-based activation
•  Can have different levels of abstraction

Blackboard systems (2)

Arbiter
Selects “winning” KS for accessing
blackboard. Mechanism can be
reactive (data-driven) but also
goal-driven, e.g. select KS with
highest expected future outcome

Knowledge sources (KSs)
A series of
components that are
able to operate on the
blackboard

Blackboard
publicly read/writeable
data structure (e.g.
shared memory)

“Blackboard Architectures,” AI Game Programming Wisdom,
Volume 1, pp. 333 - 344

Blackboard systems (3)
Example: RTS game BBWar using the C4 blackboard
architecture (MIT 2001)

•  The KSs are individual units that
have special skills that can be
executed on demand

•  The blackboard contents take the
form of open missions

•  Units from different levels of the
hierarchy pay attention to different
types of postings

–  Commanders look for ATTACK-CITY
missions and create ATTACK-
LOCATION missions

–  Soldiers look for ATTACK-LOCATION
missions

–  …

•  Implemented as a hash table
mapping skill names to open
missions “Blackboard Architectures,” AI Game Programming Wisdom,

Volume 1, pp. 333 - 344

Blackboard systems (4)

•  Advantages:
–  Simple mechanism for cooperation and

coordination
–  KSs do not need to know about other KSs they

are cooperating with
–  Postings can be overwritten by different

systems, e.g. units can be replaced
–  Can also be used for inter-agent communication

•  Disadvantages:
– Mainly suitable for agents executed on the same

architecture

Self-interested Agents (1)

•  What happens when agents are not benevolent?
–  Why should they report their capabilities truthfully?
–  Why should they actually complete contracted tasks?

•  Cooperation works fine if we can design the entire
system by ourselves
–  We can then try to maximize some performance measure

and guarantee that all member of a team of agents work
towards the common goal

•  If agents work for different parties the common goal
might not be the goal of the single agents
–  e.g., assume an arrival management system for airports

with a number of different airlines or the Internet
•  If an MAS becomes large and complex the overall goal

is not evident (e.g. in an intelligent house)
  It might be more robust to design agents as self-

interested agents

35

Self-interested Agents (2)

•  What is the self-interest of a competitive agent?
•  She tries to maximize her expected utility!
•  AI techniques are good for that, but …
•  … here we have other agents that also act
•  All agents know (to a certain extend) what their options are

and what the payoff will be
  Strategic deliberation and decision making

 Choose the option that maximizes own payoff under the
assumption that everybody also acts rationally

 Does not maximize social welfare but is robust

36

Game Theory (1)

•  Game Theory is the field that analyzes strategic decision
situations
•  economic settings
•  military contexts
•  social choices

•  Usual assumption: All agents act rationally
•  Unfortunately, humans do not follow this pattern all the

time
•  Often change their utility function on the way or simply

do not maximize or do not assume that all others act
rationally

•  Nevertheless: For designing MAS it might just be the right
theoretical framework because we can design our agents to act
rationally.

37

Game Theory (2)
Experiment

•  Each of you (the students in this course) have to choose an
integer between 1 and 100 in order to guess “2/3 of the
average of the responses given by all students in the
course.”

38

Summary
•  MAS focus on the interaction between agents as opposed to

AI, which focuses on single agents
•  There are two main strands:

•  Cooperative agents, which work together to achieve a
common goal

•  Competitive agents, which try to maximize their own
expected utility

•  The latter might also be useful in cooperative settings,
because it leads to particularly robust behavior

•  Game Theory is the right theoretical framework to deal with
strategic decision situations appearing in groups of self-
interested agents

Literature

•  Russel, S. and Norvig, P. Artificial Intelligence: A Modern
Approach, second edition, Prentice Hall, 2003

•  Davis, R. and Smith, R. Negotiation as a Metaphor for
Distributed Problem Solving Artificial Intelligence 20, pp.
63-109, 1983. Winner of the 2006 Influential Paper Award

•  Corkill, D. Blackboard Systems. AI Expert, 6(9):40-47,
September, 1991

•  Isla D. and Blumberg, B. Blackboard Architectures, AI
Game Programming Wisdom, Volume 1, pp. 333 - 344

