Constraint Satisfaction Problems Global Constraints

Bernhard Nebel and Stefan Wölfl

based on a slideset by Malte Helmert and Stefan Wölfl (summer term 2007)

Albert-Ludwigs-Universität Freiburg

December 21, 2009

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

December 21, 2009

1 / 25

Global Constraints

Global Constraints

What are global Constraints?

- ► Type of similar constraint relations . . .
- ▶ ... differing in the number of variables
- ▶ Semantically redundant: same constraint can be expressed by a conjunction of simpler constraints
- ▶ Similar structure: can be exploited by constraint solvers

Examples:

▶ sum constraint, knapsack constraint, element constraint, all-different constraint, cardinality constraints

Constraint Satisfaction Problems

December 21, 2009 — Global Constraints

Motivation

Global Constraints All-different Sum and Cardinality Circuit

Filtering

Arc consistency All-different Constraint

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

December 21, 2009

2 / 25

Motivation All-different

All-different constraint

Definition

Let v_1, \ldots, v_n be variables each with a domain D_i $(1 \le i \le n)$.

$$ext{alldifferent}(v_1,\ldots,v_n) := \\ \left\{ (d_1,\ldots,d_n) \in D_1 imes \cdots imes D_n \ : \ d_i
eq d_j \ ext{for} \ i
eq j
ight\}$$

The all-different constraint is a simple, but widely used global constraint in constraint programming.

It allows for compact modeling of CSP problems.

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

December 21, 2009

Example: *n*-Queens Problem

Figure: 4-queens problem

Problem representation: Variables v_i for each column $1, \ldots, n$; v_i can take a "row value" $1, \ldots, n$.

No-attack constraints:

$$v_i \neq v_j$$
 for $1 \leq i < j \leq n$
 $v_i - v_j \neq i - j$ for $1 \leq i < j \leq n$
 $v_j - v_i \neq j - i$ for $1 \leq i < j \leq n$

 $ext{alldifferent}(v_1,\ldots,v_n) \ ext{alldifferent}(v_1-1,\ldots,v_n-n) \ ext{alldifferent}(v_1+1,\ldots,v_n+n)$

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

Sum and Cardinality

December 21, 2009

5 / 25

Sum Constraint

Let v_1, \ldots, v_n, z be variables with subsets of \mathbb{Q} as domain. For each v_i , let $c_i \in \mathbb{Q}$ be some fixed scalar, $c = (c_1, \ldots, c_n)$.

Definition

The sum constraint is defined as:

$$\mathrm{sum}(v_1, \dots, v_n, z, c) := \{(d_1, \dots, d_n, d) \in (\prod_{1 \le i \le n} D_i) \times D_z : d = \sum_{1 \le i \le n} c_i d_i \}.$$

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

December 21, 2009

Global Cardinality Constraint

 v_1, \ldots, v_n : "assignment variables" with $D_i \subseteq \{d_1^*, \ldots, d_m^*\}$. c_1, \ldots, c_m : "count variables" with sets of integers as domains.

Definition

The global cardinality constraint is defined as:

$$\begin{split} \gcd(v_1,\dots,v_n,c_1,\dots,c_m) := \\ & \big\{ (d_1,\dots,d_n,o_1,\dots,o_m) \in \prod_{1 \leq i \leq n} D_{v_i} \times \prod_{1 \leq j \leq m} D_{c_j} : \\ & \text{for each } j, \ d_i^* \ \text{occurs in} \ (d_1,\dots,d_n) \ \text{exactly} \ o_i \ \text{times} \big\} \end{split}$$

The global cardinality constraint can be considered a generalization of the all-different constraint.

Motivation Circ

Circuit Constraint

Let $s = (s_1, \ldots, s_n)$ be a permutation of $\{1, \ldots, n\}$.

Define C_s as the smallest set that contains 1 and with each element i also s_i .

 (s_1,\ldots,s_n) is called cyclic if $C_s=\{1,\ldots,n\}$.

Definition

Let v_1, \ldots, v_n be variables with domains $D_i = \{1, \ldots, n\}$ $(1 \le i \le n)$.

$$exttt{circuit}(v_1,\ldots,v_n) := \\ \left\{ (d_1,\ldots,d_n) \in D_1 \times \cdots \times D_n \,:\, (d_1,\ldots,d_n) \text{ is cyclic} \right\}$$

Given an assignment $a = (d_1, \dots, d_n)$, define

$$A := \{ (v_i, v_{d_i}) : d_i \in D_i, 1 < i < n \}.$$

Then, a satisfies $circuit(v_1, ..., v_n)$ if and only if (V, A) is a directed cycle (without proper sub-cycles).

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

December 21, 2009

Motivation Circuit

Example: Traveling Salesperson Problem

Traveling Salesperson Problem (TSP):

Given a set of n cities and distances c_{ij} between city i and city j, find the shortest route that visits all cities and finishes in the starting city.

TSP is not a constraint satisfaction problem, but a constraint optimization problem . . .

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

December 21, 2009

9 / 25

. .. 6: ..

The Decision Problem of TSP

 v_i : variable for city i with domain $D_i := \{1, \ldots, n\} \setminus \{i\}$ (read as: value of v_i is the city to be visited next)

 c_{ii} : distance between cities i and j (may not be symmetric)

t: bound for the total tour length

Then:

$$circuit(v_1, \ldots, v_n)$$

$$\sum_{1 \le i \le n} c_{i v_i} \le t$$

Motivation Circ

Constraint Optimization Problem

Definition

A constraint optimization problem (COP) is a constraint satisfaction problem together with an objective function f that assign to each variable assignment a a value $f(a) \in \mathbb{Q}$.

- ▶ Minimization COP: Find a solution a that minimizes f(a).
- ightharpoonup Maximization COP: Find a solution a that maximizes f(a).
- ▶ Optimal solution: Solution to a minimization (maximization) COP.

Decision problem associated to a COP:

Given an instance of a COP, (P, f), and some threshold $t \in \mathbb{Q}$, is there a solution a of P such that $f(a) \ge t$ ($f(a) \le t$, resp.)?

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

December 21, 2009

10 / 25

Filterin

Filtering

- ► Constraint propagation techniques aim at filtering variable domains: remove useless values (that cannot participate in any solution) as early as possible.
- ► Filtering allows false-positives (values are kept though they are useless),
- ▶ but not false-negatives (useful value is removed).
- ► A constraint is "good" if it allows significant filtering (pruning of domain values) with low computational efforts.
- ► Constraint solver may benefit from exploiting the structure of such good constraints.

Filtering

Filtering Arc consistency

Filtering

Let (s, R) be a constraint.

Filtering algorithm: a filtering algorithm for a constraint (s, R) is an algorithm that filters the domains with respect to (s, R)

Complete filtering: every useless value from the domain of every variable that C is defined on is removed

Partial filtering: incomplete filtering

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

December 21, 2009

13 / 25

Filtering All-different Constraint

Value Graphs

Definition

An undirected graph $G = \langle V, E \rangle$ is bipartite if there exists a partition $S \stackrel{.}{\cup} T$ of V such that $E \subseteq S \times T$.

A directed graph $G = \langle V, A \rangle$ is bipartite if there exists a partition $S \stackrel{.}{\cup} T$ of V such that $A \subseteq (S \times T) \cup (T \times S)$.

G is then written in the form $G = \langle S, T, E \rangle / G = \langle S, T, A \rangle$.

Definition

Let V be a set of variables and D be the union of all domains D_v for $v \in V$.

The value graph of V is defined as the following bipartite graph:

$$G = \langle V, D, E \rangle$$

where $E = \{ \{v, d\} : v \in V, d \in D_v \}.$

Enforcing Arc Consistency as Filtering Method

▶ In general, enforcing generalized arc consistency on a constraint network requires exponential time w.r.t. the largest arity of some constraint relation in the network.

Recall: Enforcing generalized arc consistency runs in time

 $O(erd^r)$,

where e is the number of constraints and r is the largest arity of some constraint in the network,

- ► Though general constraints have often high arity, there exist efficient methods to enforce generalized arc consistency.
- ▶ In the following we consider the all-different constraints.

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

All-different Constraint

December 21, 2009

14 / 25

Example: Value graph

Consider variables v_1, \ldots, v_4 with $D_1 = \{b, c, d, e\}$, $D_2 = \{b, c\}$, $D_3 = \{a, b, c, d\}$, $D_4 = \{b, c\}$.

Value graph:

16 / 25

iltering All-different Constrair

Matchings

Let $G = \langle V, E \rangle$ be an undirected graph.

Definition

A matching in G is a set $M \subseteq E$ of pairwisely disjoint edges.

A matching M covers a set $S \subseteq V$ if $S \subseteq \bigcup M$, i.e., each $v \in S$ is contained in some edge in M.

 $v \in V$ is *M*-free if *M* does not cover $\{v\}$.

Cardinality of a matching M: number of edges in M.

Definition

A path v_0, \ldots, v_k in G is M-alternating if all the edges $\{v_i, v_{i+1}\}$ are alternatingly out of and in M.

A path v_0, \ldots, v_k is M-augmenting if k is odd, M does not cover v_0 and v_k , and its edges $\{v_i, v_{i+1}\}$ are alternatingly out of and in M.

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

December 21, 2009

17 / 25

Filtering All-different Constraint

Max-Cardinality Matching on Bipartite Graphs

Let $G = \langle U, W, E \rangle$ be a bipartite graph and M be some matching. We may assume $|U| \leq |W|$.

Define a directed bipartite graph $G_M = \langle U, W, A \rangle$ by

$$A := \{(w, u) : \{u, w\} \in M, u \in U, w \in W\} \cup \{(u, w) : \{u, w\} \in E \setminus M, u \in U, w \in W\}$$

Every directed path in G_M starting in an M-free vertex in U and ending in an M-free vertex in W corresponds to an M-augmenting path in G. We need to find at most |U| such paths.

Each path can be identified by breadth-first search in time O(|A|).

This method by van der Waerden and König can be improved by an algorithm by Hopcroft and Karp $(O(\sqrt{|U|} \cdot |A|))$.

Let $G = \langle V, E \rangle$ be a graph and M be a matching in G.

Theorem (Peterson)

M is a max-cardinality matching (i.e., it is a matching of maximum cardinality) if and only if there is no M-augmenting path in G.

Hence a max-cardinality matching can be obtaind if one repeatedly searches for an M-augmenting path in G and uses it to extend M.

Note: If M is a matching and v_0, \ldots, v_k is an M-augmenting path, then

$$M' := M \oplus \{\{v_i, v_{i+1}\} : 0 \le i \le k-1\}$$

is a matching with |M'| = |M| + 1.

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

Filtering All-different Constraint

December 21, 2009

18 / 25

All-different Constraint and Matching

Let $V = \{v_1, \dots, v_n\}$ be a set of variables and G be the value graph of V. Let (d_1, \dots, d_n) be a variable assignment.

Lemma

 $(d_1, \ldots, d_n) \in all different(v_1, \ldots, v_n)$ if and only if $M = \{\{v_1, d_1\}, \ldots, \{v_n, d_n\}\}$ is a matching in G.

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

December 21, 2009

20 / 25

Arc-consistent All-different Constraint

Lemma

The constraint all different (v_1, \ldots, v_n) is generalized arc-consistent, if and only if every edge in G belongs to a matching in G that covers V.

Proof.

Simple.

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

December 21, 2009

21 / 25

Filtering All-different Constraint

Enforcing Arc Consistency on All-different Constraints

- 1. Compute a max-cardinality matching M in the value graph of V(can be done in time $O(m\sqrt{n})$ where $m = \sum_{1 \le i \le n} |D_i|$)
- 2. Identify the even M-alternating paths starting in an M-free vertex and the M-alternating cycles:
 - 2.1 Define dir. bipartite graph $G_M = \langle V, D_V, A \rangle$ with A = $\{(v,d): v \in V, \{v,d\} \in M\} \cup \{(d,v): v \in V, \{v,d\} \in E \setminus M\}$
 - 2.2 Compute the strongly connected components in G_M (in time O(n+m))
 - 2.3 Mark acrs between vertices in the same component as "used": they belong to an even M-alternating cycle
 - 2.4 Marc arcs as "used" that belong to a directed path in G_M , start in an M-free vertex (breadth-first search in time O(m)).
- 3. Update $D_v \leftarrow D_v \setminus \{d\}$ for all edges $\{v, d\}$ where the corresponding arc is not marked as used.

Edges in Max-Cardinality Matchings

Theorem

Let G be a graph and let M be a max-cardinality matching in G. An edge e belongs to some max-cardinality matching in G if and only if one of the following conditions holds:

- ▶ e ∈ M.
- e is on an even-length M-alternating path starting at an M-free
- e is on an even-length M-alternating circuit.

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

December 21, 2009

22 / 25

All-different Constraint

Example: Enforcing Arc-Consistency

1. Compute max-cardinality matching $M = \{\{v_4, b\}, \{v_2, c\}, \{v_1, e\}, \{v_3, a\}\}$

Filtering All-different Constraint

Example: Enforcing Arc-Consistency

- 2. Identify supported values:
 - (a) Identify G_M (b) Compute strongly connected components (e.g. by Kosaraju's algorithm)
 - (c) Mark "used" arcs (d is the only M-free vertex)

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

December 21, 2009

24 / 25

Filtering All-different Constraint

Example: Enforcing Arc-Consistency

3. Filter unsupported values: Remove unused arcs

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

December 21, 2009

24 / 25

Filtering All-different Constraint

Example: Enforcing Arc-Consistency

Literature

Willem-Jan van Hoeve and Irit Katriel. Global Constraints,

Handbook of Constraint Programming, Elsevier, 2006

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems

December 21, 2009

24 / 25

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

December 21, 2009