Global Constraints

Motivation

What are global Constraints?

- Type of similar constraint relations . . .
- . . . differing in the number of variables
- Semantically redundant: same constraint can be expressed by a conjunction of simpler constraints
- Similar structure: can be exploited by constraint solvers

Examples:

- sum constraint, knapsack constraint, element constraint, all-different constraint, cardinality constraints

All-different constraint

Definition

Let \(v_1, \ldots, v_n \) be variables each with a domain \(D_i \) (\(1 \leq i \leq n \)).

\[
\text{alldifferent}(v_1, \ldots, v_n) := \{(d_1, \ldots, d_n) \in D_1 \times \cdots \times D_n : d_i \neq d_j \text{ for } i \neq j\}
\]

The all-different constraint is a simple, but widely used global constraint in constraint programming.

It allows for compact modeling of CSP problems.
Global Cardinality Constraint

\(v_1, \ldots, v_n \): “assignment variables” with \(D_i \subseteq \{ d_1^*, \ldots, d_m^* \} \).
\(c_1, \ldots, c_m \): “count variables” with sets of integers as domains.

Definition

The global cardinality constraint is defined as:

\[
\text{gcc}(v_1, \ldots, v_n, c_1, \ldots, c_m) := \{ (d_1, \ldots, d_n, a_1, \ldots, a_m) \in \coprod_{1 \leq i \leq n} D_v \times \coprod_{1 \leq j \leq m} D_{c_j} : \\
\text{for each } j, d_j^* \text{ occurs in } (d_1, \ldots, d_n) \text{ exactly } a_j \text{ times} \}
\]

The global cardinality constraint can be considered a generalization of the all-different constraint.

Sum Constraint

Let \(v_1, \ldots, v_n, z \) be variables with subsets of \(Q \) as domain.
For each \(v_i \), let \(c_i \in Q \) be some fixed scalar, \(c = (c_1, \ldots, c_n) \).

Definition

The sum constraint is defined as:

\[
\text{sum}(v_1, \ldots, v_n, z, c) := \{ (d_1, \ldots, d_n, d) \in \prod_{1 \leq i \leq n} D_i \times D_z : d = \sum_{1 \leq i \leq n} c_i d_i \}.
\]

Circuit Constraint

Let \(s = (s_1, \ldots, s_n) \) be a permutation of \(\{1, \ldots, n\} \).
Define \(C_s \) as the smallest set that contains 1 and with each element \(i \) also \(s_i \).
\((s_1, \ldots, s_n) \) is called cyclic if \(C_s = \{1, \ldots, n\} \).

Definition

Let \(v_1, \ldots, v_n \) be variables with domains \(D_i = \{1, \ldots, n\} \) \((1 \leq i \leq n) \).

\[
\text{circuit}(v_1, \ldots, v_n) := \{ (d_1, \ldots, d_n) \in D_1 \times \cdots \times D_n : (d_1, \ldots, d_n) \text{ is cyclic} \}
\]

Given an assignment \(a = (d_1, \ldots, d_n) \), define

\[
A := \{ (v_i, v_d) : d_i \in D_i, 1 \leq i \leq n \}.
\]

Then, \(a \) satisfies \(\text{circuit}(v_1, \ldots, v_n) \) if and only if \((V, A) \) is a directed cycle (without proper sub-cycles).
Example: Traveling Salesperson Problem

Traveling Salesperson Problem (TSP):
Given a set of \(n \) cities and distances \(c_{ij} \) between city \(i \) and city \(j \), find the shortest route that visits all cities and finishes in the starting city.

TSP is not a constraint satisfaction problem, but a constraint optimization problem . . .

The Decision Problem of TSP

\(v_i \): variable for city \(i \) with domain \(D_i := \{1, \ldots, n\} \setminus \{i\} \) (read as: value of \(v_i \) is the city to be visited next)

\(c_{ij} \): distance between cities \(i \) and \(j \) (may not be symmetric)

\(t \): bound for the total tour length

Then:

\[
\text{circuit}(v_1, \ldots, v_n) \\
\sum_{1 \leq i \leq n} c_{iv_i} \leq t
\]

Constraint Optimization Problem

Definition

A constraint optimization problem (COP) is a constraint satisfaction problem together with an objective function \(f \) that assign to each variable assignment \(a \) a value \(f(a) \in \mathbb{Q} \).

- Minimization COP: Find a solution \(a \) that minimizes \(f(a) \).
- Maximization COP: Find a solution \(a \) that maximizes \(f(a) \).
- Optimal solution: Solution to a minimization (maximization) COP.

Decision problem associated to a COP:
Given an instance of a COP, \((P, f) \), and some threshold \(t \in \mathbb{Q} \), is there a solution \(a \) of \(P \) such that \(f(a) \geq t \) (\(f(a) \leq t \), resp.)?

Filtering

- Constraint propagation techniques aim at filtering variable domains: remove useless values (that cannot participate in any solution) as early as possible.
- Filtering allows false-positives (values are kept though they are useless).
- but not false-negatives (useful value is removed).
- A constraint is "good" if it allows significant filtering (pruning of domain values) with low computational efforts.
- Constraint solver may benefit from exploiting the structure of such good constraints.
Filtering

Let \((s, R)\) be a constraint.

Filtering algorithm: a filtering algorithm for a constraint \((s, R)\) is an algorithm that filters the domains with respect to \((s, R)\).

Complete filtering: every useless value from the domain of every variable that \(C\) is defined on is removed.

Partial filtering: incomplete filtering.

Enforcing Arc Consistency as Filtering Method

- In general, enforcing generalized arc consistency on a constraint network requires exponential time w.r.t. the largest arity of some constraint relation in the network.
- Recall: Enforcing generalized arc consistency runs in time \(O(e^r)\),
 where \(e\) is the number of constraints and \(r\) is the largest arity of some constraint in the network.
- Though general constraints have often high arity, there exist efficient methods to enforce generalized arc consistency.
- In the following we consider the all-different constraints.

Value Graphs

Definition
An undirected graph \(G = \langle V, E \rangle\) is bipartite if there exists a partition \(S \cup T\) of \(V\) such that \(E \subseteq S \times T\).

A directed graph \(G = \langle V, A \rangle\) is bipartite if there exists a partition \(S \cup T\) of \(V\) such that \(A \subseteq (S \times T) \cup (T \times S)\).

\(G\) is then written in the form \(G = \langle S, T, E \rangle / G = \langle S, T, A \rangle\).

Definition
Let \(V\) be a set of variables and \(D\) be the union of all domains \(D_v\) for \(v \in V\).

The value graph of \(V\) is defined as the following bipartite graph:

\[
G = \langle V, D, E \rangle
\]

where \(E = \{\{v, d\} : v \in V, d \in D_v\}\).

Example: Value graph

Consider variables \(v_1, \ldots, v_4\) with \(D_1 = \{b, c, d, e\}\), \(D_2 = \{b, c\}\), \(D_3 = \{a, b, c, d\}\), \(D_4 = \{b, c\}\).

Value graph:
Matchings

Let $G = \langle V, E \rangle$ be an undirected graph.

Definition

A matching in G is a set $M \subseteq E$ of pairwisely disjoint edges.

A matching M covers a set $S \subseteq V$ if $S \subseteq \bigcup M$, i.e., each $v \in S$ is contained in some edge in M.

$v \in V$ is M-free if M does not cover \{v\}.

Cardinality of a matching M: number of edges in M.

Definition

A path v_0, \ldots, v_k in G is M-alternating if all the edges $\{v_i, v_{i+1}\}$ are alternatingly out of and in M.

A path v_0, \ldots, v_k is M-augmenting if k is odd, M does not cover v_0 and v_k, and its edges $\{v_i, v_{i+1}\}$ are alternatingly out of and in M.

Max-Cardinality Matching on Bipartite Graphs

Let $G = \langle U, W, E \rangle$ be a bipartite graph and M be some matching. We may assume $|U| \leq |W|$.

Define a directed bipartite graph $G_M = \langle U, W, A \rangle$ by

$$A := \{(w, u) : \{u, w\} \in M, u \in U, w \in W\} \cup \{(u, w) : \{u, w\} \in E \setminus M, u \in U, w \in W\}$$

Every directed path in G_M starting in an M-free vertex in U and ending in an M-free vertex in W corresponds to an M-augmenting path in G.

We need to find at most $|U|$ such paths.

Each path can be identified by breadth-first search in time $O(|A|)$.

This method by van der Waerden and König can be improved by an algorithm by Hopcroft and Karp ($O(\sqrt{|U|} \cdot |A|)$).

All-different Constraint and Matching

Let $V = \{v_1, \ldots, v_n\}$ be a set of variables and G be the value graph of V.

Let (d_1, \ldots, d_n) be a variable assignment.

Lemma

$(d_1, \ldots, d_n) \in all\text{-}different(v_1, \ldots, v_n)$ if and only if $M = \{\{v_1, d_1\}, \ldots, \{v_n, d_n\}\}$ is a matching in G.
Arc-consistent All-different Constraint

Lemma
The constraint $\text{all}\text{different}(v_1, \ldots, v_n)$ is generalized arc-consistent, if and only if every edge in G belongs to a matching in G that covers V.

Proof.
Simple.

Enforcing Arc Consistency on Allifferent Constraints

1. Compute a max-cardinality matching M in the value graph of V
 (can be done in time $O(m\sqrt{n})$ where $m = \sum_{1 \leq i \leq n} |D_i|$)
2. Identify the even M-alternating paths starting in an M-free vertex and the M-alternating cycles:
 2.1 Define dir. bipartite graph $G_M = (V, D_V, A)$ with $A = \{(v, d) : v \in V, \{v, d\} \in M\} \cup \{(d, v) : v \in V, \{v, d\} \in E \setminus M\}$
 2.2 Compute the strongly connected components in G_M (in time $O(n + m)$)
 2.3 Mark arcs between vertices in the same component as “used”:
 they belong to an even M-alternating cycle
 2.4 Mark arcs as “used” that belong to a directed path in G_M, start in an M-free vertex
 (breadth-first search in time $O(m)$).
3. Update $D_v \leftarrow D_v \setminus \{d\}$ for all edges $\{v, d\}$ where the corresponding arc is not marked as used.

Edges in Max-Cardinality Matchings

Theorem
Let G be a graph and let M be a max-cardinality matching in G.
An edge e belongs to some max-cardinality matching in G if and only if one of the following conditions holds:

- $e \in M$.
- e is on an even-length M-alternating path starting at an M-free vertex;
- e is on an even-length M-alternating circuit.

Example: Enforcing Arc-Consistency

```
  a  b  c  d  e
  v1 v2 v3 v4
```

1. Compute max-cardinality matching $M = \{(v_4, b), \{v_2, c\}, \{v_3, e\}, \{v_3, a\}\}$
Example: Enforcing Arc-Consistency

1. Compute max-cardinality matching

2. Identify supported values:
 (a) Identify G_M
 (b) Compute strongly connected components (e.g., by Kosaraju’s algorithm)
 (c) Mark “used” arcs (d is the only M-free vertex)

3. Filter unsupported values:
 Remove unused arcs

Literature

Willem-Jan van Hoeve and Irit Katriel.
Global Constraints,
Handbook of Constraint Programming, Elsevier, 2006