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Motivation Global Constraints

Global Constraints

What are global Constraints?
» Type of similar constraint relations ...
» ... differing in the number of variables

» Semantically redundant: same constraint can be expressed by a
conjunction of simpler constraints

» Similar structure: can be exploited by constraint solvers

Examples:

> sum constraint, knapsack constraint, element constraint, all-different
constraint, cardinality constraints
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Motivation All-different

All-different constraint

Definition
Let vi,..., v, be variables each with a domain D; (1 <i < n).

alldifferent(vi,...,v,) =
{(di,...,dn) €Dy x --- X Dy : dj #d; for i # j}

The all-different constraint is a simple, but widely used global constraint in
constraint programming.
It allows for compact modeling of CSP problems.
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Motivation All-different

Example: n-Queens Problem

No-attack constraints:

viFvifor1<i<j<n
vi—vi#Fi—jfor1<i<j<n
vi—viFj—ifor1<i<j<n

Figure: 4-queens problem

. alldifferent(vy,..., vp)
Problem representation: )
Variables v; for each alldifferent(vy — 1,...,v, — n)
column 1,...,n; alldifferent(vs +1,...,v, + n)

v; can take a “row value”
1,...,n
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Motivation Sum and Cardinality

Sum Constraint

Let v1,...,v,, z be variables with subsets of ) as domain.
For each v;, let ¢; € Q be some fixed scalar, ¢ = (ci,...,cn).

Definition
The sum constraint is defined as:

sum(vy, ..., Vp, Z,C) i=

{(dh,....dn,d) e ([] D)xD::d= > cd}.

1<i<n 1<i<n
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Motivation Sum and Cardinality

Global Cardinality Constraint

Vi,...,Vn: “assignment variables” with D; C {d},...,d}}.
C1,...,Cm: “count variables” with sets of integers as domains.
Definition

The global cardinality constraint is defined as:

gee(vi, .oy Vn, Clye v ey Cm) o=

{(ch.....dn,01,....0m) e [] Dvx [] D :

1<i<n 1<<m

for each j, dJ* occurs in (dy, ..., dp) exactly o; times}

The global cardinality constraint can be considered a generalization of the

all-different constraint.

Nebel and Walfl (Universitat Freiburg) Constraint Satisfaction Problems December 21, 2009

7/25



Motivation Circuit

Circuit Constraint

Let s = (s1,...,5,) be a permutation of {1,...,n}.

Define Cs as the smallest set that contains 1 and with each element / also
S;.

(s1,-..,5n) is called cyclic if G ={1,...,n}.

Definition
Let v1,..., v, be variables with domains D; = {1,...,n} (1 <i < n).
circuit(va,...,v,) =
{(dh,...,dn) €Dy x -+ x Dy : (du,...,dp)is cyclic}
Given an assignment a = (d, ..., dy), define

A:={(vi,vq) 1 di € Dj,1 <i<n}.

Then, a satisfies circuit(vy,...,v,) if and only if (V, A) is a directed
cycle (without proper sub-cycles).
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Motivation Circuit

Example: Traveling Salesperson Problem

Traveling Salesperson
Problem (TSP):

Given a set of n cities and
distances c;; between city / and
city j, find the shortest route
that visits all cities and finishes
in the starting city.

TSP is not a constraint
satisfaction problem, but a -
constraint optimization
problem . ..
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Motivation Circuit

Constraint Optimization Problem

Definition

A constraint optimization problem (COP) is a constraint satisfaction
problem together with an objective function f that assign to each variable
assignment a a value f(a) € Q.

» Minimization COP: Find a solution a that minimizes f(a).
» Maximization COP: Find a solution a that maximizes f(a).

» Optimal solution: Solution to a minimization (maximization) COP.
Decision problem associated to a COP:

Given an instance of a COP, (P, f), and some threshold t € Q, is there a
solution a of P such that f(a) >t (f(a) < t, resp.)?
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Motivation Circuit

The Decision Problem of TSP

v; : variable for city i with domain D; := {1,...,n}\ {i}
(read as: value of v; is the city to be visited next)
cjj © distance between cities / and j (may not be symmetric)
t : bound for the total tour length

Then:

circuit(vi,...,Vn)

Z Civ; <t

1<i<n
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Filtering

Filtering

» Constraint propagation techniques aim at filtering variable domains:
remove useless values (that cannot participate in any solution) as
early as possible.

» Filtering allows false-positives (values are kept though they are
useless),

> ...... but not false-negatives (useful value is removed).

» A constraint is “good” if it allows significant filtering (pruning of
domain values) with low computational efforts.

» Constraint solver may benefit from exploiting the structure of such
good constraints.
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Filtering

Filtering

Let (s, R) be a constraint.

Filtering algorithm: a filtering algorithm for a constraint (s, R) is an
algorithm that filters the domains with respect to (s, R)

Complete filtering: every useless value from the domain of every variable
that C is defined on is removed

Partial filtering: incomplete filtering
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Filtering Arc consistency

Enforcing Arc Consistency as Filtering Method

» In general, enforcing generalized arc consistency on a constraint
network requires exponential time w.r.t. the largest arity of some
constraint relation in the network.

Recall: Enforcing generalized arc consistency runs in time

O(erd"),
where e is the number of constraints and r is the largest arity of some
constraint in the network,

» Though general constraints have often high arity, there exist efficient
methods to enforce generalized arc consistency.

> In the following we consider the all-different constraints.

Nebel and Wolfl (Universitat Freiburg) Constraint Satisfaction Problems December 21, 2009 14 / 25



Filtering  All-different Constraint

Value Graphs

Definition

An undirected graph G = (V/, E) is bipartite if there exists a partition
SU T of Vsuch that EC S x T.

A directed graph G = (V, A) is bipartite if there exists a partition S uT
of V suchthat AC (S x T)U(T x S).

G is then written in the form G = (5, T, E) / G = (5, T, A).

Definition
Let V be a set of variables and D be the union of all domains D, for

vev.
The value graph of V is defined as the following bipartite graph:

G=(V,D,E)

where E = {{v,d}:ve V,deD,}.
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Filtering  All-different Constraint

Example: Value graph

Consider variables vy, ..., vs with D; = {b,c,d, e}, Do = {b,c},
D3 ={a,b,c,d}, Dy = {b,c}.

Value graph:

@ ) (o (& ©

ORORONO
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Filtering  All-different Constraint

Matchings

Let G = (V, E) be an undirected graph.

Definition

A matching in G is a set M C E of pairwisely disjoint edges.

A matching M coversaset SC Vif SC|JM, ie,eachveSis

contained in some edge in M.
v € Vis M-free if M does not cover {v}.

Cardinality of a matching M: number of edges in M.

Definition

A path vp, ..., v in G is M-alternating if all the edges {v;, vi;1} are
alternatingly out of and in M.

A path v, ..., vk is M-augmenting if k is odd, M does not cover vy and

vk, and its edges {v;, vj11} are alternatingly out of and in M .
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Filtering  All-different Constraint

Let G = (V, E) be a graph and M be a matching in G.

Theorem (Peterson)

M is a max-cardinality matching (i.e., it is a matching of maximum
cardinality) if and only if there is no M-augmenting path in G.

Hence a max-cardinality matching can be obtaind if one repeatedly
searches for an M-augmenting path in G and uses it to extend M.

Note: If M is a matching and vy, ..., vk is an M-augmenting path, then
M :=Mo{{vi,vi;1}: 0<i<k-1}

is a matching with |[M'| = |[M| + 1.
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Filtering  All-different Constraint

Max-Cardinality Matching on Bipartite Graphs

Let G = (U, W, E) be a bipartite graph and M be some matching. We
may assume |U| < |W/.
Define a directed bipartite graph Gy = (U, W, A) by

A:={(w,v) : {uyw}eM,ueUwe W}U
{(uw) : {u,w}e E\M,ueU,we W}
Every directed path in Gy, starting in an M-free vertex in U and ending in
an M-free vertex in W corresponds to an M-augmenting path in G.

We need to find at most |U| such paths.
Each path can be identified by breadth-first search in time O(|A|).

This method by van der Waerden and Konig can be improved by an
algorithm by Hopcroft and Karp (O(+/|U] - |A])).
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Filtering  All-different Constraint
All-different Constraint and Matching

Let V ={vi,...,vn} be a set of variables and G be the value graph of V.
Let (di,...,d,) be a variable assignment.

Lemma
(di,...,dn) € alldifferent(vi,...,vy) if and only if
M= {{v1,di},...,{vn, dn}} is a matching in G.

Q. 9 @O ©

ONORONO
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Filtering  All-different Constraint

Arc-consistent All-different Constraint

Lemma
The constraint alldsifferent(vi,...,vy,) is generalized arc-consistent, if
and only if every edge in G belongs to a matching in G that covers V.

Proof.
Simple. O
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Filtering  All-different Constraint

Edges in Max-Cardinality Matchings

Theorem
Let G be a graph and let M be a max-cardinality matching in G.

An edge e belongs to some max-cardinality matching in G if and only if
one of the following conditions holds:

> ec M.

> e is on an even-length M-alternating path starting at an M-free
vertex;

> e is on an even-length M-alternating circuit.
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Filtering  All-different Constraint

Enforcing Arc Consistency on All-different Constraints

1. Compute a max-cardinality matching M in the value graph of V
(can be done in time O(my/n) where m=3%",_,_ |Di|)

2. ldentify the even M-alternating paths starting in an M-free vertex and the
Me-alternating cycles:

2.1 Define dir. bipartite graph Gy = (V, Dy, A) with A =
{(v,d):veV{v,d} e Mju{(d,v):veV,{v,d} € E\ M}

2.2 Compute the strongly connected components in Gy (in time O(n+ m))

2.3 Mark acrs between vertices in the same component as “used”:
they belong to an even M-alternating cycle

2.4 Marc arcs as “used” that belong to a directed path in Gy, start in an M-free
vertex (breadth-first search in time O(m)).

3. Update D, «— D, \ {d} for all edges {v, d} where the corresponding arc is not
marked as used.
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Filtering  All-different Constraint

Example: Enforcing Arc-Consistency

O ONON OO

ONONONO

1. Compute max-cardinality matching

M = {{V4, b}, {V27 C}, {Vl, e}, {V37 a}}
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Filtering  All-different Constraint

Example: Enforcing Arc-Consistency

O OO OO

ORORONO

2. ldentify supported values:
(a) Identify Gy (b) Compute strongly connected components
(e.g. by Kosaraju's algorithm)
(c) Mark “used” arcs (d is the only M-free vertex)
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Filtering  All-different Constraint

Example: Enforcing Arc-Consistency

O ONONONOC

ONONONO

3. Filter unsupported values:
Remove unused arcs
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Filtering  All-different Constraint

Example: Enforcing Arc-Consistency

O ONON OO

ONONONO
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