Constraint Satisfaction Problems

Global Constraints

Bernhard Nebel and Stefan Wölfle

based on a slideset by
Malte Helmert and Stefan Wölfle
(summer term 2007)

Albert-Ludwigs-Universität Freiburg

December 21, 2009
Motivation

Global Constraints
All-different
Sum and Cardinality
Circuit

Filtering

Arc consistency
All-different Constraint
Global Constraints

What are global Constraints?

- Type of similar constraint relations . . .
- . . . differing in the number of variables
- **Semantically redundant:** same constraint can be expressed by a conjunction of simpler constraints
- **Similar structure:** can be exploited by constraint solvers

Examples:

- sum constraint, knapsack constraint, element constraint, all-different constraint, cardinality constraints
All-different constraint

Definition
Let \(v_1, \ldots, v_n \) be variables each with a domain \(D_i \) (\(1 \leq i \leq n \)).

\[
\text{alldifferent}(v_1, \ldots, v_n) := \\
\{ (d_1, \ldots, d_n) \in D_1 \times \cdots \times D_n : d_i \neq d_j \text{ for } i \neq j \}
\]

The all-different constraint is a simple, but widely used global constraint in constraint programming. It allows for compact modeling of CSP problems.
Example: n-Queens Problem

Figure: 4-queens problem

Problem representation:
Variables v_i for each column $1, \ldots, n$;
v_i can take a “row value” $1, \ldots, n$.

No-attack constraints:

$$v_i \neq v_j \text{ for } 1 \leq i < j \leq n$$
$$v_i - v_j \neq i - j \text{ for } 1 \leq i < j \leq n$$
$$v_j - v_i \neq j - i \text{ for } 1 \leq i < j \leq n$$

alldifferent(v_1, \ldots, v_n)
alldifferent($v_1 - 1, \ldots, v_n - n$)
alldifferent($v_1 + 1, \ldots, v_n + n$)
Sum Constraint

Let v_1, \ldots, v_n, z be variables with subsets of \mathbb{Q} as domain. For each v_i, let $c_i \in \mathbb{Q}$ be some fixed scalar, $c = (c_1, \ldots, c_n)$.

Definition

The **sum constraint** is defined as:

$$\text{sum}(v_1, \ldots, v_n, z, c) := \{(d_1, \ldots, d_n, d) \in \prod_{1 \leq i \leq n} D_i \times D_z : d = \sum_{1 \leq i \leq n} c_i d_i\}.$$
Global Cardinality Constraint

\(v_1, \ldots, v_n \): “assignment variables” with \(D_i \subseteq \{d^*_1, \ldots, d^*_m\} \).

\(c_1, \ldots, c_m \): “count variables” with sets of integers as domains.

Definition

The global cardinality constraint is defined as:

\[
gcc(v_1, \ldots, v_n, c_1, \ldots, c_m) := \{ (d_1, \ldots, d_n, o_1, \ldots, o_m) \in \prod_{1 \leq i \leq n} D_{v_i} \times \prod_{1 \leq j \leq m} D_{c_j} : \]

\[
\text{for each } j, \text{ } d^*_j \text{ occurs in } (d_1, \ldots, d_n) \text{ exactly } o_j \text{ times} \}
\]

The global cardinality constraint can be considered a generalization of the all-different constraint.
Circuit Constraint

Let \(s = (s_1, \ldots, s_n) \) be a permutation of \(\{1, \ldots, n\} \).
Define \(C_s \) as the smallest set that contains 1 and with each element \(i \) also \(s_i \).

\((s_1, \ldots, s_n) \) is called cyclic if \(C_s = \{1, \ldots, n\} \).

Definition

Let \(v_1, \ldots, v_n \) be variables with domains \(D_i = \{1, \ldots, n\} \) \((1 \leq i \leq n) \).

\[
\text{circuit}(v_1, \ldots, v_n) := \\
\{ (d_1, \ldots, d_n) \in D_1 \times \cdots \times D_n : (d_1, \ldots, d_n) \text{ is cyclic} \}
\]

Given an assignment \(a = (d_1, \ldots, d_n) \), define

\[
A := \{(v_i, v_{d_i}) : d_i \in D_i, 1 \leq i \leq n \}.
\]

Then, \(a \) satisfies \(\text{circuit}(v_1, \ldots, v_n) \) if and only if \((V, A) \) is a directed cycle (without proper sub-cycles).
Example: Traveling Salesperson Problem

Traveling Salesperson Problem (TSP):
Given a set of \(n \) cities and distances \(c_{ij} \) between city \(i \) and city \(j \), find the shortest route that visits all cities and finishes in the starting city.

TSP is not a constraint satisfaction problem, but a constraint optimization problem . . .
Constraint Optimization Problem

Definition
A constraint optimization problem (COP) is a constraint satisfaction problem together with an objective function f that assigns to each variable assignment a a value $f(a) \in \mathbb{Q}$.

- **Minimization COP**: Find a solution a that minimizes $f(a)$.
- **Maximization COP**: Find a solution a that maximizes $f(a)$.
- **Optimal solution**: Solution to a minimization (maximization) COP.

Decision problem associated to a COP:
Given an instance of a COP, (P, f), and some threshold $t \in \mathbb{Q}$, is there a solution a of P such that $f(a) \geq t$ ($f(a) \leq t$, resp.)?
The Decision Problem of TSP

\(v_i \) : variable for city \(i \) with domain \(D_i := \{1, \ldots, n\} \setminus \{i\} \)
(read as: value of \(v_i \) is the city to be visited next)

\(c_{ij} \) : distance between cities \(i \) and \(j \) (may not be symmetric)

\(t \) : bound for the total tour length

Then:

\[
\text{circuit}(v_1, \ldots, v_n) \\
\sum_{1 \leq i \leq n} c_{iv_i} \leq t
\]
Filtering

- Constraint propagation techniques aim at filtering variable domains: remove useless values (that cannot participate in any solution) as early as possible.
- Filtering allows false-positives (values are kept though they are useless),
- ... but not false-negatives (useful value is removed).
- A constraint is “good” if it allows significant filtering (pruning of domain values) with low computational efforts.
- Constraint solver may benefit from exploiting the structure of such good constraints.
Filtering

Let \((s, R)\) be a constraint.

Filtering algorithm: a filtering algorithm for a constraint \((s, R)\) is an algorithm that filters the domains with respect to \((s, R)\).

Complete filtering: every useless value from the domain of every variable that \(C\) is defined on is removed.

Partial filtering: incomplete filtering.
Enforcing Arc Consistency as Filtering Method

- In general, enforcing generalized arc consistency on a constraint network requires exponential time w.r.t. the largest arity of some constraint relation in the network.

Recall: Enforcing generalized arc consistency runs in time $O(erd^r)$,

where e is the number of constraints and r is the largest arity of some constraint in the network,

- Though general constraints have often high arity, there exist efficient methods to enforce generalized arc consistency.

- In the following we consider the all-different constraints.
Value Graphs

Definition
An undirected graph $G = \langle V, E \rangle$ is bipartite if there exists a partition $S \cup T$ of V such that $E \subseteq S \times T$.
A directed graph $G = \langle V, A \rangle$ is bipartite if there exists a partition $S \cup T$ of V such that $A \subseteq (S \times T) \cup (T \times S)$.
G is then written in the form $G = \langle S, T, E \rangle / G = \langle S, T, A \rangle$.

Definition
Let V be a set of variables and D be the union of all domains D_v for $v \in V$.
The value graph of V is defined as the following bipartite graph:

$$G = \langle V, D, E \rangle$$

where $E = \{\{v, d\} : v \in V, d \in D_v\}$.
Example: Value graph

Consider variables v_1, \ldots, v_4 with $D_1 = \{b, c, d, e\}$, $D_2 = \{b, c\}$, $D_3 = \{a, b, c, d\}$, $D_4 = \{b, c\}$.

Value graph:
Matchings

Let $G = \langle V, E \rangle$ be an undirected graph.

Definition
A matching in G is a set $M \subseteq E$ of pairwisely disjoint edges. A matching M covers a set $S \subseteq V$ if $S \subseteq \bigcup M$, i.e., each $v \in S$ is contained in some edge in M. $v \in V$ is M-free if M does not cover $\{v\}$.

Cardinality of a matching M: number of edges in M.

Definition
A path v_0, \ldots, v_k in G is M-alternating if all the edges $\{v_i, v_{i+1}\}$ are alternatingly out of and in M. A path v_0, \ldots, v_k is M-augmenting if k is odd, M does not cover v_0 and v_k, and its edges $\{v_i, v_{i+1}\}$ are alternatingly out of and in M.
Let $G = \langle V, E \rangle$ be a graph and M be a matching in G.

Theorem (Peterson)

M is a *max-cardinality matching* (i.e., it is a matching of maximum cardinality) if and only if there is no M-augmenting path in G.

Hence a max-cardinality matching can be obtained if one repeatedly searches for an M-augmenting path in G and uses it to extend M.

Note: If M is a matching and v_0, \ldots, v_k is an M-augmenting path, then

\[M' := M \oplus \{ \{v_i, v_{i+1}\} : 0 \leq i \leq k - 1 \} \]

is a matching with $|M'| = |M| + 1$.
Max-Cardinality Matching on Bipartite Graphs

Let $G = \langle U, W, E \rangle$ be a bipartite graph and M be some matching. We may assume $|U| \leq |W|$. Define a directed bipartite graph $G_M = \langle U, W, A \rangle$ by

$$A := \{(w, u) : \{u, w\} \in M, u \in U, w \in W\} \cup \{(u, w) : \{u, w\} \in E \setminus M, u \in U, w \in W\}$$

Every directed path in G_M starting in an M-free vertex in U and ending in an M-free vertex in W corresponds to an M-augmenting path in G. We need to find at most $|U|$ such paths. Each path can be identified by breadth-first search in time $O(|A|)$.

This method by van der Waerden and König can be improved by an algorithm by Hopcroft and Karp ($O(\sqrt{|U|} \cdot |A|)$).
All-different Constraint and Matching

Let $V = \{v_1, \ldots, v_n\}$ be a set of variables and G be the value graph of V. Let (d_1, \ldots, d_n) be a variable assignment.

Lemma

$(d_1, \ldots, d_n) \in \text{alldifferent}(v_1, \ldots, v_n)$ if and only if $M = \{\{v_1, d_1\}, \ldots, \{v_n, d_n\}\}$ is a matching in G.
Arc-consistent All-different Constraint

Lemma

The constraint $\text{alldifferent}(v_1, \ldots, v_n)$ is generalized arc-consistent, if and only if every edge in G belongs to a matching in G that covers V.

Proof.

Simple.
Edges in Max-Cardinality Matchings

Theorem
Let G be a graph and let M be a max-cardinality matching in G. An edge e belongs to some max-cardinality matching in G if and only if one of the following conditions holds:

- $e \in M$.
- e is on an even-length M-alternating path starting at an M-free vertex;
- e is on an even-length M-alternating circuit.
Enforcing Arc Consistency on All-different Constraints

1. Compute a max-cardinality matching M in the value graph of V (can be done in time $O(m\sqrt{n})$ where $m = \sum_{1 \leq i \leq n} |D_i|$)

2. Identify the even M-alternating paths starting in an M-free vertex and the M-alternating cycles:

 2.1 Define dir. bipartite graph $G_M = \langle V, D_V, A \rangle$ with $A = \{(v, d) : v \in V, \{v, d\} \in M\} \cup \{(d, v) : v \in V, \{v, d\} \in E \setminus M\}$

 2.2 Compute the strongly connected components in G_M (in time $O(n + m)$)

 2.3 Mark arcs between vertices in the same component as “used”: they belong to an even M-alternating cycle

 2.4 Mark arcs as “used” that belong to a directed path in G_M, start in an M-free vertex (breadth-first search in time $O(m)$).

3. Update $D_v \leftarrow D_v \setminus \{d\}$ for all edges $\{v, d\}$ where the corresponding arc is not marked as used.
Example: Enforcing Arc-Consistency

1. Compute max-cardinality matching
 \[M = \{\{v_4, b\}, \{v_2, c\}, \{v_1, e\}, \{v_3, a\}\} \]
Example: Enforcing Arc-Consistency

2. Identify supported values:
 (a) Identify G_M
 (b) Compute strongly connected components (e.g. by Kosaraju’s algorithm)
 (c) Mark “used” arcs (d is the only M-free vertex)
Example: Enforcing Arc-Consistency

3. Filter unsupported values:
 Remove unused arcs
Example: Enforcing Arc-Consistency

1. Compute max-cardinality matching
2. Identify supported values:
3. Filter unsupported values:

Solution is preserved
Willem-Jan van Hoeve and Irit Katriel.
Global Constraints,
Handbook of Constraint Programming, Elsevier, 2006