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Expressiveness vs. Complexity

I For some restricted constraint languages we know some polynomial
time algorithms that solve each instance of that language

I Restricting constraint languages entails restricting expressiveness, i.e.,
the class of problems that can be expressed in the language

 How can we weight expressiveness against performance and vice
versa?
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CSP Instances aka Constraint Networks

Definition
An instance of a constraint satisfaction problem (i.e., a
constraint network) is a triple

P = 〈V ,D,C 〉 ,

where:

I V is a non-empty and finite set of variables,

I D is an arbitrary set (domain),

I C is a finite set of constraints C1, . . . ,Cq, i.e., each constraint Ci is a
pair (si ,Ri ), where si is a tuple of variables of length mi and Ri is an
mi -ary relation on D
(si : constraint scope; Ri : constraint relation).
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Restricting the General CSP

The general CSP decision problem is the following: Given an instance of a
constraint satisfaction problem, P, determine if there exists solution to P,
i.e., determine whether

Sol(P)

:=
{

(d1, . . . , dn) ∈ Dn : a(vi ) = di for a solution a of P
}

(where n is the number of variables of V ) is not empty.

Restricting the general CSP:

I structural restriction: consider just CSP instances with particular
constraint scopes (e. g., where the network hypergraph has specific
properties)

I relational restriction: consider just CSP instances, where the
constraint relations have a specific form or specific properties
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Tractable Constraint Languages

Constraint Language

Definition
A constraint language is an arbitrary set of relations, Γ, defined over some
fixed domain (denoted by D(Γ)).

Definition
For a constraint language Γ, let CSP(Γ) be the class of CSP instances
P = 〈V ,D,C 〉 such that for each (s,R) ∈ C , R ∈ Γ.
CSP(Γ) is called the relational subclass associated with Γ.

Definition
A finite constraint language Γ is tractable if there exists a polynomial
algorithm that solves all instances of CSP(Γ).
An infinite constraint language Γ is tractable if each finite subset of the
language is tractable.

Following, we present some examples:
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Tractable Constraint Languages

Example: the CHIP language
CHIP is a constraint language for arithmetic and other constraints. Basic
constraints in CHIP are so-called:

I domain constraints: unary constraints that restrict the domains of variables
to a finite set of natural numbers

I arithmetic constraints: constraints of one of the forms

ax = by + c

ax ≤ by + c

ax ≥ by + c

(a, b, c ∈ N, a 6= 0). If these equations are conceived of as relations, the
resulting constraint language is tractable.

The language is still tractable if we allow for relations expressed by

a1x1 + a2x2 + · · ·+ anxn ≥ by + c

ax1 · · · xn ≥ by + c

(a1x1 ≥ b1) ∨ · · · ∨ (anxn ≥ bn) ∨ (ay ≥ b)
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Tractable Constraint Languages

Example: Linear Relations

Let D be any field (e.g., the field of real numbers).
A linear relation on D is any relation defined by some system of linear
equations:

a1x1 + · · ·+ anxn = r (a1, . . . , an, r ∈ D).

Then any instance of CSP(Γlin) can be represented by a system of linear
equations over D, and hence be solved in polynomial time (apply Gaussian
elimination).

Hence, the language of all linear relations over D is tractable.

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems November 23/25/30, 2009 8 / 55



Tractable Constraint Languages

Example: Relations on Ordered Finite Sets

Let D be an ordered and finite set.
Consider the binary disequality relation

6=D =
{

(d1, d2) ∈ D2 : d1 6= d2

}
The class of CSP instances CSP({6=D}) corresponds to the graph
colorability problem with |D| colors.
CSP({6=D}) is tractable if |D| ≤ 2, and intractable, otherwise.

The ternary betweenness relation over D is defined by:

BD =
{

(a, b, c) ∈ D3 : a < b < c ∨ c < b < a
}

CSP({BD}) is tractable if |D| ≤ 4, and intractable if |D| ≥ 5.
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Tractable Constraint Languages

Example: Connected Row-Convex Relations
Let D = {d1, . . . , dn} be an ordered and finite set.
For a binary relation R over D, the matrix representation of R is an n × n
0,1-matrix M, where Mij = 1 iff (di , dj) ∈ R.
The pruned matrix representation of R results from the matrix representation of
R, when we remove all rows and columns in which only 0’s occur.
R is connected row-convex, if in the pruned matrix representation of R, the
pattern of 1’s is connected along each column, along each row, and forms a
connected 2-dimensional region.

For example, 
0 1 0 0 0
0 1 1 0 1
1 1 1 0 1
0 1 1 0 0
0 1 0 0 0




1 1 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 1 0
0 0 0 0 1


The constraint language on any class of connected row-convex relations is

tractable.
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Tractable Constraint Languages

Example: Boolean Constraints

Let D = {d0, d1}.
The class of CSP instances CSP({ND}), where

ND = D3 \ {(d0, d0, d0), (d1, d1, d1)}

is the not-all-equal relation over D, is intractable.
CSP({ND}) corresponds to the not-all-equal satisfiability problem
(NAE-3SAT), which is known to be NP-hard.

The class of CSP instances CSP({TD}), where

TD = {(d0, d0, d1), (d0, d1, d0), (d1, d0, d0)},

is intractable.
CSP({ND}) corresponds to the one-in-three satisfiability problem (1-in-3
SAT).
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Tractable Constraint Languages

Example: 0/1/all-Relations

Let D be an arbitrary finite set. A relation R over D is called
0/1/all-relation if one of the following conditions holds:

I R is unary;

I R = D1 × D2 for subsets D1,D2 of D;

I R = {(d , π(d)) : d ∈ D1}, for some subset D1 ⊆ D and some
permutation π of D;

I R = {(a, b) ∈ D1 × D2 : a = d1 ∨ b = d2}, for some subsets D1,D2

of D and some elements d1 ∈ D1, d2 ∈ D2.

The language defined by all 0/1/all-relations is tractable.

It is even maximal tractable: if we add any binary relation over D that is
not a 0/1/all-relation, then the resulting constraint language becomes
intractable.
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Tractable Constraint Languages

max-Closed Relations

Let (D, <) be a linear order. Define max : D × D → D in the usual way,
i.e., max(a, b) = a if a > b, and max(a, b) = b, otherwise.
We extend max to a function that can be applied to tuples, i.e., we define
max : Dk × Dk → Dk by

max((a1, . . . , ak), (b1, . . . , bk))

:= (max(a1, b1), . . . ,max(ak , bk)).

Definition
An n-ary relation R over D is max-closed if for all (a1, . . . , an),
(b1, . . . , bn) ∈ R,

max((a1, . . . , an), (b1, . . . , bn)) ∈ R.
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Tractable Constraint Languages

max-Closed Relations and Tractability

Lemma
Let Γ be a constraint language with max-closed relations only. Then
CSP(Γ) is tractable.

Proof.
Enforce generalized arc consistency. If any domain of the resulting network is
empty, the network is inconsistent. Otherwise, set each variable to its maximal
value, . . . .
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Tractable Constraint Languages

Example: max-Closed Relations

Consider the CHIP language. All relations of CHIP are max-closed. Hence any set
of equations can be solved by establishing arc consistency.
For example, consider a CSP instance with domain {1, . . . , 5}, variables
{v ,w , x , y , z}, and equations

w 6= 3, z 6= 5, 3v ≤ z , y ≥ z + 2,

3x + y + z ≥ 5w + 1, wz ≥ 2y .

Enforcing arc consistency results in:

D(v) = {1}, D(w) = {4}, D(x) = {3, 4, 5},
D(y) = {5}, D(z) = {3}.

Hence
v 7→ 1,w 7→ 4, x 7→ 5, y 7→ 5, z 7→ 3

is a solution of the constraint network.
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Schaefer’s Dichotomy Theorem

Boolean Constraint Languages

The key result in the literature on tractable constraint languages is
Schaefer’s Dichotomy Theorem (1978).

Definition
A Boolean constraint language is a constraint language over the
two-element domain D = {0, 1}.
Schaefer’s theorem states that any Boolean constraint language is either
tractable or NP-complete. Moreover, it provides a classification of all
tractable constraint languages.

Definition
An arbitrary constraint language Γ is NP-complete if CSP(∆) is
NP-complete for some finite subset ∆ ⊆ Γ.
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Schaefer’s Dichotomy Theorem

Schaefer’s Theorem

Theorem (Schaefer 1978)

Let Γ be a Boolean constraint language. Then Γ is tractable if at least one
of the following conditions is satisfied:

1. Each relation in Γ contains the tuple (0, . . . , 0).

2. Each relation in Γ contains the tuple (1, . . . , 1).

3. Each relation in Γ is definable by a formula in CNF s. t. each conjunct
has at most one negative literal.

4. Each relation in Γ is definable by a formula in CNF s. t. each conjunct
has at most one positive literal.

5. Each relation in Γ is definable by a formula in CNF s. t. each conjunct
has at most two literals.

6. Each relation in Γ is the set of solutions of a system of linear
equations over the finite field with 2 elements.

In all other cases, Γ is NP-complete.
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Schaefer’s Dichotomy Theorem

Algorithm Selector

Let Γ be a Boolean constraint language.

Class 1: any CSP instance P can be solved by simply assigning 0 to
each variable of P.

Class 2: cf. Class 1 (v 7→ 1).

Class 6: any CSP instance P can be solved by applying the Gaussian
elimination procedure.

Class 5: any CSP instance P can be solved by resolution: in this case
CSP(Γ) corresponds to the 2-SAT satisfiability problem and
this can be solved efficiently by resolution.

Class 4: any CSP instance P can be solved by unit resolution: here
CSP(Γ) corresponds to the Horn-SAT satisfiability problem,
which can be solved efficiently by unit resolution.

Class 3: cf. Class 4 (“anti-Horn”).
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Relational Clones

Gadgets

Definition
Let Γ be constraint language and R be a relation on Γ(D).
R is expressible in Γ if there exists a CSP instance P ∈ CSP(Γ) and a
sequence of variables v1, . . . , vn such that

R = πv1,...,vn(Sol(P)).

P is referred to as a gadget for expressing R in CSP(Γ), the sequence
v1, . . . , vn as construction site for R.
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Relational Clones

Example

r, b, gv1

r, b, g

v2

r, b, g

v3

r, b, g v4

6=

6=

6=

6=

6=
?

Which relation is expressed by the edge (v1, v4)?
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Relational Clones

Relational Clones

Expressiveness can also be reformulated in the following way:
Let Γ, Γ′ be constraint languages (def. on the same domain D).

Definition
Γ′ is a relational clone of Γ if Γ′ contains each relation expressible by a
FO-formula with

I relations from Γ ∪ {=D},
I conjunctions, and

I existential quantification.

(Formulae of this form are called primitive positive formulae.)

Definition
Let Γ be a constraint language. 〈Γ〉 denotes the smallest relational clone
containing Γ, the clone generated by Γ.
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Relational Clones

Example

Consider a Boolean constraint language with the following relations:

R1 = {(0, 1), (1, 0), (1, 1)} R2 = {(0, 0), (0, 1), (1, 0)}.

The relational clone generated by the set of these two relations contains
all 16 binary Boolean relations. For example:

R3 := {(0, 1), (1, 0)} R1(v1, v2) ∧ R2(v1, v2)

R4 := {(0, 0), (1, 0), (1, 1)} ∃y(R1(v1, y) ∧ R2(y , v2))

R5 := {(0, 0), (1, 1)} v1 = v2

R6 := {(0, 0)} R2(v1, v2) ∧ R5(v1, v2)

R7 := {(1, 1)} R1(v1, v2) ∧ R5(v1, v2)

R8 := {(0, 1)} ∃y(R6(v1, y) ∧ R1(y , v2))

. . .
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Relational Clones

Reducibility I

Theorem
Let Γ be a set of relations on a fixed domain D, and let ∆ be a finite
subset of 〈Γ〉. Then there exists a polynomial time reduction from CSP(∆)
to CSP(Γ).

Proof.
Let ∆ = {S1, . . . ,Sk} be a finite set of relations, where each Sj is expressible by a
pp-formula with relations from Γ and the relation =D . For each Sj fix such a
formula φj(x1, . . . , xrj ), where rj is the arity of Sj . Without loss of generality, we
may assume that each φj(x1, . . . , xrj ) has the form

∃u1 . . . um(R1(w 1
1 , . . . ,w

1
k1

) ∧ · · · ∧ Rn(wn
1 , . . . ,w

n
kn

)) (1)

where w 1
1 , . . . ,w

1
k1
, . . . ,wn

1 , . . . ,w
n
kn
∈ {x1, . . . , xrj , u1, . . . , um} for some auxiliary

variables u1, . . . , um, and R1, . . . ,Rn ∈ Γ ∪ {=D}. . . .

. . .
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Relational Clones

Reducibility II

Let P = 〈V ,D,C 〉 be an arbitrary instance in CSP(∆). Initially, set
V ′ := V ,D ′ := D,C ′ := C . For each constraint (s,R) (where s = (v1, . . . , vr ))
of P, proceed as follows:

1. add the auxiliary variables u1, . . . , um to V ′ (always add new variables,
rename variables if necessary (also in (1)))

2. remove (r ,R) from C ′ and instead add to C ′ the constraints (cf. (1)):

((w 1
1 , . . . ,w

1
k1

),R1), . . . , (wn
1 , . . . ,w

n
kn
,Rn)

The CSP instance P ′ obtained by this procedure is contained in CSP(Γ ∪ {=D})
and is obviously equivalent to P. Furthermore, from P ′ we can obtain a CSP
instance P ′′ in CSP(Γ) by deleting constraints of the form ((vi , vj),=D) and
replacing any occurrence of vj by vi . Obviously, both transformation can be done
in polynomial time.
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Relational Clones

Reducibility III

Corollary
A constraint language Γ is tractable if and only if its relational clone 〈Γ〉 is
tractable. Γ is NP-complete if and only if 〈Γ〉 is NP-complete.

Corollary
Let Γ be a constraint language and let R be a relation.
R is expressible in Γ if and only if R ∈ 〈Γ〉.
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Relational Clones

The Indicator Problem

Let k ≥ 1 be a fixed natural number.
Let s = (x1, . . . , xm) be a list of k-tuples in Dk .
Let R be an n-ary relation on D.

We say, that s matches R if n = m and if for each 1 ≤ i ≤ k, the n-tuple
(x1[i ], . . . , xn[i ]) is in R.

Let now Γ be a fixed constraint language. Set Ik(Γ) = 〈V ,D,C 〉, where

V := Dk

C := {(s,R) : s matches R}

Note: Ik(Γ) ∈ CSP(Γ) and contains constraints from Γ on every possible scope
which matches some relation in Γ.

Definition
Ik(Γ) is said to be the indicator problem of order k for Γ.
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Relational Clones

Example: ¬,⊕

Consider the Boolean constraint language containing the unary relation ¬
and the exclusive-or relation ⊕, i.e.,

R⊕ = {(0, 1), (1, 0)} and R¬ = {(0)}.

The 3-rd order indicator problem of this language is:

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

⊕

¬
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Relational Clones

Example (cont’d): ¬,⊕
Solutions of this indicator problem:

1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0

Solutions
1 0 1 1 0 0 1 0
1 0 1 0 1 0 1 0
1 0 0 1 0 1 1 0
1 0 0 0 1 1 1 0
1 1 1 1 0 0 0 0
1 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0
1 1 0 0 1 1 0 0

⊕

¬
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Expressiveness

Expressiveness and the Indicator Problem

Theorem (Jeavons (1998))

Let Γ be a constraint language over some finite domain D and let
R = {t1, . . . , tk} be any n-ary relation on D. Equivalent are:

(a) R is expressible in Γ (i.e., R ∈ 〈Γ〉).

(b) Ik(Γ) is a gadget for expressing R with construction site (v1, . . . , vn),
where for each 1 ≤ i ≤ n,

vi := (t1[i ], . . . , tk [i ]).

Proof.
The direction from (b) to (a) is trivial, since Ik(Γ) is contained in CSP(Γ).
The other direction will be proved later.
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Expressiveness

Example: ¬,⊕

Problem: Is the implication expressible in the Boolean language {¬,⊕}?
Consider the 3rd indicator problem (since R⇒ has three elements
(1, 1), (0, 1), (0, 0)). Consider the variables v = (1, 0, 0) and w = (1, 0, 1):

1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0

Solutions
1 0 1 1 0 0 1 0
1 0 1 0 1 0 1 0
1 0 0 1 0 1 1 0
1 0 0 0 1 1 1 0
1 1 1 1 0 0 0 0
1 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0
1 1 0 0 1 1 0 0

From this we obtain that
π(v ,w)(I3(Γ)) = D × D 6=
R⇒.
Thus, the implication is not
expressible.
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Polymorphisms

Polymorphisms

Let f be a k-ary operation, i.e., a function f : Dk → D.
For any collection of n-tuples, t1, . . . , tk ∈ Dn, let f (t1, . . . , tk) be defined
as the n-tuple: (

f (t1[1], . . . , tk [1]), . . . , f (t1[n], . . . , tk [n])
)
.

Definition
Let f : Dk → D be a k-ary operation, and R be an n-ary relation.
f is a polymorphism of R (or: R is invariant under f ) if for all
t1, . . . , tk ∈ R, f (t1, . . . , tk) ∈ R.
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Polymorphisms

Polymorphisms and Invariant Relations
Let Γ be a set of relations on a fixed domain D, and let F be a set of
operations on D. Then define:

Pol(Γ) : the set of operations on D that
preserve each relation in Γ

Inv(F ) : the set of relations on D that
are invariant under each opera-
tion of F

Lemma
Pol and Inv define anti-monotone functions, and are related by the
following Galois connection:

Γ ⊆ Inv(F ) ⇐⇒ F ⊆ Pol(Γ).

In particular, it holds:

Γ ⊆ Inv(Pol(Γ)) and F ⊆ Pol(Inv(F )).
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Polymorphisms

The Indicator Problem and Polymorphisms

Lemma
Let Γ be a constraint language. The solutions of the k-th indicator
problem Ik(Γ) are precisely the k-ary polymorphisms of Γ.

Proof.
Apply the definitions . . .
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Polymorphisms

Expressiveness and Polymorphisms

Lemma
Let Γ be a constraint language over some domain D. If f : Dk → D is a
polymorphism of each R ∈ Γ, then f is a polymorphism of each R ∈ 〈Γ〉.

Proof.
Induction on primitive positive formula (cf. blackboard).
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Polymorphisms

Expressiveness and the Indicator Problem (Part 2)

The following lemma completes the proof of Jeavons’ theorem:

Lemma
Let R = {t1, . . . , tk} be an n-ary relation (over some finite domain D).
For 1 ≤ i ≤ n, set vi := (t1[i ], . . . , tk [i ]).
If R is expressible in Γ, then R = πv1,...,vn(Sol(Ik(Γ))).

Proof.
Blackboard.
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Polymorphisms

Expressiveness and Invariants

Theorem
For any constraint language Γ over some finite domain D,

〈Γ〉 = Inv(Pol(Γ))

Proof.
⊆ is clear. For the converse let R be an n-ary relation that is invariant for each
polymorphism of Γ. We have to show that R ∈ 〈Γ〉. Let R = {t1, . . . , tk} and
consider the k-th indicator problem of Γ. First define vi := (t1[i ], . . . , tk [i ])
(1 ≤ i ≤ n), then consider Rt = πv1,...,vn (Sol(Ik(Γ))). By one of the lemmas
above, R is expressible if R = Rt .
Rt ⊆ R follows from the facts that every solution of Ik(Γ) is a k-ary
polymorphism and that each polymorphism of Γ preserves R. For R ⊆ Rt ,
consider tj in R. Now the j-th projection function pj : Dk → D is a
polymorphism. Hence tj = pj(t1, . . . , tk) ∈ R.
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Polymorphisms

Expressiveness, Polymorphisms, and Complexity

Corollary

A relation R on a finite domain is expressible by a constraint language if
and only if Pol(Γ) ⊆ Pol({R}).

Corollary

Let Γ and ∆ be a constraint languages on a finite domain. If ∆ is finite
and Pol(Γ) ⊆ Pol(∆), then CSP(∆) is polynomial-time reducible to
CSP(Γ).
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Tractability over Finite Domains

Operations

Following, we study k-ary operations f : Dk → D.

Definition

I f is idempotent, if for each x ∈ D, f (x , . . . , x) = x .

I Given k = 3, f is a majority operation, if for all x , y ∈ D,

f (x , x , y) = f (x , y , x) = f (y , x , x) = x .

I Given k = 3, f is a Mal’tsev operation, if for all x , y ∈ D,

f (y , y , x) = f (x , y , y) = x .

I f is conservative, if for all x1, . . . , xk ∈ D,

f (x1, . . . , xk) ∈ {x1, . . . , xk}.
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Tractability over Finite Domains

Operations (cont’d)

Definition

I Given k = 2, f is a semi-lattice operation, if it is

I associative (i.e., f (x , f (y , z)) = f (f (x , y), z)),
I commutative (i.e., f (x , y) = f (y , x)), and
I idempotent.

I Given k = 3 and an Abelian group structure on D, f is affine, if for
all x , y , z ∈ D,

f (x , y , z) = x − y + z .

I Given k ≥ 3, f is a near-unanimity operation, if for all x , y ∈ D,

f (y , x , . . . , x) = f (x , y , x . . . , x) = · · · = f (x , . . . , x , y) = x .
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Tractability over Finite Domains

Operations (cont’d)

Definition

I f is essentially unary, if there exists an 1 ≤ i ≤ k and a unary
non-constant operation g on D such that for all x1, . . . , xk ∈ D,

f (x1, . . . , xk) = g(xi ).

If g is the identity operation, then f is called a projection.

I Given k ≥ 3, f is a semi-projection if f is not an projection and there
exists an 1 ≤ i ≤ k , such that for all x1, . . . , xk ∈ D with
|{x1, . . . , xk}| < k,

f (x1, . . . , xk) = xi .
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Tractability over Finite Domains

A Necessary Condition for Tractability

Theorem
Given P 6= NP, any tractable constraint language Γ over a finite domain
has a solution to an indicator problem Ik(Γ) that defines

I a constant operation,

I a majority operation,

I an idempotent binary operation,

I an affine operation, or

I a semi-projection.
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Tractability over Finite Domains

Boolean CSPs
The complexity of any language over a domain of size 2 can be determined
by considering the solutions of its 3rd order indicator problem. The
problem is intractable unless this indicator problem has one of the
following six solutions:

Variables

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

Solutions Schaefer class Name

0 0 0 0 0 0 0 0 1 Constant 0

1 1 1 1 1 1 1 1 2 Constant 1

1 1 1 1 1 1 1 0 3 Anti-Horn

1 0 0 0 0 0 0 0 4 Horn-SAT

1 1 1 0 1 0 0 0 5 2-SAT

1 0 0 1 0 1 1 0 6 Linear
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Tractability over Finite Domains

Example: ¬,⊕

1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0

Solutions
1 0 1 1 0 0 1 0
1 0 1 0 1 0 1 0
1 0 0 1 0 1 1 0
1 0 0 0 1 1 1 0
1 1 1 1 0 0 0 0
1 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0
1 1 0 0 1 1 0 0
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Tractability over Finite Domains

Sufficient Conditions: Semi-Lattice Operations

In what follows let Γ be always be a constraint language over a finite
domain D. We present some sufficient criteria for (in-) tractability.

Theorem
If Pol(Γ) contains a semi-lattice operation, then

I Γ is tractable, and

I each instance of CSP(Γ) can be solved by enforcing generalized arc
consistency.

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems November 23/25/30, 2009 44 / 55



Tractability over Finite Domains

Examples

Example 1:
If Γ is the Boolean constraint language containing all relations expressible
by conjunctions of Horn clauses, then

∧ : {0, 1}2 → {0, 1}

is a semi-lattice operation that is a polymorphism of Γ.

Example 2:
If D is ordered, then max is a semi-lattice operation, which is a
polymorphism of each set of max-closed relations.
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Tractability over Finite Domains

Sufficient Conditions: Conservative Operations

Theorem
If Pol(Γ) contains a conservative and commutative operation, then Γ is
tractable.

Note: If Γ contains all unary relations on D, then all operations in Pol(Γ)
are conservative.
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Tractability over Finite Domains

Sufficient Conditions: Near-Unanimity Operations

Theorem
If Pol(Γ) contains a k-ary near-unanimity operation, then

I Γ is tractable.

I Each instance of CSP(Γ) can be solved by enforcing strong
k-consistency.

Proof.
Blackboard.
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Tractability over Finite Domains

Examples
Example 3:
Let Γ be the Boolean constraint language that consists of all relations
definable by a PL-formula in CNF s. t. each conjunct has at most two
literals.
Then

d(x , y , z) := (x ∧ y) ∨ (y ∧ z) ∨ (x ∧ z)

is a near-unanimity operation on {0, 1} and a polym. of Γ.

Example 4:
The 0/1/all relations are invariant under the ternary operation

d(x , y , z) :=

{
x if y 6= z

y else

which is a near-unanimity operation.
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Tractability over Finite Domains

Sufficient Conditions: Mal’tsev Operations

Theorem
If Pol(Γ) contains a k-ary Mal’tsev operation, then CSP(Γ) is tractable.

Note: Affine relations are Mal’tsev operations.
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Tractability over Finite Domains

Reduced Constraint Languages

Lemma
Let Γ be a constraint language over D, and let f be a unary operation on
Pol(Γ). Let f (Γ) be the set of all f (R) := {f (t) : t ∈ R} with R ∈ Γ.
Then, CSP(Γ) is polynomial-time equivalent to CSP(f (Γ)).

Definition
A constraint language Γ is reduced if all its unary polymorphisms are
surjective.

Note: Each constraint language can be transformed into a reduced language. For

this find all unary polymorphisms by generating and solving the 1st order indicator

problem. Choose one of these polymorphisms f with a minimal number of values

in its range.
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Tractability over Finite Domains

A Sufficient Condition for Intractability

Theorem
Let Γ be a constraint language over a finite domain. If Pol(Γ) contains
only essentially unary operations, then CSP(Γ) is NP-complete.

Proof idea:
We can assume that Γ is reduced. One can show that

I 6=D is in Inv(Pol(Γ));

I if |D| = 2, Inv(Pol(Γ)) contains the not-all-equal relation:

D3 \ {(x , x , x) : x ∈ D}

which ensures that CSP(Γ) intractable.
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Tractability over Finite Domains

Towards a Classification

It can be shown that for any reduced constraint language Γ on a finite
domain D, one of the following conditions holds:

I Pol(Γ) contains a constant operation;

I Pol(Γ) contains a ternary near-unanimity operation;

I Pol(Γ) contains a Mal’tsev operation;

I Pol(Γ) contains an idempotent binary operation;

I Pol(Γ) contains a semi-projection;

I Pol(Γ) contains essentially unary operations only.
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Maximal Tractable Constraint Languages

Maximal and Maximal Tractable Languages

Definition

I A constraint language Γ is maximal tractable, if it is tractable and for
each relation R /∈ Γ, Γ ∪ {R} is intractable.

I A constraint language Γ is maximal, if there is a relation R /∈ 〈Γ〉 and
each proper extension of 〈Γ〉 contains all relations on D.

Note: If Γ is a maximal language that is tractable, then 〈Γ〉 is maximal
tractable.
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Maximal Tractable Constraint Languages

Maximality vs. Tractability

Theorem
Let Γ be a constraint language on some finite domain D, and let f be a
k-ary operation such that 〈Γ〉 = Inv({f }).
Then 〈Γ〉 is maximal tractable, if

I f is a constant operation;

I f is a ternary near-unanimity operation;

I f is a semi-lattice operation;

I f is an affine operation.
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