# Constraint Satisfaction Problems Look-Back

#### Bernhard Nebel and Stefan Wölfl

based on a slideset by Malte Helmert and Stefan Wölfl (summer term 2007)

Albert-Ludwigs-Universität Freiburg

November 9 and 11, 2009

Constraint Satisfaction Problems

Wölfl

Conflict Sets

. .

No-Good Learning

### Look-Back Techniques

- Look-ahead techniques reduce the size of the searched part of the state space by excluding partial assignments from consideration if they provably lead to inconsistencies.
- This is a form of forward analysis: We avoid assignments which must lead to dead ends in the future.
- Look-back techniques use a complementary approach: We avoid assignments which led to dead ends in the past.

Constraint Satisfaction Problems

Wölfl

Conflict Sets

- ackjumping

No-Good Learning

### Types of Look-Back Techniques

We will consider two classes of look-back techniques:

- Backjumping: Upon encountering a dead end, do not always return to the parent in the search tree, but possibly to an earlier ancestor.
- No-good learning: Upon encountering a dead end, record a new constraint to detect this type of dead end earlier in the future.

No-good learning is commonly used when solving propositional logic satisfiability problems for CNF formulae. In this context, it is known as clause learning.

Constraint Satisfaction Problems

Nebel and Wölfl

onflict Sets

, acriganipini

Learning

#### Conventions

- Throughout the chapter, we assume a fixed variable ordering  $v_1, \ldots, v_n$ .
- Partial assignments  $a = \{v_1 \mapsto a_1, \dots, v_i \mapsto a_i\}$  for  $i \in \{0, \dots, n\}$  are abbreviated as tuples:  $(a_1, \dots, a_i)$ .

Constraint Satisfaction Problems

Wölfl

Conflict Sets

Sackjumpinį

No-Good Learning

#### Dead Ends

Recall:

#### Definition (dead end)

A dead end of a state space is a state which is not a goal state and in which no operator is applicable.

In the context of look-back methods, we use the following terminology:

#### Definition (leaf dead end)

A leaf dead end is a partial solution  $(a_1,\ldots,a_i)$  such that  $(a_1,\ldots,a_{i+1})$  is inconsistent for all possible values of  $v_{i+1}$ . Variable  $v_{i+1}$  is called the leaf dead-end variable for the leaf dead end.

Constraint Satisfaction Problems

Wölfl

Conflict Sets

acity a mping

No-Good Learning

\_iterature

### Conflict Sets

#### Definition (conflict set)

Let a be a partial solution (on an arbitrary set of variables), and let  $v_j$  be a variable for which a is not defined.

We say that a is a conflict set of  $v_j$ , (or: a is in conflict with  $v_j$ ) if no assignment of the form  $a \cup \{v_j \mapsto a_j\}$  is consistent.

If moreover a contains no subtuple which is in conflict with  $v_j$ , it is a minimal conflict set of  $v_j$ .

→ A leaf dead end is a conflict set of the leaf dead-end variable, but not every conflict set is a leaf dead end. Constraint Satisfaction Problems

Wölfl

Conflict Sets

. . .

No-Good Learning

#### No-Goods and Internal Dead Ends

#### Definition (no-good)

A partial solution that cannot be extended to a solution of the network is called a no-good.

A no-good is minimal if it contains no no-good subassignments.

A no-good is called an internal dead end iff it is defined on the first i variables, i.e., on  $\{v_1,\ldots,v_i\}$  and it is not a leaf dead end. In that case,  $v_{i+1}$  is called the internal dead-end variable.

Conflict sets are no-goods, but not all no-goods are conflict sets.

Constraint Satisfaction Problems

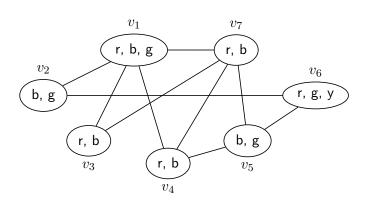
Wölfl

Conflict Sets

ackjumpini

No-Good Learning

### Leaf Dead Ends, Conflict Sets, No-Goods: Example



Constraint Satisfaction Problems

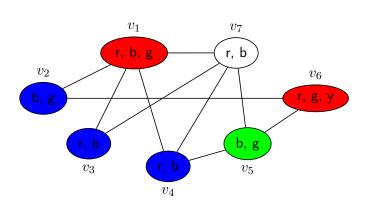
Nebel and Wölfl

Conflict Sets

. . .

Learning

### Leaf Dead End Example



Constraint Satisfaction Problems

Nebel and Wölfl

Conflict Sets

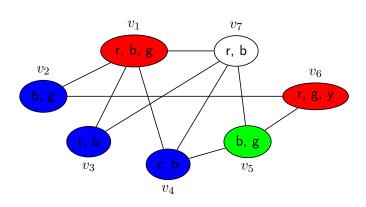
. . .

No-Good Learning

Literature

ightsquigarrow a leaf dead end with leaf dead-end variable  $v_7$ 

### Conflict Set Example



Constraint Satisfaction Problems

Nebel and Wölfl

Conflict Sets

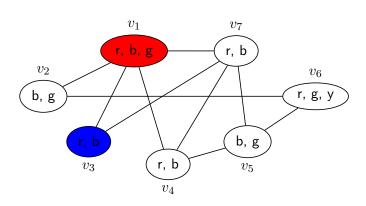
аскјаптрт

No-Good Learning

Literature

 $\rightsquigarrow$  a conflict set of  $v_7$ , but not minimal

### Conflict Set Example



Constraint Satisfaction Problems

Nebel and Wölfl

Conflict Sets

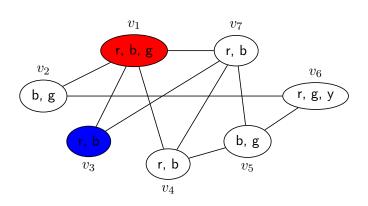
acityanipini

No-Good Learning

Literature

 $\rightsquigarrow$  a minimal conflict set of  $v_7$ 

# No-Good Example



Constraint Satisfaction Problems

Nebel and Wölfl

Conflict Sets

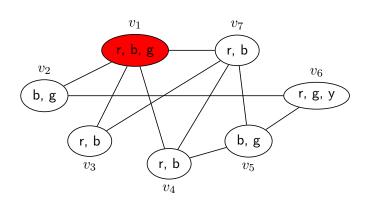
acityanipin

Learning

Literature

→ a no-good, but not a minimal one

### No-Good Example



Constraint Satisfaction Problems

Nebel and Wölfl

Conflict Sets

, acriganipii

Learning

Literature

→ a minimal no-good (also an internal dead end)

### Safe Jumps

### Definition (safe jump)

Let  $a=(a_1,\ldots,a_i)$  be a (leaf or internal) dead end. We say that  $v_j$  with  $j\in\{1,\ldots,i\}$  is safe (or: a safe jump) relative to a if  $(a_1,\ldots,a_j)$  is a no-good.

 $\leadsto$  If  $v_j$  is safe for j < i , we can backtrack several times and assign a new value to  $v_j$  next.

Constraint Satisfaction Problems

Wölfl

Conflict Sets

ackjumping

No-Good Learning

### Backjumping

A backjumping algorithm is a modification of backtracking that may back up several layers in the search tree upon detecting an assignment that cannot be extended to a solution.

We study three variations:

- Gaschnig's backjumping
- Graph-based backjumping
- Conflict-directed backjumping

Constraint Satisfaction Problems

Nebel and Wölfl

Conflict Sets

#### Backjumping

Gaschnig's
Backjumping
Graph-Based
Backjumping
Conflict-Directed

No-Good Learning

# Gaschnig's Backjumping

We first introduce Gaschnig's backjumping which is one of the simplest backjumping algorithms.

It only backs up multiple layers at leaf dead ends.

#### Definition (culprit variable)

Let  $a = (a_1, \ldots, a_i)$  be a leaf dead end.

The culprit index relative to a is

$$culp(a) := \min\{ j \in \mathbb{N}_1 \mid (a_1, \dots, a_j) \text{ conflicts with } v_{i+1} \}$$

#### Gaschnig's backjumping

When detecting the leaf dead end a, jump back to  $v_{culp(a)}$ 

Constraint Satisfaction Problems

Wölfl

Conflict Sets

Backjumping
Gaschnig's
Backjumping
Graph-Based
Backjumping
Conflict-Directed

lo-Good earning

# Gaschnig's Backjumping

We first introduce Gaschnig's backjumping which is one of the simplest backjumping algorithms.

It only backs up multiple layers at leaf dead ends.

#### Definition (culprit variable)

Let  $a = (a_1, \ldots, a_i)$  be a leaf dead end.

The culprit index relative to a is

$$\mathit{culp}(a) := \min \{ \ j \in \mathbb{N}_1 \mid (a_1, \dots, a_j) \ \mathsf{conflicts} \ \mathsf{with} \ v_{i+1} \}$$

#### Gaschnig's backjumping

When detecting the leaf dead end a, jump back to  $v_{\mathit{culp}(a)}.$ 

Constraint Satisfaction Problems

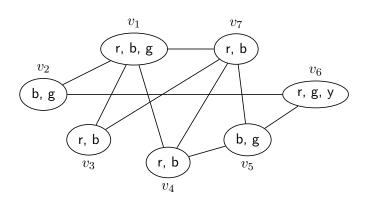
Wölfl

Conflict Sets

Gaschnig's
Backjumping
Graph-Based
Backjumping
Conflict-Directed
Backjumping

No-Good \_earning

# Gaschnig's Backjumping: Example



Constraint Satisfaction Problems

Nebel and Wölfl

Conflict Sets

Backiumping

Gaschnig's
Backjumping
Graph-Based
Backjumping
Conflict-Directed
Backjumping

No-Good Learning

- Gaschnig's backjumping was historically one of the first backjumping techniques.
- It clearly performs only safe jumps.
- It also performs maximal jumps in the sense that backing up further than Gaschnig's backjumping at leaf dead ends can lead to missing (potentially all) solutions.
- The algorithm is attractive because it is easy to implement efficiently (we do not discuss this in detail).
- However, it is not very powerful: It expands strictly more states than look-ahead search with forward checking
   exercises.
- One serious limitation is that it only jumps at leaf dead ends. The next backjumping technique will remedy this.

Constraint Satisfaction Problems

VVOIII

Conflict Sets

Backjumping
Gaschnig's
Backjumping
Graph-Based
Backjumping
Conflict-Directed
Backjumping

No-Good Learning

- Gaschnig's backjumping was historically one of the first backjumping techniques.
- It clearly performs only safe jumps.
- It also performs maximal jumps in the sense that backing up further than Gaschnig's backjumping at leaf dead ends can lead to missing (potentially all) solutions.
- The algorithm is attractive because it is easy to implement efficiently (we do not discuss this in detail).
- However, it is not very powerful: It expands strictly more states than look-ahead search with forward checking
   exercises.
- One serious limitation is that it only jumps at leaf dead ends. The next backjumping technique will remedy this.

Constraint Satisfaction Problems

VVOIII

Conflict Sets

Backjumping
Gaschnig's
Backjumping
Graph-Based
Backjumping
Conflict-Directed
Backjumping

No-Good Learning

- Gaschnig's backjumping was historically one of the first backjumping techniques.
- It clearly performs only safe jumps.
- It also performs maximal jumps in the sense that backing up further than Gaschnig's backjumping at leaf dead ends can lead to missing (potentially all) solutions.
- The algorithm is attractive because it is easy to implement efficiently (we do not discuss this in detail).
- However, it is not very powerful: It expands strictly more states than look-ahead search with forward checking
   exercises.
- One serious limitation is that it only jumps at leaf dead ends. The next backjumping technique will remedy this.

Constraint Satisfaction Problems

VVOIII

Conflict Sets

Backjumping
Gaschnig's
Backjumping
Graph-Based
Backjumping
Conflict-Directed
Backjumping

No-Good Learning

- Gaschnig's backjumping was historically one of the first backjumping techniques.
- It clearly performs only safe jumps.
- It also performs maximal jumps in the sense that backing up further than Gaschnig's backjumping at leaf dead ends can lead to missing (potentially all) solutions.
- The algorithm is attractive because it is easy to implement efficiently (we do not discuss this in detail).
- However, it is not very powerful: It expands strictly more states than look-ahead search with forward checking
   exercises.
- One serious limitation is that it only jumps at leaf dead ends. The next backjumping technique will remedy this.

Constraint Satisfaction Problems

VVOIII

Conflict Sets

Backjumping
Gaschnig's
Backjumping
Graph-Based
Backjumping
Conflict-Directed
Backjumping

No-Good \_earning

- Gaschnig's backjumping was historically one of the first backjumping techniques.
- It clearly performs only safe jumps.
- It also performs maximal jumps in the sense that backing up further than Gaschnig's backjumping at leaf dead ends can lead to missing (potentially all) solutions.
- The algorithm is attractive because it is easy to implement efficiently (we do not discuss this in detail).
- However, it is not very powerful: It expands strictly more states than look-ahead search with forward checking
   exercises.
- One serious limitation is that it only jumps at leaf dead ends. The next backjumping technique will remedy this.

Constraint Satisfaction Problems

\*\*\*\*\*\*

Conflict Sets

Backjumping
Gaschnig's
Backjumping
Graph-Based
Backjumping
Conflict-Directed
Backjumping

No-Good Learning

- Gaschnig's backjumping was historically one of the first backjumping techniques.
- It clearly performs only safe jumps.
- It also performs maximal jumps in the sense that backing up further than Gaschnig's backjumping at leaf dead ends can lead to missing (potentially all) solutions.
- The algorithm is attractive because it is easy to implement efficiently (we do not discuss this in detail).
- However, it is not very powerful: It expands strictly more states than look-ahead search with forward checking
   exercises.
- One serious limitation is that it only jumps at leaf dead ends. The next backjumping technique will remedy this.

Constraint Satisfaction Problems

VVOIII

Conflict Sets

Gaschnig's
Backjumping
Graph-Based
Backjumping
Conflict-Directed
Backjumping

No-Good Learning

# Graph-Based Backjumping

- Graph-based backjumping can also jump back at internal dead ends.
- Unlike Gaschnig's backjumping, it does not use information about the values assigned to the variables in the current state when backing up.
- Instead, it only uses information about the variables themselves, derived from the constraint graph.

Constraint Satisfaction Problems

Wölfl

Conflict Sets

Backjumping
Gaschnig's
Backjumping
Graph-Based
Backjumping
Conflict-Directed
Backjumping

No-Good Learning

#### **Parents**

Reminder:

#### Definition (parents)

The parents of  $v_i$  are those variables  $v_j$  with j < i for which the edge  $\{v_i, v_j\}$  occurs in the primal constraint graph.

### Definition (parents)

Let  $v_i$  be a variable with at least one parent.

The latest parent of  $v_i$ , in symbols  $par(v_i)$ , is the parent  $v_j$  for which j is maximal.

Basic idea: Jump back to the latest parent.

Constraint Satisfaction Problems

Wölfl

Conflict Sets

Backjumping
Gaschnig's
Backjumping
Graph-Based
Backjumping
Conflict-Directed
Backjumping

No-Good Learning

### Jumping back to the latest parent

#### Theorem

Let a be a leaf dead end with dead-end variable  $v_i$ . Then  $par(v_i)$  is a safe jump for a.

#### Proof.

Because a is a leaf dead end,  $(a_1, \ldots, a_{i-1})$  is consistent, but any extension to  $v_i$  is inconsistent. Thus  $(a_1, \ldots, a_{i-1})$  is a conflict set for  $v_i$ .

Then  $(a_1, \ldots, a_{\textit{par}(v_i)})$  is already a conflict set for  $v_i$ , because there are no constraints between  $v_i$  and any variables v' with  $\textit{par}(v_i) \prec v' \prec v_i$ .

Constraint Satisfaction Problems

VVOITI

Conflict Sets

Backjumping
Gaschnig's
Backjumping
Graph-Based
Backjumping
Conflict-Directed
Backjumping

No-Good Learning

# Comparison to Gaschnig's Backjumping

- Jumping back to the latest parent of a leaf dead end is strictly worse than Gaschnig's Backjumping: it never jumps further, and it sometimes jumps less far.
- However, the idea can be extended to jumping from internal dead ends.

First idea: When encountering an internal dead end, jump back to the latest parent of the internal dead-end variable.

Unfortunately, this is not safe.

Constraint Satisfaction Problems

Wölfl

Conflict Sets

Backjumping
Gaschnig's
Backjumping
Graph-Based
Backjumping
Conflict-Directe
Backjumping

No-Good Learning

### Comparison to Gaschnig's Backjumping

- Jumping back to the latest parent of a leaf dead end is strictly worse than Gaschnig's Backjumping: it never jumps further, and it sometimes jumps less far.
- However, the idea can be extended to jumping from internal dead ends.

First idea: When encountering an internal dead end, jump back to the latest parent of the internal dead-end variable.

Unfortunately, this is not safe.

Constraint Satisfaction Problems

Wölfl

Conflict Sets

Backjumping
Gaschnig's
Backjumping
Graph-Based
Backjumping
Conflict-Directe
Backjumping

No-Good Learning

# Comparison to Gaschnig's Backjumping

- Jumping back to the latest parent of a leaf dead end is strictly worse than Gaschnig's Backjumping: it never jumps further, and it sometimes jumps less far.
- However, the idea can be extended to jumping from internal dead ends.

First idea: When encountering an internal dead end, jump back to the latest parent of the internal dead-end variable.

Unfortunately, this is not safe.

Constraint Satisfaction Problems

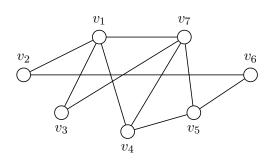
Wölfl

Conflict Sets

Backjumping
Gaschnig's
Backjumping
Graph-Based
Backjumping
Conflict-Directe
Backjumping

No-Good Learning

### Backjumping at Internal Dead Ends: Example



- Scenario 1: Enter  $v_4$  and encounter a leaf dead end with variable  $v_5$ . Jumping back to  $v_4$ , there are no further values for  $v_4$ . It is then safe to backtrack to  $v_1$ .
- Scenario 2: Now encounter a leaf dead end with variable  $v_7$ . Jump back to  $v_5$  and then to  $v_4$ . Is it still safe to jump back to  $v_1$  if there are no further values for  $v_4$ ?

Constraint Satisfaction Problems

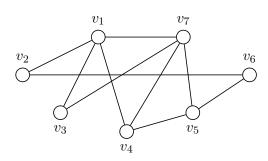
Nebel and Wölfl

Conflict Sets

Backjumping
Gaschnig's
Backjumping
Graph-Based
Backjumping
Conflict-Directed
Backjumping

No-Good Learning

### Backjumping at Internal Dead Ends: Example



- Scenario 1: Enter  $v_4$  and encounter a leaf dead end with variable  $v_5$ . Jumping back to  $v_4$ , there are no further values for  $v_4$ . It is then safe to backtrack to  $v_1$ .
- Scenario 2: Now encounter a leaf dead end with variable  $v_7$ . Jump back to  $v_5$  and then to  $v_4$ . Is it still safe to jump back to  $v_1$  if there are no further values for  $v_4$ ?

Constraint Satisfaction Problems

Nebel and Wölfl

Conflict Sets

Backjumping
Gaschnig's
Backjumping
Graph-Based
Backjumping
Conflict-Directed
Backjumping

No-Good Learning

### Sessions

#### Definition (invisit, session)

We say that the backtracking algorithm invisits variable  $v_i$  when it attempts to extend the assignment  $a = (a_1, \ldots, a_{i-1})$  to  $v_i$ .

The current session of  $v_i$  starts when  $v_i$  is invisited and ends after all possible assignments to  $v_i$  have been tried, i.e., when the backtracking algorithm backs up to variable  $v_{i-1}$  or earlier.

Note: A session of  $v_i$  corresponds to a recursive invocation of the backtracking procedure where values are assigned to  $v_i$ .

Constraint Satisfaction Problems

VVOIII

Conflict Sets

Gaschnig's
Backjumping
Graph-Based
Backjumping
Conflict-Directed
Backjumping

\_earning

#### Relevant Dead Ends

#### Definition (relevant dead ends)

The relevant dead ends of the current session of  $v_i$ , in symbols  $rel(v_i)$ , are computed as follows:

- When  $v_i$  is invisited, set  $rel(v_i) := \{v_i\}.$
- When  $v_i$  is reached by backing up from a later variable  $v_j$ , set  $\mathit{rel}(v_i) := \mathit{rel}(v_i) \cup \mathit{rel}(v_j)$ .

Constraint Satisfaction Problems

Wölfl

Conflict Sets

Backjumping
Gaschnig's
Backjumping
Graph-Based
Backjumping
Conflict-Directed
Backjumping

No-Good Learning

# Graph-Based Backjumping: Algorithm

#### Graph-based backjumping

When detecting the (leaf or internal) dead end a with dead-end variable  $v_i$ , jump back to the latest parent of any variable in  $rel(v_i)$  which is earlier than  $v_i$ .

#### Theorem (Soundness)

Graph-based backjumping only performs safe jumps.

#### Proof.

→ exercises

Constraint Satisfaction Problems

\*\*\*\*\*\*\*

Conflict Sets

Gaschnig's
Backjumping
Graph-Based
Backjumping
Conflict-Directed
Backjumping

No-Good Learning

# Graph-Based Backjumping: Algorithm

#### Graph-based backjumping

When detecting the (leaf or internal) dead end a with dead-end variable  $v_i$ , jump back to the latest parent of any variable in  $rel(v_i)$  which is earlier than  $v_i$ .

#### Theorem (Soundness)

Graph-based backjumping only performs safe jumps.

#### Proof.

→ exercises

Constraint Satisfaction Problems

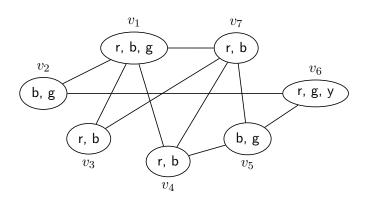
Wölfl

Conflict Sets

Gaschnig's
Backjumping
Graph-Based
Backjumping
Conflict-Directe
Backjumping

No-Good Learning

# Graph-Based Backjumping: Example



Constraint Satisfaction Problems

Nebel and Wölfl

Conflict Sets

Gaschnig's Backjumping Graph-Based Backjumping Conflict-Directed

No-Good Learning

# Conflict-Directed Backjumping

- Gaschnig's backjumping exploits the information about a particular minimal prefix conflict set to jump further from leaf dead ends.
- Graph-based backjumping collects and integrates information from all dead ends in the current session to also jump back at internal dead ends.
- These two ideas can be combined to obtain the conflict-directed backjumping algorithm, which is better (avoids more states) than either of the two previous backjumping styles.

Constraint Satisfaction Problems

Wölfl

Conflict Sets

Backjumping
Gaschnig's
Backjumping
Graph-Based
Backjumping
Conflict-Directed
Backjumping

No-Good Learning

## Constraint Ordering

#### Definition (earlier constraint)

Let  $v_1, \ldots, v_n$  be a variable ordering, and let Q and R be two constraints. We say that Q is earlier than R according to the ordering, in symbols  $Q \prec R$  if

- $\mathit{scope}(Q) \subset \mathit{scope}(R)$ , or
- $scope(Q) \not\subseteq scope(R)$  and  $scope(R) \not\subseteq scope(Q)$  and the latest variable in  $scope(Q) \setminus scope(R)$  precedes the latest variable in  $scope(R) \setminus scope(Q)$ .

If we assume that any two constraints have different scopes, this defines a total order on constraints.

Constraint Satisfaction Problems

Wölfl

Conflict Sets

Gaschnig's
Backjumping
Graph-Based
Backjumping
Conflict-Directed
Backjumping

No-Good Learning

# **Greedy Conflict Sets**

### Definition (greedy conflict set)

Let a be a (leaf or internal) dead end with dead-end variable v. For all  $x \in dom(v)$ , define  $V_x$  as follows:

- If  $a \cup \{v \mapsto x\}$  is inconsistent, let  $V_x$  be the scope of the earliest constraint which is not satisfied by  $a \cup \{v \mapsto x\}$ .
- Otherwise,  $V_x := \emptyset$ .

The greedy conflict variable set of a, in symbols gcv(a), is defined as  $gcv(a) := \bigcup_{x \in dom(v)} (V_x \setminus \{v\})$ .

The greedy conflict set of a, in symbols gc(a), is defined as  $gc(a) := \{v \mapsto a(v) \mid v \in gcv(a)\}.$ 

In other words, gc(a) is a restricted to the greedy conflict variable set.

Constraint Satisfaction Problems

VVOIII

Conflict Sets

Gaschnig's
Backjumping
Graph-Based
Backjumping
Conflict-Directed
Backjumping

No-Good Learning

# Greedy Conflict Sets are Conflict Sets

#### Theorem

Let a be a leaf dead end with dead-end variable v. Then gc(a) is a conflict set of v.

#### Proof.

Since a is a leaf dead end, it is a partial solution. Moreover, gc(a) is a sub-assignment of a, so it is not defined for v. We show that no assignment  $gc(a) \cup \{v \mapsto x\}$  is consistent. Consider an arbitrary value  $x \in \text{dom}(v)$ . In a leaf dead-end, there must be a constraint  $R_x$  with scope  $V_x$  which is not satisfied by  $a \cup \{v \mapsto x\}$ . Then gcv(a) includes all variables in  $V_x \setminus \{v\}$ , and thus gc(a) is defined and equal to a on these variables. As  $a \cup \{v \mapsto x\}$  does not satisfy  $R_x$ ,  $gc(a) \cup \{v \mapsto x\}$  does not satisfy  $R_x$  either. Thus, gc(a) cannot be consistently extended to v and hence is a conflict set for v.

Constraint Satisfaction Problems

\*\*\*\*\*\*

Backjumping

Gaschnig's Backjumping Graph-Based Backjumping Conflict-Directed Backjumping

No-Good \_earning

# Greedy Conflict Sets are Conflict Sets

#### Theorem

Let a be a leaf dead end with dead-end variable v. Then gc(a) is a conflict set of v.

#### Proof.

Since a is a leaf dead end, it is a partial solution. Moreover, gc(a) is a sub-assignment of a, so it is not defined for v. We show that no assignment  $gc(a) \cup \{v \mapsto x\}$  is consistent. Consider an arbitrary value  $x \in \text{dom}(v)$ . In a leaf dead-end, there must be a constraint  $R_x$  with scope  $V_x$  which is not satisfied by  $a \cup \{v \mapsto x\}$ . Then gcv(a) includes all variables in  $V_x \setminus \{v\}$ , and thus gc(a) is defined and equal to a on these variables. As  $a \cup \{v \mapsto x\}$  does not satisfy  $R_x$ ,  $gc(a) \cup \{v \mapsto x\}$  does not satisfy  $R_x$  either. Thus, gc(a) cannot be consistently extended to v and hence is a conflict set for v.

Constraint Satisfaction Problems

\*\*\*\*\*\*

Conflict Sets

Backjumping
Gaschnig's
Backjumping
Graph-Based
Backjumping
Conflict-Directed
Backjumping

No-Good Learning

# Greedy Conflict Sets are Conflict Sets

#### Theorem

Let a be a leaf dead end with dead-end variable v. Then gc(a) is a conflict set of v.

#### Proof.

Since a is a leaf dead end, it is a partial solution. Moreover, gc(a) is a sub-assignment of a, so it is not defined for v. We show that no assignment  $gc(a) \cup \{v \mapsto x\}$  is consistent. Consider an arbitrary value  $x \in \text{dom}(v)$ . In a leaf dead-end, there must be a constraint  $R_x$  with scope  $V_x$  which is not satisfied by  $a \cup \{v \mapsto x\}$ . Then gcv(a) includes all variables in  $V_x \setminus \{v\}$ , and thus gc(a) is defined and equal to a on these variables. As  $a \cup \{v \mapsto x\}$  does not satisfy  $R_x$ ,  $gc(a) \cup \{v \mapsto x\}$  does not satisfy  $R_x$  either. Thus, gc(a) cannot be consistently extended to v and hence is a conflict set for v.

Constraint Satisfaction Problems

Wölfl

Conflict Sets

Backjumping
Gaschnig's
Backjumping
Graph-Based
Backjumping
Conflict-Directed
Backjumping

No-Good \_earning

## Minimality of Greedy Conflict Sets

- Dechter calls gc(a) the earliest minimal conflict set of a.
- However, it is not always a minimal conflict set and not always the earliest conflict set that is a subassignment of a, so we avoid this terminology.

Note: The greedy conflict set is only a conflict set for leaf dead ends!

Constraint Satisfaction Problems

Wölfl

Conflict Sets

Backjumping
Gaschnig's
Backjumping
Graph-Based
Backjumping
Conflict-Directed
Backjumping

No-Good \_earning

# Greedy Conflict Sets vs. Gaschnig's Backjumping

#### Reminder:

• Gaschnig's backjumping jumps back to  $v_{\textit{culp}(a)}$ , where  $\textit{culp}(a) := \min\{ j \in \mathbb{N}_1 \mid (a_1, \dots, a_j) \text{ conflicts with } v \}$ 

#### Observations:

- For the greedy variable set, the latest variable in gcv(a) always equals culp(a).
- Thus, jumping from leaf dead ends to the latest variable in gcv(a) is the same as Gaschnig's backjumping.

Constraint Satisfaction Problems

Wölfl

Conflict Sets

Backjumping
Gaschnig's
Backjumping
Graph-Based
Backjumping
Conflict-Directed
Backjumping

No-Good Learning

# Greedy Conflict Sets vs. Graph-Based Backjumping

#### Observations:

• All variables in gcv(a) are parents of the leaf dead end variable of a.

#### Idea:

- Instead of considering all parents of relevant dead-end variables (as in graph-based backjumping), consider all greedy conflict sets of relevant dead ends.
- Using this scheme, jumping from internal dead ends jumps at least as far as graph-based backjumping.

Constraint Satisfaction Problems

Wölfl

Conflict Sets

Backjumping
Gaschnig's
Backjumping
Graph-Based
Backjumping
Conflict-Directed
Backjumping

No-Good Learning

# Jump-Back Sets

#### Definition (jump-back set)

The jump-back set of a dead end a, in symbols  $J_a$ , is defined as follows:

- If a is a leaf dead end,  $J_a := gcv(a)$ .
- If a is an internal dead end,  $J_a := \gcd(a) \cup \bigcup_{a' \in \mathit{succ}(a)} J_{a'}$ , where  $\mathit{succ}(a)$  is the set of successor states of a.

Constraint Satisfaction Problems

VVOIII

Conflict Sets

Backjumping
Gaschnig's
Backjumping
Graph-Based
Backjumping
Conflict-Directed
Backjumping

No-Good Learning

# Conflict-Directed Backjumping: Algorithm

### Conflict-directed backjumping

When detecting the (leaf or internal) dead end a with dead-end variable  $v_i$ , jump back to the latest variable in  $J_a$  that is earlier than  $v_i$ .

#### Theorem (Soundness)

Conflict-directed backjumping only performs safe jumps

#### Proof idea

Combine the proofs for Gaschnig's backjumping and graph-based backjumping.

Constraint Satisfaction Problems

Wölfl

Conflict Sets

Gaschnig's
Backjumping
Graph-Based
Backjumping
Conflict-Directed
Backjumping

No-Good Learning

# Conflict-Directed Backjumping: Algorithm

### Conflict-directed backjumping

When detecting the (leaf or internal) dead end a with dead-end variable  $v_i$ , jump back to the latest variable in  $J_a$  that is earlier than  $v_i$ .

#### Theorem (Soundness)

Conflict-directed backjumping only performs safe jumps.

#### Proof idea.

Combine the proofs for Gaschnig's backjumping and graph-based backjumping.

Constraint Satisfaction Problems

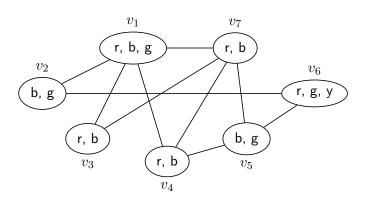
Wölfl

Conflict Sets

Gaschnig's
Backjumping
Graph-Based
Backjumping
Conflict-Directed
Backjumping

No-Good Learning

# Conflict-Directed Backjumping: Example



Constraint Satisfaction Problems

Nebel and Wölfl

Conflict Sets

Rackiumning

Gaschnig's Backjumping Graph-Based Backjumping Conflict-Directed Backjumping

No-Good Learning

### No-Good Learning

- Backjumping can significantly reduce the search effort by skipping over irrelevant choice points.
- However, thrashing is still possible: essentially the same no-good can be "rediscovered" over and over in different parts of the search tree.
- To alleviate this problem, we can make use of no-good learning or constraint recording techniques.

Constraint Satisfaction Problems

Nebel and Wölfl

Conflict Sets

Backjumpin

No-Good Learning Concepts Algorithms

# Adding No-Good Learning

Adding no-good learning to an existing (backtracking, look-ahead, backjumping, ...) algorithm is simple:

### no-good learning

When the algorithm backtracks (or jumps back), determine a conflict set and add a constraint to the network that rules out this conflict set.

Constraint Satisfaction Problems

> Nebel and Wölfl

Conflict Sets

lo-Good

Learning Concepts Algorithms

# Variations of No-Good Learning

#### There are many variations:

- How to determine the no-good?

  - Determine one which is minimal, or even all minimal ones derivable from the current dead end 

     → deep learning
- Which no-goods to store?
  - Store all constraints.
  - Store only small no-goods (constraints with arity ≤ c)
     → bounded learning
- How long to store no-goods?
  - Store forever.
  - ullet Discard once they differ from the current state in more than c variables
    - → relevance-bounded learning

Constraint Satisfaction Problems

VVOIII

onnict Sets

No-Good Learning Concepts

# Variations of No-Good Learning

### There are many variations:

- How to determine the no-good?

  - Determine one which is minimal, or even all minimal ones derivable from the current dead end 

     → deep learning
- Which no-goods to store?
  - Store all constraints.
  - Store only small no-goods (constraints with arity ≤ c)
     → bounded learning
- How long to store no-goods?
  - Store forever.
  - Discard once they differ from the current state in more than c variables

Satisfaction Problems

Constraint

..........

lo-Good

Learning Concepts Algorithms

## Variations of No-Good Learning

### There are many variations:

- How to determine the no-good?
  - Determine one which is easy to generate, but not necessarily minimal → shallow learning.
  - Determine one which is minimal, or even all minimal ones derivable from the current dead end 

     → deep learning
- Which no-goods to store?
  - Store all constraints.
  - Store only small no-goods (constraints with arity ≤ c)

     ⇒ bounded learning
- How long to store no-goods?
  - Store forever.
  - ullet Discard once they differ from the current state in more than c variables
    - → relevance-bounded learning

Constraint Satisfaction Problems

VVOITI

Conflict Sets

ackjumping a-Good

No-Good Learning Concepts Algorithms

## No-Good Learning: Issues

When performing no-good learning, there is a need to strike a good compromise between:

- pruning power:
   more constraints lead to fewer explored states
- constraint processing overhead:
   learning many constraints increases the satisfaction tests
   for every search node
- learning overhead: expensive computations of no-goods may outweigh pruning benefits
- space overhead: storing all no-goods eliminates the space efficiency of backtracking-style algorithms

Constraint Satisfaction Problems

Nebel and Wölfl

Conflict Sets

lo-Good

No-Good Learning Concepts Algorithms

## Graph-Based Learning

### Graph-based learning

Augment graph-based backjumping by applying the following learning rule when jumping back from an internal or leaf dead-end a with dead-end variable  $v_i$ :

- Let V(a) be the set of parents of some variable in the relevant dead-end variable set  $rel(v_i)$ .
- Learn the no-good  $\{(v, a(v)) \mid v \in V(a) \text{ and } v \prec v_i\}.$

Constraint Satisfaction Problems

Wölfl

onflict Sets.

ua Caad

No-Good Learning Concepts Algorithms

# Conflict-Directed Backjump Learning

Satisfaction Problems Nebel and

Constraint

....

Connict Sets

No-Good \_earning

Concepts Algorithms

\_iterature

### Conflict-directed backjump learning

Augment conflict-directed backjumping by applying the following learning rule when jumping back from an internal or leaf dead-end a with dead-end variable  $v_i$ :

• Learn the no-good  $\{(v,a(v)) \mid v \in \mathit{gcv}(a) \text{ and } v \prec v_i\}.$ 

## Nonsystematic Randomized Backtrack Learning

- Learning algorithms are not limited to minor variations of the common systematic backtracking algorithms.
- One example of a very different algorithm is nonsystematic randomized backtrack learning:
  - Use backtracking with random variable and value orders.
  - At each dead end, learn a new conflict set.
  - After a certain number of dead ends, restart (remembering the newly learned constraints).
  - Terminate upon solution or when  $\emptyset$  becomes a dead end.

#### Completeness

- Each newly learned constraint reduces the number of states in the state space by at least 1.
- Thus, eventually either the empty assignment will be a dead end, or the search space will become backtrack-free

Constraint Satisfaction Problems

Nebel and Wölfl

Conflict Sets

Backjumpini Io Cood

Learning Concepts Algorithms

## Nonsystematic Randomized Backtrack Learning

- Learning algorithms are not limited to minor variations of the common systematic backtracking algorithms.
- One example of a very different algorithm is nonsystematic randomized backtrack learning:
  - Use backtracking with random variable and value orders.
  - At each dead end, learn a new conflict set.
  - After a certain number of dead ends, restart (remembering the newly learned constraints).
  - ullet Terminate upon solution or when  $\emptyset$  becomes a dead end.

### Completeness:

- Each newly learned constraint reduces the number of states in the state space by at least 1.
- Thus, eventually either the empty assignment will be a dead end, or the search space will become backtrack-free

Constraint Satisfaction Problems

Wölfl

Conflict Sets

ackjumping

No-Good Learning Concepts Algorithms

### Nonsystematic Randomized Backtrack Learning

- Learning algorithms are not limited to minor variations of the common systematic backtracking algorithms.
- One example of a very different algorithm is nonsystematic randomized backtrack learning:
  - Use backtracking with random variable and value orders.
  - At each dead end, learn a new conflict set.
  - After a certain number of dead ends, restart (remembering the newly learned constraints).
  - ullet Terminate upon solution or when  $\emptyset$  becomes a dead end.

#### Completeness:

- Each newly learned constraint reduces the number of states in the state space by at least 1.
- Thus, eventually either the empty assignment will be a dead end, or the search space will become backtrack-free.

Constraint Satisfaction Problems

Wölfl

onflict Sets

ackjumping

Concepts
Algorithms

### Literature



Rina Dechter.
Constraint Processing,
Chapter 6, Morgan Kaufmann, 2003

Constraint Satisfaction Problems

Nebel an Wölfl

Conflict Sets

Dackjumpi

No-Good Learning