Constraint Satisfaction Problems Look-Back

Bernhard Nebel and Stefan Wölfl

based on a slideset by Malte Helmert and Stefan Wölfl (summer term 2007)

Albert-Ludwigs-Universität Freiburg

November 9 and 11, 2009

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

November 9 and 11, 2009

Constraint Satisfaction Problems

November 9 and 11, 2009 — Look-Back

Conflict Sets

Backjumping

Gaschnig's Backjumping Graph-Based Backjumping Conflict-Directed Backjumping

No-Good Learning

Concepts Algorithms

Literature

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

November 9 and 11, 2009

Look-Back Techniques

- ▶ Look-ahead techniques reduce the size of the searched part of the state space by excluding partial assignments from consideration if they provably lead to inconsistencies.
- ▶ This is a form of forward analysis: We avoid assignments which must lead to dead ends in the future.
- ▶ Look-back techniques use a complementary approach: We avoid assignments which led to dead ends in the past.

Types of Look-Back Techniques

We will consider two classes of look-back techniques:

- ▶ Backjumping: Upon encountering a dead end, do not always return to the parent in the search tree, but possibly to an earlier ancestor.
- ▶ No-good learning: Upon encountering a dead end, record a new constraint to detect this type of dead end earlier in the future.

No-good learning is commonly used when solving propositional logic satisfiability problems for CNF formulae. In this context, it is known as clause learning.

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

November 9 and 11, 2009

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

Conflict Sets

Conventions

▶ Throughout the chapter, we assume a fixed variable ordering v_1, \ldots, v_n .

▶ Partial assignments $a = \{v_1 \mapsto a_1, \dots, v_i \mapsto a_i\}$ for $i \in \{0, \dots, n\}$ are abbreviated as tuples: (a_1, \dots, a_i) .

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

November 9 and 11, 2009

5 / 46

Conflict Sets

Conflict Sets

Definition (conflict set)

Let a be a partial solution (on an arbitrary set of variables), and let v_j be a variable for which a is not defined.

We say that a is a conflict set of v_j , (or: a is in conflict with v_j) if no assignment of the form $a \cup \{v_i \mapsto a_i\}$ is consistent.

If moreover a contains no subtuple which is in conflict with v_j , it is a minimal conflict set of v_j .

 \rightsquigarrow A leaf dead end is a conflict set of the leaf dead-end variable, but not every conflict set is a leaf dead end.

Conflict Sets

Dead Ends

Recall:

Definition (dead end)

A dead end of a state space is a state which is not a goal state and in which no operator is applicable.

In the context of look-back methods, we use the following terminology:

Definition (leaf dead end)

A leaf dead end is a partial solution (a_1, \ldots, a_i) such that (a_1, \ldots, a_{i+1}) is inconsistent for all possible values of v_{i+1} .

Variable v_{i+1} is called the leaf dead-end variable for the leaf dead end.

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

November 9 and 11, 2009

6 / 4

Conflict Sets

No-Goods and Internal Dead Ends

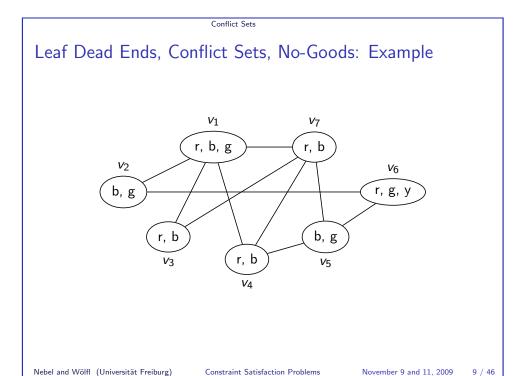
Definition (no-good)

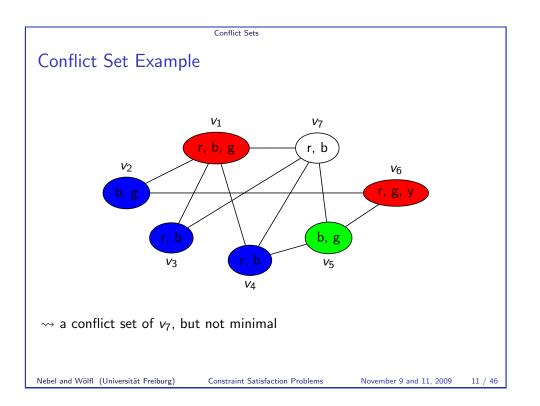
A partial solution that cannot be extended to a solution of the network is called a no-good.

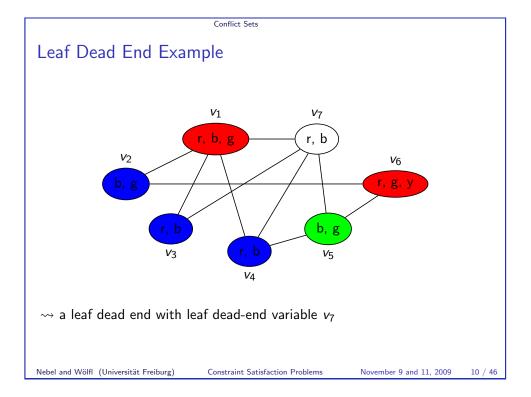
A no-good is minimal if it contains no no-good subassignments.

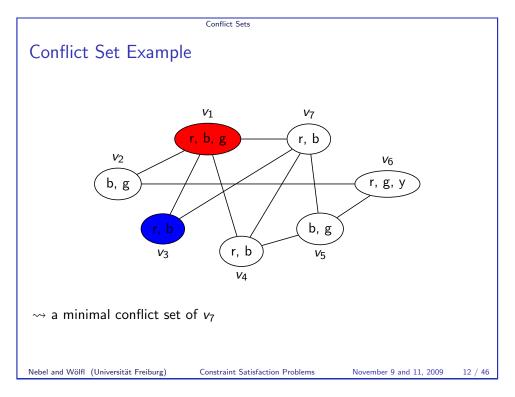
A no-good is called an internal dead end iff it is defined on the first i variables, i.e., on $\{v_1, \ldots, v_i\}$ and it is not a leaf dead end. In that case, v_{i+1} is called the internal dead-end variable.

Conflict sets are no-goods, but not all no-goods are conflict sets.



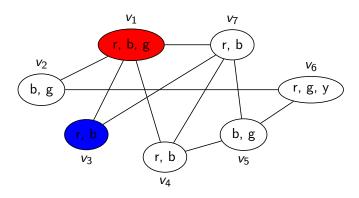






Conflict Sets

No-Good Example



→ a no-good, but not a minimal one

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

November 9 and 11, 2009

13 / 46

Conflict Sets

Safe Jumps

Definition (safe jump)

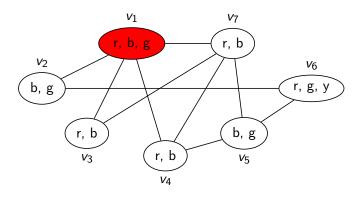
Let $a = (a_1, \ldots, a_i)$ be a (leaf or internal) dead end.

We say that v_j with $j \in \{1, ..., i\}$ is safe (or: a safe jump) relative to a if $(a_1, ..., a_i)$ is a no-good.

 \rightsquigarrow If v_j is safe for j < i, we can backtrack several times and assign a new value to v_j next.

Conflict Sets

No-Good Example



→ a minimal no-good (also an internal dead end)

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

November 9 and 11, 2009

14 / 46

Backjumping

Backjumping

A backjumping algorithm is a modification of backtracking that may back up several layers in the search tree upon detecting an assignment that cannot be extended to a solution.

We study three variations:

- ► Gaschnig's backjumping
- Graph-based backjumping
- ► Conflict-directed backjumping

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

November 9 and 11, 2009

15 / 46

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

November 9 and 11, 2009

Backjumping Gaschnig's Backjumping

Gaschnig's Backjumping

We first introduce Gaschnig's backjumping which is one of the simplest backjumping algorithms.

It only backs up multiple layers at leaf dead ends.

Definition (culprit variable)

Let $a = (a_1, \ldots, a_i)$ be a leaf dead end.

The culprit index relative to a is

$$culp(a) := \min\{ j \in \mathbb{N}_1 \mid (a_1, \dots, a_i) \text{ conflicts with } v_{i+1} \}$$

Gaschnig's backjumping

When detecting the leaf dead end a, jump back to $v_{culp(a)}$.

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

November 9 and 11, 2009

17 / 46

Backjumping Gaschnig's Backjumping

Remarks on Gaschnig's Backjumping

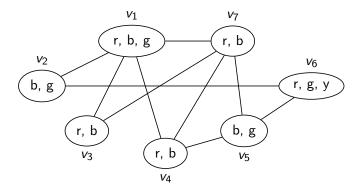
- ► Gaschnig's backjumping was historically one of the first backjumping techniques.
- ▶ It clearly performs only safe jumps.
- ▶ It also performs maximal jumps in the sense that backing up further than Gaschnig's backjumping at leaf dead ends can lead to missing (potentially all) solutions.
- ► The algorithm is attractive because it is easy to implement efficiently (we do not discuss this in detail).
- ► However, it is not very powerful: It expands strictly more states than look-ahead search with forward checking

→ exercises.

▶ One serious limitation is that it only jumps at leaf dead ends. The next backjumping technique will remedy this.

Backjumping Gaschnig's Backjumping

Gaschnig's Backjumping: Example



Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

November 9 and 11, 2009

18 / 46

Backjumping Graph-Based Backjumping

Graph-Based Backjumping

- ► Graph-based backjumping can also jump back at internal dead ends.
- ▶ Unlike Gaschnig's backjumping, it does not use information about the values assigned to the variables in the current state when backing up.
- ► Instead, it only uses information about the variables themselves, derived from the constraint graph.

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

November 9 and 11, 2009

Parents

Reminder:

Definition (parents)

The parents of v_i are those variables v_j with j < i for which the edge $\{v_i, v_i\}$ occurs in the primal constraint graph.

Definition (parents)

Let v_i be a variable with at least one parent.

The latest parent of v_i , in symbols $par(v_i)$, is the parent v_j for which j is maximal.

Basic idea: Jump back to the latest parent.

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

November 9 and 11, 2009

21 / 46

Backjumping Graph-Based Backjumping

Comparison to Gaschnig's Backjumping

- ▶ Jumping back to the latest parent of a leaf dead end is strictly worse than Gaschnig's Backjumping: it never jumps further, and it sometimes jumps less far.
- ► However, the idea can be extended to jumping from internal dead ends.

First idea: When encountering an internal dead end, jump back to the latest parent of the internal dead-end variable.

Unfortunately, this is not safe.

Jumping back to the latest parent

Theorem

Let a be a leaf dead end with dead-end variable v_i . Then par(v_i) is a safe jump for a.

Proof.

Because a is a leaf dead end, (a_1, \ldots, a_{i-1}) is consistent, but any extension to v_i is inconsistent. Thus (a_1, \ldots, a_{i-1}) is a conflict set for v_i . Then $(a_1, \ldots, a_{par(v_i)})$ is already a conflict set for v_i , because there are no constraints between v_i and any variables v' with $par(v_i) \prec v' \prec v_i$.

Nebel and Wölfl (Universität Freiburg)

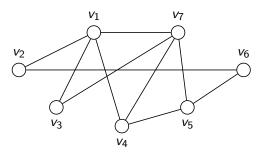
Constraint Satisfaction Problems

November 9 and 11, 2009

22 /

Backjumping Graph-Based Backjumping

Backjumping at Internal Dead Ends: Example



- Scenario 1: Enter v_4 and encounter a leaf dead end with variable v_5 . Jumping back to v_4 , there are no further values for v_4 . It is then safe to backtrack to v_1 .
- Scenario 2: Now encounter a leaf dead end with variable v_7 . Jump back to v_5 and then to v_4 . Is it still safe to jump back to v_1 if there are no further values for v_4 ?

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

Sessions

Definition (invisit, session)

We say that the backtracking algorithm invisits variable v_i when it attempts to extend the assignment $a = (a_1, \dots, a_{i-1})$ to v_i .

The current session of v_i starts when v_i is invisited and ends after all possible assignments to v_i have been tried, i.e., when the backtracking algorithm backs up to variable v_{i-1} or earlier.

Note: A session of v_i corresponds to a recursive invocation of the backtracking procedure where values are assigned to v_i .

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

November 9 and 11, 2009

Backjumping Graph-Based Backjumping

Graph-Based Backjumping: Algorithm

Graph-based backjumping

When detecting the (leaf or internal) dead end a with dead-end variable v_i , jump back to the latest parent of any variable in $rel(v_i)$ which is earlier than vi.

Theorem (Soundness)

Graph-based backjumping only performs safe jumps.

Proof.

→ exercises

Relevant Dead Ends

Definition (relevant dead ends)

The relevant dead ends of the current session of v_i , in symbols $rel(v_i)$, are computed as follows:

- ▶ When v_i is invisited, set $rel(v_i) := \{v_i\}$.
- \triangleright When v_i is reached by backing up from a later variable v_i , set $rel(v_i) := rel(v_i) \cup rel(v_i).$

Nebel and Wölfl (Universität Freiburg)

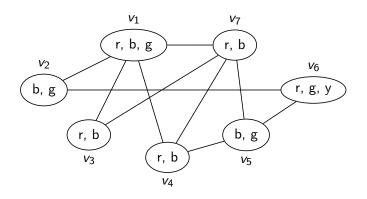
Constraint Satisfaction Problems

November 9 and 11, 2009

26 / 46

Backjumping Graph-Based Backjumping

Graph-Based Backjumping: Example



Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

November 9 and 11, 2009

Conflict-Directed Backjumping

- ▶ Gaschnig's backjumping exploits the information about a particular minimal prefix conflict set to jump further from leaf dead ends.
- ▶ Graph-based backjumping collects and integrates information from all dead ends in the current session to also jump back at internal dead ends.
- ▶ These two ideas can be combined to obtain the conflict-directed backjumping algorithm, which is better (avoids more states) than either of the two previous backjumping styles.

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

November 9 and 11, 2009

Backjumping Conflict-Directed Backjumping

Greedy Conflict Sets

Definition (greedy conflict set)

Let a be a (leaf or internal) dead end with dead-end variable v. For all $x \in dom(v)$, define V_x as follows:

- ▶ If $a \cup \{v \mapsto x\}$ is inconsistent, let V_x be the scope of the earliest constraint which is not satisfied by $a \cup \{v \mapsto x\}$.
- ▶ Otherwise, $V_{\times} := \emptyset$.

The greedy conflict variable set of a, in symbols gcv(a), is defined as $gcv(a) := \bigcup_{x \in dom(v)} (V_x \setminus \{v\}).$

The greedy conflict set of a, in symbols gc(a), is defined as $gc(a) := \{ v \mapsto a(v) \mid v \in gcv(a) \}.$

In other words, gc(a) is a restricted to the greedy conflict variable set.

Constraint Ordering

Definition (earlier constraint)

Let v_1, \ldots, v_n be a variable ordering, and let Q and R be two constraints. We say that Q is earlier than R according to the ordering, in symbols $Q \prec R$ if

- ightharpoonup scope(R), or
- ▶ $scope(Q) \not\subseteq scope(R)$ and $scope(R) \not\subseteq scope(Q)$ and the latest variable in $scope(Q) \setminus scope(R)$ precedes the latest variable in $scope(R) \setminus scope(Q)$.

If we assume that any two constraints have different scopes, this defines a total order on constraints.

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

Backjumping Conflict-Directed Backjumping

November 9 and 11, 2009

30 / 46

Greedy Conflict Sets are Conflict Sets

Theorem

Let a be a leaf dead end with dead-end variable v. Then gc(a) is a conflict set of v.

Proof.

Since a is a leaf dead end, it is a partial solution. Moreover, gc(a) is a sub-assignment of a, so it is not defined for v.

We show that no assignment $gc(a) \cup \{v \mapsto x\}$ is consistent. Consider an arbitrary value $x \in dom(v)$. In a leaf dead-end, there must be a constraint R_x with scope V_x which is not satisfied by $a \cup \{v \mapsto x\}$. Then gcv(a) includes all variables in $V_x \setminus \{v\}$, and thus gc(a) is defined and equal to a on these variables. As $a \cup \{v \mapsto x\}$ does not satisfy R_x , $gc(a) \cup \{v \mapsto x\}$ does not satisfy R_x either. Thus, gc(a) cannot be consistently extended to v and hence is a conflict set for v.

Minimality of Greedy Conflict Sets

- \blacktriangleright Dechter calls gc(a) the earliest minimal conflict set of a.
- ▶ However, it is not always a minimal conflict set and not always the earliest conflict set that is a subassignment of *a*, so we avoid this terminology.

Note: The greedy conflict set is only a conflict set for leaf dead ends!

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

November 9 and 11, 2009

33 / 46

35 / 46

Backjumping Conflict-Directed Backjumping

Greedy Conflict Sets vs. Graph-Based Backjumping

Observations:

▶ All variables in gcv(a) are parents of the leaf dead end variable of a.

Idea:

- ▶ Instead of considering all parents of relevant dead-end variables (as in graph-based backjumping), consider all greedy conflict sets of relevant dead ends.
- ▶ Using this scheme, jumping from internal dead ends jumps at least as far as graph-based backjumping.

Greedy Conflict Sets vs. Gaschnig's Backjumping

Reminder:

▶ Gaschnig's backjumping jumps back to $v_{culp(a)}$, where $culp(a) := \min\{j \in \mathbb{N}_1 \mid (a_1, ..., a_i) \text{ conflicts with } v\}$

Observations:

- For the greedy variable set, the latest variable in gcv(a) always equals culp(a).
- ► Thus, jumping from leaf dead ends to the latest variable in gcv(a) is the same as Gaschnig's backjumping.

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

Backjumping Conflict-Directed Backjumping

November 9 and 11, 2009

3/ / //

Jump-Back Sets

Definition (jump-back set)

The jump-back set of a dead end a, in symbols J_a , is defined as follows:

- ▶ If a is a leaf dead end, $J_a := gcv(a)$.
- ▶ If a is an internal dead end, $J_a := gcv(a) \cup \bigcup_{a' \in succ(a)} J_{a'}$, where succ(a) is the set of successor states of a.

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

Conflict-directed backjumping

When detecting the (leaf or internal) dead end a with dead-end variable v_i , jump back to the latest variable in J_a that is earlier than v_i .

Theorem (Soundness)

Conflict-directed backjumping only performs safe jumps.

Proof idea.

Combine the proofs for Gaschnig's backjumping and graph-based backjumping.

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

November 9 and 11, 2009

37 / 46

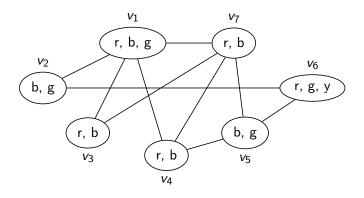
No-Good Learning Concepts

No-Good Learning

- ▶ Backjumping can significantly reduce the search effort by skipping over irrelevant choice points.
- ► However, thrashing is still possible: essentially the same no-good can be "rediscovered" over and over in different parts of the search tree.
- ► To alleviate this problem, we can make use of no-good learning or constraint recording techniques.

Backjumping Conflict-Directed Backjumping

Conflict-Directed Backjumping: Example



Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

November 9 and 11, 2009

20 /

40 / 46

No-Good Learning Concep

Adding No-Good Learning

Adding no-good learning to an existing (backtracking, look-ahead, backjumping, ...) algorithm is simple:

no-good learning

When the algorithm backtracks (or jumps back), determine a conflict set and add a constraint to the network that rules out this conflict set.

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems November 9 and 11, 2009 39 / 46 Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems November 9 and 11, 2009

No-Good Learning Concept

Variations of No-Good Learning

There are many variations:

- ▶ How to determine the no-good?
 - ► Determine one which is easy to generate, but not necessarily minimal → shallow learning.
 - ► Determine one which is minimal, or even all minimal ones derivable from the current dead end → deep learning
- ▶ Which no-goods to store?
 - Store all constraints.
 - ► Store only small no-goods (constraints with arity ≤ c)

 → bounded learning
- ► How long to store no-goods?
 - ► Store forever.
 - ► Discard once they differ from the current state in more than *c* variables → relevance-bounded learning

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

November 9 and 11, 2009

41 / 46

No-Good Learning Algorithms

Graph-Based Learning

Graph-based learning

Augment graph-based backjumping by applying the following learning rule when jumping back from an internal or leaf dead-end a with dead-end variable v_i :

- Let V(a) be the set of parents of some variable in the relevant dead-end variable set $rel(v_i)$.
- ▶ Learn the no-good $\{(v, a(v)) \mid v \in V(a) \text{ and } v \prec v_i\}$.

No-Good Learning: Issues

When performing no-good learning, there is a need to strike a good compromise between:

- pruning power: more constraints lead to fewer explored states
- constraint processing overhead:
 learning many constraints increases the satisfaction tests for every search node
- ► learning overhead: expensive computations of no-goods may outweigh pruning benefits
- space overhead: storing all no-goods eliminates the space efficiency of backtracking-style algorithms

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

No-Good Learning Algorithms

November 9 and 11, 2009

42 / 46

Conflict-Directed Backjump Learning

Conflict-directed backjump learning

Augment conflict-directed backjumping by applying the following learning rule when jumping back from an internal or leaf dead-end *a* with dead-end variable *v*:

▶ Learn the no-good $\{(v, a(v)) \mid v \in gcv(a) \text{ and } v \prec v_i\}$.

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems

Problems

November 9 and 11, 2009

3 / 46

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

November 9 and 11, 2009

No-Good Learning Algorithms

Nonsystematic Randomized Backtrack Learning

- ▶ Learning algorithms are not limited to minor variations of the common systematic backtracking algorithms.
- ▶ One example of a very different algorithm is nonsystematic randomized backtrack learning:
 - ▶ Use backtracking with random variable and value orders.
 - ► At each dead end, learn a new conflict set.
 - ► After a certain number of dead ends, restart (remembering the newly learned constraints).
 - ightharpoonup Terminate upon solution or when \emptyset becomes a dead end.

Completeness:

- ▶ Each newly learned constraint reduces the number of states in the state space by at least 1.
- ▶ Thus, eventually either the empty assignment will be a dead end, or the search space will become backtrack-free.

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

November 9 and 11, 2009

45 / 46

Literature

Literature

Rina Dechter. Constraint Processing,

Chapter 6, Morgan Kaufmann, 2003

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems