Constraint Satisfaction Problems
Enforcing Consistency

Bernhard Nebel and Stefan Wölfl
based on a slideset by
Malte Helmert and Stefan Wölfl
(summer term 2007)

Albert-Ludwigs-Universität Freiburg

October 26/28, 2009
Enforcing Consistency

- The more explicit and tight constraint networks are, the more restricted is the search space of partial solutions.
- **Idea:** infer at least a limited number of new constraints (by methods called local consistency-enforcing, bounded consistency inference, constraint propagation).
- Consistency-enforcing algorithms aim at *assisting search*: How can we extend a given partial solution of a small subnetwork to a partial solution of a larger subnetwork?
In what follows we will always assume that the variables of a constraint network appear in some order. Then we can write constraint networks in the form:

\[C = \langle V, D, C \rangle, \]

where \(D_i \) is the (possibly empty) domain of variable \(v_i \), and constraints in the form \(R_{ijk} \), where \(\{v_i, v_j, v_k\} \) is the scope of the relation.

Further, we assume that \(C \) does not contain unary constraints, i.e., constraints in \(C \) are always relations with arity \(n > 1 \). This is possible, since we can define:

\[D_i := \text{dom}(v_i) \cap R_{v_i} \]

and then delete \(R_{v_i} \) from the original network. \(D_i \) will be referred to as domains, unary constraint, or domain constraint.
Let $C = \langle V, D, C \rangle$ be a constraint network.

Definition

(a) A variable v_i is **arc-consistent** relative to variable v_j if for every value $a_i \in D_i$ there exists an $a_j \in D_j$ with $(a_i, a_j) \in R_{ij}$ (in case that R_{ij} exists in C).

(b) An “arc constraint” R_{ij} is **arc-consistent** if v_i is arc-consistent relative to v_j and v_j is arc-consistent relative to v_i.

(c) A network C is **arc-consistent** if all its arc constraints are arc-consistent.

Lemma

Checking whether a network $C = \langle V, D, C \rangle$ is arc-consistent requires $e \cdot k^2$ operations (where e is the number of its binary constraints and k is an upper bound of its domain sizes).
Consider a constraint network with two variables v_1 and v_2, domains $D_1 = D_2 = \{1, 2, 3\}$, and the binary constraint expressed by $v_1 < v_2$.

Figure: A network that is not arc-consistent
Revising a Single Domains

Revise \((v_i, v_j)\):

Input: a network with two variables \(v_i, v_j\), domains \(D_i\) and \(D_j\), and constraint \(R_{ij}\)

Output: a network with refined \(D_i\) such that \(v_i\) is arc-consistent relative to \(v_j\)

for each \(a_i \in D_i\)

if there is no \(a_j \in D_j\) with \((a_i, a_j) \in R_{ij}\)

then delete \(a_i\) from \(D_i\)

endif

endfor

This is equivalent to applying:

\[
D_i \leftarrow D_i \cap \pi_i(R_{ij} \bowtie D_j)
\]
Revising a Single Domain

\textbf{Revise} \((v_i, v_j)\):

\textit{Input:} a network with two variables \(v_i, v_j\), domains \(D_i\) and \(D_j\), and constraint \(R_{ij}\)

\textit{Output:} a network with refined \(D_i\) such that \(v_i\) is arc-consistent relative to \(v_j\)

\textbf{for} each \(a_i \in D_i\)

\textbf{if} there is no \(a_j \in D_j\) with \((a_i, a_j) \in R_{ij}\)

\textbf{then} delete \(a_i\) from \(D_i\)

\textbf{endif}

\textbf{endfor}

This is equivalent to applying:

\[D_i \leftarrow D_i \cap \pi_i(R_{ij} \bowtie D_j) \]
Revising a Single Domain

Lemma

The complexity of Revise is $O(k^2)$, where k is an upper bound of the domain sizes.

Note: With a simple modification of the Revise algorithm one could improve to $O(t)$, where t is the maximal number of tuples occurring in one of the binary constraints in the network.
Revising a Single Domain

Lemma

The complexity of Revise is $O(k^2)$, where k is an upper bound of the domain sizes.

Note: With a simple modification of the Revise algorithm one could improve to $O(t)$, where t is the maximal number of tuples occurring in one of the binary constraints in the network.
Revising a Single Domain

Lemma

The complexity of Revise is $O(k^2)$, where k is an upper bound of the domain sizes.

Note: With a simple modification of the Revise algorithm one could improve to $O(t)$, where t is the maximal number of tuples occurring in one of the binary constraints in the network.
Revising a Single Domain

Lemma

The complexity of Revise is $O(k^2)$, where k is an upper bound of the domain sizes.

Note: With a simple modification of the Revise algorithm one could improve to $O(t)$, where t is the maximal number of tuples occurring in one of the binary constraints in the network.
Revising a Single Domain

Lemma

The complexity of Revise is $O(k^2)$, where k is an upper bound of the domain sizes.

Note: With a simple modification of the Revise algorithm one could improve to $O(t)$, where t is the maximal number of tuples occurring in one of the binary constraints in the network.
Enforcing Arc Consistency: AC-1

\[\text{AC-1}(C): \]

Input: a constraint network \(C = \langle V, D, C \rangle \)

Output: an equivalent, but arc-consistent network \(C' \)

repeat
 for each arc \(\{v_i, v_j\} \) with \(R_{ij} \in C \)
 Revise\((v_i, v_j)\)
 Revise\((v_j, v_i)\)
 endfor
until no domain is changed
Enforcing Arc Consistency: AC-1

Lemma

Let \mathcal{C} be a constraint network with n variables, each with a domain of size $\leq k$, and e binary constraints. Applying AC-1 on the network runs in time $\mathcal{O}(e \cdot n \cdot k^3)$.

Proof.

One cycle through all binary constraints takes $\mathcal{O}(e \cdot k^2)$. In the worst case, one cycle just removes one value from one domain. Moreover, there are at most $n \cdot k$ values. This result in an upper bound of $\mathcal{O}(e \cdot n \cdot k^3)$.

Note: If the input network is already arc-consistent, then AC-1 runs in time $\mathcal{O}(e \cdot k^2)$.
Consider a constraint network with three variables v_1, v_2, and v_3, domains $D_1 = D_2 = \{1, 2, 3\}$, and the binary constraints expressed by $v_1 < v_2$ and $v_2 < v_3$. Note: Enforcing arc consistency may already be sufficient to show that a constraint network is inconsistent. For example, add the constraint $v_3 < v_1$ to the network just considered.
Example: AC-1

Consider a constraint network with three variables v_1, v_2, and v_3, domains $D_1 = D_2 = \{1, 2, 3\}$, and the binary constraints expressed by $v_1 < v_2$ and $v_2 < v_3$.

Note: Enforcing arc consistency may already be sufficient to show that a constraint network is inconsistent. For example, add the constraint $v_3 < v_1$ to the network just considered.
Example: AC-1

Consider a constraint network with three variables v_1, v_2, and v_3, domains $D_1 = D_2 = \{1, 2, 3\}$, and the binary constraints expressed by $v_1 < v_2$ and $v_2 < v_3$.

Note: Enforcing arc consistency may already be sufficient to show that a constraint network is inconsistent. For example, add the constraint $v_3 < v_1$ to the network just considered.
Example: AC-1

Consider a constraint network with three variables v_1, v_2, and v_3, domains $D_1 = D_2 = \{1, 2, 3\}$, and the binary constraints expressed by $v_1 < v_2$ and $v_2 < v_3$.

Note: Enforcing arc consistency may already be sufficient to show that a constraint network is inconsistent. For example, add the constraint $v_3 < v_1$ to the network just considered.
Example: AC-1

Consider a constraint network with three variables v_1, v_2, and v_3, domains $D_1 = D_2 = \{1, 2, 3\}$, and the binary constraints expressed by $v_1 < v_2$ and $v_2 < v_3$.
Example: AC-1

Consider a constraint network with three variables v_1, v_2, and v_3, domains $D_1 = D_2 = \{1, 2, 3\}$, and the binary constraints expressed by $v_1 < v_2$ and $v_2 < v_3$.
Example: AC-1

Consider a constraint network with three variables v_1, v_2, and v_3, domains $D_1 = D_2 = \{1, 2, 3\}$, and the binary constraints expressed by $v_1 < v_2$ and $v_2 < v_3$.

Note: Enforcing arc consistency may already be sufficient to show that a constraint network is inconsistent. For example, add the constraint $v_3 < v_1$ to the network just considered.
Example: AC-1

Consider a constraint network with three variables v_1, v_2, and v_3, domains $D_1 = D_2 = \{1, 2, 3\}$, and the binary constraints expressed by $v_1 < v_2$ and $v_2 < v_3$.

![Diagram of constraint network with variables v_1, v_2, and v_3.]

Note: Enforcing arc consistency may already be sufficient to show that a constraint network is inconsistent. For example, add the constraint $v_3 < v_1$ to the network just considered.
Enforcing Arc Consistency: AC-3

Idea: no need to process all constraints if only a few domains have changed. Operate on a queue of constraints to be processed.

AC-3(C):

Input: a constraint network $C = \langle V, D, C \rangle$

Output: an equivalent, but arc-consistent network C'

for each pair v_i, v_j that occurs in a constraint R_{ij}

$\text{queue} \leftarrow \text{queue} \cup \{(v_i, v_j), (v_j, v_i)\}$

endfor

while queue is not empty

select and delete (v_i, v_j) from queue

Revise(v_i, v_j)

if Revise(v_i, v_j) changes D_i

then $\text{queue} \leftarrow \text{queue} \cup \{(v_k, v_i) : k \neq i, k \neq j\}$

endif

endwhile
Enforcing Arc Consistency: AC-3

Lemma

Let \mathcal{C} be a constraint network with n variables, each with a domain of size $\leq k$, and e binary constraints. Applying AC-3 on the network runs in time $O(e \cdot k^3)$.

Proof.

Consider a single constraint. Each time, when it is reintroduced into the queue, the domain of one of its variables must have been changed. Since there are at most $2 \cdot k$ values, AC-3 processes each constraint at most $2 \cdot k$ times. Because we have e constraints and processing of each is in time $O(k^2)$, we obtain $O(e \cdot k^3)$.

Note: If the input network is arc-consistent, then AC-3 runs in time $O(e \cdot k^2)$.
Example: Consider a constraint network with 3 variables v_1, v_2, v_3 with domains $D_1 = \{2, 4\}$ and $D_2 = D_3 = \{2, 5\}$, and two constraints expressed by $v_3 | v_1$ and $v_3 | v_2$ (“divides”).
Enforcing Arc Consistency: AC-3

Example: Consider a constraint network with 3 variables v_1, v_2, v_3 with domains $D_1 = \{2, 4\}$ and $D_2 = D_3 = \{2, 5\}$, and two constraints expressed by $v_3 \mid v_1$ and $v_3 \mid v_2$ (“divides”).
Example: Consider a constraint network with 3 variables v_1, v_2, v_3 with domains $D_1 = \{2, 4\}$ and $D_2 = D_3 = \{2, 5\}$, and two constraints expressed by $v_3 \mid v_1$ and $v_3 \mid v_2$ ("divides").
Example: Consider a constraint network with 3 variables v_1, v_2, v_3 with domains $D_1 = \{2, 4\}$ and $D_2 = D_3 = \{2, 5\}$, and two constraints expressed by $v_3 | v_1$ and $v_3 | v_2$ ("divides").
Example: Consider a constraint network with 3 variables v_1, v_2, v_3 with domains $D_1 = \{2, 4\}$ and $D_2 = D_3 = \{2, 5\}$, and two constraints expressed by $v_3 | v_1$ and $v_3 | v_2$ ("divides").
Example: Consider a constraint network with 3 variables v_1, v_2, v_3 with domains $D_1 = \{2, 4\}$ and $D_2 = D_3 = \{2, 5\}$, and two constraints expressed by $v_3 \mid v_1$ and $v_3 \mid v_2$ (“divides”).
Example: Consider a constraint network with 3 variables v_1, v_2, v_3 with domains $D_1 = \{2, 4\}$ and $D_2 = D_3 = \{2, 5\}$, and two constraints expressed by $v_3|v_1$ and $v_3|v_2$ ("divides").
Example: Consider a constraint network with 3 variables v_1, v_2, v_3 with domains $D_1 = \{2, 4\}$ and $D_2 = D_3 = \{2, 5\}$, and two constraints expressed by $v_3 \mid v_1$ and $v_3 \mid v_2$ ("divides").
Example: Consider a constraint network with 3 variables v_1, v_2, v_3 with domains $D_1 = \{2, 4\}$ and $D_2 = D_3 = \{2, 5\}$, and two constraints expressed by $v_3 \mid v_1$ and $v_3 \mid v_2$ (“divides”).

![Diagram showing arc consistency]

Queue (v_1, v_3)
Example: Consider a constraint network with 3 variables \(v_1, v_2, v_3 \) with domains \(D_1 = \{2, 4\} \) and \(D_2 = D_3 = \{2, 5\} \), and two constraints expressed by \(v_3 \mid v_1 \) and \(v_3 \mid v_2 \) ("divides").
Enforcing Arc Consistency: AC-3

Example: Consider a constraint network with 3 variables v_1, v_2, v_3 with domains $D_1 = \{2, 4\}$ and $D_2 = D_3 = \{2, 5\}$, and two constraints expressed by $v_3 \mid v_1$ and $v_3 \mid v_2$ ("divides").
Example: Consider a constraint network with 3 variables v_1, v_2, v_3 with domains $D_1 = \{2, 4\}$ and $D_2 = D_3 = \{2, 5\}$, and two constraints expressed by $v_3|v_1$ and $v_3|v_2$ ("divides").
Example: Consider a constraint network with 3 variables v_1, v_2, v_3 with domains $D_1 = \{2, 4\}$ and $D_2 = D_3 = \{2, 5\}$, and two constraints expressed by $v_3 \mid v_1$ and $v_3 \mid v_2$ ("divides").
Enforcing Arc Consistency: AC-3

Example: Consider a constraint network with 3 variables v_1, v_2, v_3 with domains $D_1 = \{2, 4\}$ and $D_2 = D_3 = \{2, 5\}$, and two constraints expressed by $v_3 | v_1$ and $v_3 | v_2$ ("divides").
Enforcing Arc Consistency: AC-4

- To verify that a network is arc-consistent needs $e \cdot k^2$ operations.
- The following algorithm AC-4 achieves optimal performance, . . .
- at the cost of “best case performance”, which is $\Omega(e \cdot k^2)$.

Idea:
- Associate to each value a_i in the domain of variable v_i the amount of support from variable v_j (i.e., the number of values in D_j that are consistent with a_i);
- Delete a value a_i if it has no support from any other variable

Details:
- List: currently unsupported variable-value pairs;
- $\text{counter}(x_i, a_i, x_j)$: support for a_i from x_j;
- S_{x_j, a_j}: array pointing to all values in other variables supported by (x_j, a_j);
- M: list of removed values.
Enforcing Arc Consistency: AC-4

AC-4(C):

Input: a constraint network $C = \langle V, D, C \rangle$

Output: an equivalent, but arc-consistent network C'

$M \leftarrow \emptyset$

initialize S_{x_i, a_i} and $counter(x_i, a_i, x_j)$ for all R_{ij}

for each counter

if $counter(x_i, a_i, x_j) = 0$

then add (x_i, a_i) to List

endif

endfor

while List is not empty

choose and remove (x_i, a_i) from List, and add it to M

for each (x_j, a_j) in S_{x_i, a_i}

 decrement $counter(x_j, a_j, x_i)$

 if $counter(x_j, a_j, x_i) = 0$

 then add (x_j, a_j) to List

 endif

endfor

endwhile
Example: AC-4

Consider the same network as for AC-3. Constraints: $v_3 \models v_1$ and $v_3 \models v_2$.

![Diagram of the network with nodes and constraints](image-url)
Example: AC-4

Consider the same network as for AC-3. Constraints: \(v_3 \mid v_1 \) and \(v_3 \mid v_2 \).

The initialization steps yield:

\[
\begin{align*}
S_{v_3,2} &= \{ (v_1, 2), (v_1, 4), (v_2, 2) \} & S_{v_3,5} &= \{ (v_2, 5) \} \\
S_{v_2,2} &= \{ (v_3, 2) \} & S_{v_2,5} &= \{ (v_3, 5) \} \\
S_{v_1,2} &= \{ (v_3, 2) \} & S_{v_1,4} &= \{ (v_3, 2) \}
\end{align*}
\]
Example: AC-4

The initialization steps yield:

- \(S_{v3,2} = \{(v_1, 2), (v_1, 4), (v_2, 2)\} \)
- \(S_{v3,5} = \{(v_2, 5)\} \)
- \(S_{v2,2} = \{(v_3, 2)\} \)
- \(S_{v2,5} = \{(v_3, 5)\} \)
- \(S_{v1,2} = \{(v_3, 2)\} \)
- \(S_{v1,4} = \{(v_3, 2)\} \)

Furthermore:

- \(\text{counter}(v_3, 2, v_1) = 2 \) and \(\text{counter}(v_3, 5, v_1) = 0. \)

All other counters are 1 (note: we only need consider counters between connected variables).

- \(\text{List} = \{(v_3, 5)\} \) and \(M = \emptyset. \)

When \((v_3, 5)\) is removed from \(\text{List}\) and added to \(M\), we obtain \(\text{counter}(v_2, 5, v_3) = 0\) and add \((v_2, 5)\) to \(\text{List}\). Then \((v_2, 5)\) is removed from \(\text{List}\) and added to \(M\). \((v_2, 5)\) is only supported by \((v_3, 5)\), but that pair is already in \(M\), and we are done.
Sometimes “enforcing arc consistency” is sufficient for detecting inconsistent (unsolvable) networks; but . . .

enforcing arc consistency is not complete for deciding consistency of networks; because . . .

inferences rely only on domain constraints and single binary constraints defined on the domains.

⇒ We consider further concepts of local consistency
Path Consistency

Definition

(a) A binary constraint R_{ij} for variables v_i, v_j is **path-consistent** relative to a third variable v_k if for every pair $(a_i, a_j) \in R_{ij}$, there exists an $a_k \in D_k$ such that $(a_i, a_k) \in R_{ik}$ and $(a_k, a_j) \in R_{kj}$.

(b) A pair of distinct variables v_i, v_j is **path-consistent** relative to variable v_k if any instantiation a of $\{v_i, v_j\}$ with $(a(v_i), a(v_j)) \in R_{ij}$ can be extended to an instantiation a' of $\{v_i, v_j, v_k\}$ such that $(a'(v_i), a'(v_k)) \in R_{ik}$ and $(a'(v_k), a'(v_j)) \in R_{kj}$ (“extended” means: $a = a'|\{v_i, v_j\}$).

(c) A set of distinct variables $\{v_i, v_j, v_k\}$ is **path-consistent** if any pair of these variables is path-consistent relative to the omitted third variable.

(d) A constraint network is **path-consistent** if all its three-element subsets of variables are path-consistent.
An Example

Figure: This network is arc-consistent, but not path-consistent.
Revising a Path

Revise-3(\{v_i, v_j\}, v_k):

Input: a binary network \langle V, D, C \rangle with variables v_i, v_j, v_k
Output: a revised constraint \(R_{ij}\) path-consistent with \(v_k\)

for each pair \((a_i, a_j) \in R_{ij}\)
 if there is no \(a_k \in D_k\) such that \((a_i, a_k) \in R_{ik}\)
 and \((a_j, a_k) \in R_{jk}\)
 then delete \((a_i, a_j)\) from \(R_{ij}\)
endif
endfor

This is equivalent to applying:

\[R_{ij} \leftarrow R_{ij} \cap \pi_{ij}(R_{ik} \Join D_k \Join R_{kj}) \]
Revising a Path

$\text{Revise-3}(\{v_i, v_j\}, v_k)$:

Input: a binary network $\langle V, D, C \rangle$ with variables v_i, v_j, v_k

Output: a revised constraint R_{ij} path-consistent with v_k

for each pair $(a_i, a_j) \in R_{ij}$

if there is no $a_k \in D_k$ such that $(a_i, a_k) \in R_{ik}$
 and $(a_j, a_k) \in R_{jk}$

then delete (a_i, a_j) from R_{ij}

endif

endfor

This is equivalent to applying:

$$R_{ij} \leftarrow R_{ij} \cap \pi_{ij}(R_{ik} \Join D_k \Join R_{kj})$$
Revising a Path: Properties

Lemma

When applied to a constraint network C, procedure $\text{Revise-3}(\{v_i, v_j\}, v_k)$:

- **does not do anything** if the pair v_i, v_j is path-consistent relative to v_k, and otherwise
- **transforms the network into an equivalent form where the pair** v_i, v_j **is path-consistent relative to** v_k.

Proof.

From the definition of path consistency.
Revising a Path: Complexity

Lemma

Let t be the maximal number of tuples in one of the binary constraints, and let k be an upper bound for the domain sizes.

The worst-case runtime of Revise-3 is $O(t \cdot k)$.

The best-case runtime of Revise-3 is $\Omega(t)$.

Note that $t \leq k^2$, so the complexity of Revise-3 can also be expressed as $O(k^3)$ in the worst and $\Omega(k^2)$ in the best case.
Enforcing Path Consistency: PC-1

\textbf{PC-1}(C):

\textit{Input:} a constraint network $C = \langle V, D, C \rangle$
\textit{Output:} an equivalent, path-consistent network C'

\textbf{repeat}

\hspace{1em} \textbf{for} each (ordered) triple of variables v_i, v_j, v_k:

\hspace{2em} Revise-3($\{v_i, v_j\}, v_k$)

\textbf{endfor}

\textbf{until} no constraint is changed
Enforcing Path Consistency: Soundness of PC-1

Lemma

When applied to a constraint network C, the PC-1 algorithm computes a path-consistent constraint network which is equivalent to C.

Proof.

Follows directly from the properties of Revise-3.
Lemma

Let \mathcal{C} be a constraint network with n variables, each with a domain of size $\leq k$. Let t be an upper bound of the number of tuples in one of the binary constraints in \mathcal{C}.

The worst-case runtime of PC-1 on this network is $O(n^5 \cdot t^2 \cdot k)$. The best-case runtime of PC-1 on this network is $\Omega(n^3 \cdot t)$.

Because $t \leq k^2$, the runtime bounds can also be stated as $O(n^5 \cdot k^5)$ and $\Omega(n^3 \cdot k^2)$, respectively.
Enforcing Path Consistency: Complexity of PC-1

Proof (worst case).
In each iteration of the outer loop in PC-1, only one value pair might be deleted from one of the constraints. Hence the number of iterations may be as large as $O(n^2 \cdot t)$. Processing a specific triple of constraints (there are $O(n^3)$ many such triples) costs $O(t \cdot k)$. Hence each iteration costs $O(n^3 \cdot t \cdot k)$.

Proof (best case).
In the best case, the network is already path-consistent and only one iteration through the outer loop is needed. There are $\Omega(n^3)$ calls to Revise-3, each requiring time $\Omega(t)$ in the best case.
Enforcing Path Consistency: Complexity of PC-1

Proof (worst case).

In each iteration of the outer loop in PC-1, only one value pair might be deleted from one of the constraints. Hence the number of iterations may be as large as $O(n^2 \cdot t)$.

Processing a specific triple of constraints (there are $O(n^3)$ many such triples) costs $O(t \cdot k)$.

Hence each iteration costs $O(n^3 \cdot t \cdot k)$.

Proof (best case).

In the best case, the network is already path-consistent and only one iteration through the outer loop is needed. There are $\Omega(n^3)$ calls to Revise-3, each requiring time $\Omega(t)$ in the best case.
Enforcing Path Consistency: PC-2

PC-2(\(C\)):

Input: a constraint network \(C = \langle V, D, C' \rangle\)

Output: an equivalent, path-consistent network \(C'\)

\[
\text{queue} \leftarrow \{(i, k, j) : 1 \leq i < j \leq n, 1 \leq k \leq n, k \neq i, k \neq j\}
\]

while queue is not empty

select and delete a triple \((i, k, j)\) from queue

Revise-3(\(\{v_i, v_j\}, v_k\))

if \(R_{ij}\) has changed **then**

queue \(\leftarrow\) queue \(\cup\) \(\{(l, i, j), (l, j, i) : 1 \leq l \leq n, l \neq i, j\}\)

endif

endwhile
Enforcing Path Consistency: Soundness of PC-2

Lemma
When applied to a constraint network \mathcal{C}, the PC-2 algorithm computes a path-consistent constraint network which is equivalent to \mathcal{C}.

Proof.
Equivalence follows directly from the properties of Revise-3. To see that the remaining constraint network is path-consistent, verify the following invariant:

Before and after each iteration of the while-loop, for each pair v_i, v_j which is not path-consistent relative to v_k, one of the triples (i, k, j) and (j, k, i) is contained in the queue.
Enforcing Path Consistency: Complexity of PC-2

Lemma

Let C be a constraint network with n variables, each with a domain of size $\leq k$. Let t be an upper bound of the number of tuples in one of the binary constraints in C.

The worst-case runtime of PC-2 on this network is $O(n^3 \cdot t^2 \cdot k)$. The best-case runtime of PC-2 on this network is $\Omega(n^3 \cdot t)$.

Because $t \leq k^2$, the runtime bounds can also be stated as $O(n^3 \cdot k^5)$ and $\Omega(n^3 \cdot k^2)$, respectively.
Proof (worst case).

There are initially $O(n^3)$ elements in the queue. Whenever some constraint R_{ij} is reduced, which can happen at most $O(n^2 \cdot t)$ many times, $O(n)$ elements are added to the queue. Thus, the total number of elements added to the queue is bounded by $O(n^3 \cdot t)$.

Each iteration of the \textbf{while} loop removes an element from the queue, so there are at most $O(n^3 \cdot t)$ iterations and hence at most $O(n^3 \cdot t)$ calls to Revise-3, each requiring time $O(t \cdot k)$, for a total runtime bound of $O(n^3 \cdot t^2 \cdot k)$.

Proof (best case).

Similar to PC-1.
Enforcing Path Consistency: Complexity of PC-2

Proof (worst case).
There are initially $O(n^3)$ elements in the queue. Whenever some constraint R_{ij} is reduced, which can happen at most $O(n^2 \cdot t)$ many times, $O(n)$ elements are added to the queue. Thus, the total number of elements added to the queue is bounded by $O(n^3 \cdot t)$.
Each iteration of the while loop removes an element from the queue, so there are at most $O(n^3 \cdot t)$ iterations and hence at most $O(n^3 \cdot t)$ calls to Revise-3, each requiring time $O(t \cdot k)$, for a total runtime bound of $O(n^3 \cdot t^2 \cdot k)$.

Proof (best case).
Similar to PC-1.
Arc and Path Consistency: Overview

<table>
<thead>
<tr>
<th></th>
<th>Worst Case</th>
<th>Best Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC-1</td>
<td>(O(n \cdot k \cdot e \cdot t))</td>
<td>(\Omega(e \cdot k))</td>
</tr>
<tr>
<td>AC-3</td>
<td>(O(e \cdot k \cdot t))</td>
<td>(\Omega(e \cdot k))</td>
</tr>
<tr>
<td>AC-4</td>
<td>(O(e \cdot t))</td>
<td>(\Omega(e \cdot k^2))</td>
</tr>
<tr>
<td>PC-1</td>
<td>(O(n^5 \cdot t^2 \cdot k))</td>
<td>(\Omega(n^3 \cdot t))</td>
</tr>
<tr>
<td>PC-2</td>
<td>(O(n^3 \cdot t^2 \cdot k))</td>
<td>(\Omega(n^3 \cdot t))</td>
</tr>
<tr>
<td>PC-4*</td>
<td>(O(n^3 \cdot t \cdot k))</td>
<td>(\Omega(n^3 \cdot t \cdot k))</td>
</tr>
</tbody>
</table>

*not discussed in this lecture

Remark: \(O(n^3 \cdot t \cdot k) \) is the optimal (worst-case) runtime for enforcing path consistency, i.e., there are (arbitrarily large) constraint networks for which no better algorithm exists.
Arc and Path Consistency: Overview

<table>
<thead>
<tr>
<th></th>
<th>Worst Case</th>
<th>Best Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC-1</td>
<td>$O(n \cdot k \cdot e \cdot t)$</td>
<td>$\Omega(e \cdot k)$</td>
</tr>
<tr>
<td>AC-3</td>
<td>$O(e \cdot k \cdot t)$</td>
<td>$\Omega(e \cdot k)$</td>
</tr>
<tr>
<td>AC-4</td>
<td>$O(e \cdot t)$</td>
<td>$\Omega(e \cdot k^2)$</td>
</tr>
<tr>
<td>PC-1</td>
<td>$O(n^5 \cdot t^2 \cdot k)$</td>
<td>$\Omega(n^3 \cdot t)$</td>
</tr>
<tr>
<td>PC-2</td>
<td>$O(n^3 \cdot t^2 \cdot k)$</td>
<td>$\Omega(n^3 \cdot t)$</td>
</tr>
<tr>
<td>PC-4*</td>
<td>$O(n^3 \cdot t \cdot k)$</td>
<td>$\Omega(n^3 \cdot t \cdot k)$</td>
</tr>
</tbody>
</table>

*not discussed in this lecture

Remark: $O(n^3 \cdot t \cdot k)$ is the optimal (worst-case) runtime for enforcing path consistency, i.e., there are (arbitrarily large) constraint networks for which no better algorithm exists.
Higher Levels of \(i\)-Consistency

The local consistency notions presented so far can be roughly summarized as follows:

- **Arc consistency**: Every consistent assignment to a single variable can be consistently extended to any second variable.

- **Path consistency**: Every consistent assignment to two variables can be consistently extended to any third variable.

(Side remark: This is a bit of an oversimplification because we ignored \(k\)-ary constraints with \(k \geq 3\) so far. More on this later.)

It is easy to see that the general idea of local consistency can be readily extended to larger variable sets.
Higher Levels of i-Consistency

The local consistency notions presented so far can be roughly summarized as follows:

- **Arc consistency**: Every consistent assignment to a single variable can be consistently extended to any second variable.

- **Path consistency**: Every consistent assignment to two variables can be consistently extended to any third variable.

(Side remark: This is a bit of an oversimplification because we ignored k-ary constraints with $k \geq 3$ so far. More on this later.)

It is easy to see that the general idea of local consistency can be readily extended to larger variable sets.
Let $\mathcal{C} = \langle V, D, C \rangle$ be a constraint network.

Definition

(a) A relation $R_S \in C$ with scope S of size $i - 1$ is \textit{i-consistent} relative to variable $v_i \notin S$ if for every tuple $t \in R_S$, there exists an $a \in D_i$ such that (t, a) is consistent.

(b) A constraint network is \textit{i-consistent} if any consistent instantiation of $i - 1$ (distinct) variables v_1, \ldots, v_{i-1} of the network can be extended to a \textit{consistent} instantiation of the variables v_1, \ldots, v_i, where v_i is any variable in V distinct from v_1, \ldots, v_{i-1}.
Global Consistency

Definition

- A network C is strongly i-consistent if it is j-consistent for each $j \leq i$.
- A network C with n variables is globally consistent if it is strongly n-consistent.

Note: Solutions to globally consistent networks can be found without search. (How?)
Global Consistency

Definition

- A network \(C \) is strongly \(i \)-consistent if it is \(j \)-consistent for each \(j \leq i \).
- A network \(C \) with \(n \) variables is globally consistent if it is strongly \(n \)-consistent.

Note: Solutions to globally consistent networks can be found without search. (How?)
Arc/Path Consistency vs. 2/3-Consistency

Note:

- 2-consistency coincides with arc consistency.
- For networks containing binary constraints only, 3-consistency coincides with path consistency.
- Each 3-consistent network is path-consistent.
- The converse is not true: For networks with constraints of arity ≥ 3, 3-consistency is stricter than path consistency.
3-Consistency: Examples

Example

\[V = \{v_1, v_2, v_3\} \]
\[D_1 = D_2 = D_3 = \{0, 1\} \]
\[R_{123} = \{(0, 0, 0)\} \]

Example

\[V = \{v_1, v_2, v_3\} \]
\[D_1 = D_2 = D_3 = \{0, 1\} \]
\[R_{123} = \{(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)\} \]
\[R_{12} = R_{13} = R_{23} = \{(0, 1), (1, 0), (1, 1)\} \]
3-Consistency: Examples

Example

\[V = \{v_1, v_2, v_3\} \]
\[D_1 = D_2 = D_3 = \{0, 1\} \]
\[R_{123} = \{(0, 0, 0)\} \]

Example

\[V = \{v_1, v_2, v_3\} \]
\[D_1 = D_2 = D_3 = \{0, 1\} \]
\[R_{123} = \{(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)\} \]
\[R_{12} = R_{13} = R_{23} = \{(0, 1), (1, 0), (1, 1)\} \]
Revise-i

\textbf{Revise-i($\{v_1, \ldots, v_{i-1}\}, v_i$):}

\textit{Input:} a network $\langle V, D, C \rangle$ and a constraint R_S with scope $S = \{v_1, \ldots, v_{i-1}\}$

\textit{Output:} a constraint R_S which is i-consistent rel. to v_i

\begin{verbatim}
for each instantiation $\overline{a}_{i-1} \in R_S$
 if there is no $a_i \in D_i$ such that $(\overline{a}_{i-1}, a_i)$ is consistent
 then delete \overline{a}_{i-1} from R_S

endfor
\end{verbatim}

- R_S can be the universal relation wrt. S.
- If the input network is binary, then Revise-i runs in time $O(k^i)$.
- In general, Revise-i runs in time $O((2 \cdot k)^i)$, since $O(2^i)$ constraints must be processed for each tuple.
Revise-\(i\)

\[\text{Revise-}i(\{v_1, \ldots, v_{i-1}\}, v_i):\]

Input: a network \(\langle V, D, C \rangle\) and a constraint \(R_S\) with scope \(S = \{v_1, \ldots, v_{i-1}\}\)

Output: a constraint \(R_S\) which is \(i\)-consistent rel. to \(v_i\)

for each instantiation \(\overline{a}_{i-1} \in R_S\)

if there is no \(a_i \in D_i\) such that \((\overline{a}_{i-1}, a_i)\) is consistent

then delete \(\overline{a}_{i-1}\) from \(R_S\)

endif

endfor

- \(R_S\) can be the universal relation wrt. \(S\).
- If the input network is binary, then Revise-\(i\) runs in time \(O(k^i)\).
- In general, Revise-\(i\) runs in time \(O((2 \cdot k)^i)\), since \(O(2^i)\) constraints must be processed for each tuple.
Enforce i-Consistency(C):

Input: A constraint network $C = \langle V, D, C \rangle$.

Output: An i-consistent network equivalent to C.

repeat
 for each subset of $S \subseteq V$ of size $i - 1$ and each $v_i \notin S$
 Revise-i($\{v_1, \ldots, v_{i-1}\}, v_i$)
 endfor
until no constraint is changed

The Revise-i call can equivalently be stated as follows:
Let S be the set of all subsets of $\{v_1, \ldots, v_i\}$ that contain v_i and occur as scopes of some constraint in the network. Then apply

$$R_S \leftarrow R_S \cap \pi_S(\bigwedge_{S' \in S} R_{S'}).$$
\textbf{i-Consistency: Algorithm}

\textbf{Enforce i-Consistency}(\mathcal{C}):

\textit{Input:} A constraint network \(\mathcal{C} = \langle V, D, C \rangle\).
\textit{Output:} An \(i\)-consistent network equivalent to \(\mathcal{C}\).

\textbf{repeat}
\textbf{for} each subset of \(S \subseteq V\) of size \(i - 1\) and each \(v_i \notin S\)
\textbf{Revise-}i(\(\{v_1, \ldots, v_{i-1}\}, v_i\))
\textbf{endfor}
\textbf{until} no constraint is changed

The \textbf{Revise-}i call can equivalently be stated as follows:
Let \(S\) be the set of all subsets of \(\{v_1, \ldots, v_i\}\) that contain \(v_i\) and
occur as scopes of some constraint in the network. Then apply

\[R_S \leftarrow R_S \cap \pi_S(\Delta_{S' \in S} R_{S'}). \]
i-Consistency: Complexity

Lemma

Let C be a constraint network with n variables, each with a domain of size $\leq k$. When applied to C, the “Enforce i-Consistency” algorithm runs in time $O(2^i \cdot (n \cdot k)^{2i-1})$.

Proof.

Each call to Revise-i requires time $O((2 \cdot k)^i)$. In each iteration of the outer loop, $O(n^i)$ combinations of S and v_i need to be processed. If only one tuple is removed from one constraint in each iteration up to the final one, the outer loop may need to iterate $O(n^{i-1} \cdot k^{i-1})$ times.

This leads to an overall runtime of $O(2^i \cdot (n \cdot k)^{2i-1})$.

Note: Improvements similar to AC-4 and PC-4 exist and achieve a worst-case runtime of $O(n^i \cdot k^i)$.
Lemma

Let C be a constraint network with n variables, each with a domain of size $\leq k$. When applied to C, the “Enforce i-Consistency” algorithm runs in time $O(2^i \cdot (n \cdot k)^{2i-1})$.

Proof.

Each call to Revise-i requires time $O((2 \cdot k)^i)$. In each iteration of the outer loop, $O(n^i)$ combinations of S and v_i need to be processed. If only one tuple is removed from one constraint in each iteration up to the final one, the outer loop may need to iterate $O(n^{i-1} \cdot k^{i-1})$ times. This leads to an overall runtime of $O(2^i \cdot (n \cdot k)^{2i-1})$.

Note: Improvements similar to AC-4 and PC-4 exist and achieve a worst-case runtime of $O(n^i \cdot k^i)$.
i-Consistency: Comparison to AC-x and PC-x

<table>
<thead>
<tr>
<th>i-consistency, $i = 2$</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC-1</td>
<td>$O(n \cdot k \cdot e \cdot t) = O(n^3 \cdot k^3)$</td>
</tr>
<tr>
<td>AC-3</td>
<td>$O(e \cdot k \cdot t) = O(n^2 \cdot k^3)$</td>
</tr>
<tr>
<td>AC-4</td>
<td>$O(e \cdot t) = O(n^2 \cdot k^2)$</td>
</tr>
<tr>
<td>improved i-consistency*, $i = 2$</td>
<td>$O(n^2 \cdot k^2)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>i-consistency, $i = 3$</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC-1</td>
<td>$O(n^5 \cdot t^2 \cdot k) = O(n^5 \cdot k^5)$</td>
</tr>
<tr>
<td>PC-2</td>
<td>$O(n^3 \cdot t^2 \cdot k) = O(n^3 \cdot k^5)$</td>
</tr>
<tr>
<td>PC-4*</td>
<td>$O(n^3 \cdot t \cdot k) = O(n^3 \cdot k^3)$</td>
</tr>
<tr>
<td>improved i-consistency*, $i = 3$</td>
<td>$O(n^3 \cdot k^3)$</td>
</tr>
</tbody>
</table>

*not discussed in this lecture

Remark: $O(n^i \cdot k^i)$ is the optimal (worst-case) runtime for enforcing i-consistency, i.e., there are (arbitrarily large) constraint networks for which no better algorithm exists.
i-Consistency: Comparison to AC-\(x\) and PC-\(x\)

<table>
<thead>
<tr>
<th>i-consistency, (i = 2)</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>i-consistency</td>
<td>(O(n^3 \cdot k^3))</td>
</tr>
<tr>
<td>AC-1</td>
<td>(O(n \cdot k \cdot e \cdot t) = O(n^3 \cdot k^3))</td>
</tr>
<tr>
<td>AC-3</td>
<td>(O(e \cdot k \cdot t) = O(n^2 \cdot k^3))</td>
</tr>
<tr>
<td>AC-4</td>
<td>(O(e \cdot t) = O(n^2 \cdot k^2))</td>
</tr>
<tr>
<td>improved i-consistency*, (i = 2)</td>
<td>(O(n^2 \cdot k^2))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>i-consistency, (i = 3)</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>i-consistency</td>
<td>(O(n^5 \cdot k^5))</td>
</tr>
<tr>
<td>PC-1</td>
<td>(O(n^5 \cdot t^2 \cdot k) = O(n^5 \cdot k^5))</td>
</tr>
<tr>
<td>PC-2</td>
<td>(O(n^3 \cdot t^2 \cdot k) = O(n^3 \cdot k^5))</td>
</tr>
<tr>
<td>PC-4*</td>
<td>(O(n^3 \cdot t \cdot k) = O(n^3 \cdot k^3))</td>
</tr>
<tr>
<td>improved i-consistency*, (i = 3)</td>
<td>(O(n^3 \cdot k^3))</td>
</tr>
</tbody>
</table>

*not discussed in this lecture

Remark: \(O(n^i \cdot k^i)\) is the optimal (worst-case) runtime for enforcing \(i\)-consistency, i.e., there are (arbitrarily large) constraint networks for which no better algorithm exists.
Extensions of Arc Consistency

- General i-consistency is powerful, but expensive to enforce.
- Usually, arc consistency and path consistency offer a good compromise between pruning power and computational overhead.
- However, they are of limited usefulness for constraints on more than two variables.

Example

Consider a constraint network with three integer variables $v_1, v_2, v_3 \geq 0$ and the constraints $v_3 \geq 13$ and $v_1 + v_2 + v_3 \leq 15$.

We should be able to infer $v_1 \leq 2$ and $v_2 \leq 2$, but regular arc consistency is not enough!

\Rightarrow Consider generalizations of arc consistency to non-binary constraints.
Extensions of Arc Consistency

- General i-consistency is powerful, but expensive to enforce.
- Usually, arc consistency and path consistency offer a good compromise between pruning power and computational overhead.
- However, they are of limited usefulness for constraints on more than two variables.

Example

Consider a constraint network with three integer variables $v_1, v_2, v_3 \geq 0$ and the constraints $v_3 \geq 13$ and $v_1 + v_2 + v_3 \leq 15$.

We should be able to infer $v_1 \leq 2$ and $v_2 \leq 2$, but regular arc consistency is not enough!

→ Consider generalizations of arc consistency to non-binary constraints.
Let $\mathcal{C} = \langle V, D, C \rangle$ be a constraint network.

Definition

(a) A variable v_i is (generalized) arc-consistent relative to a constraint $R \in C$ whose scope contains v_i if for every value $a_i \in D_i$ there exists a tuple $\bar{a} \in R$ with $\bar{a}_i = a_i$.

(b) A constraint $R \in C$ is (generalized) arc-consistent iff all variables in its scope are generalized arc-consistent relative to R.

(c) A network \mathcal{C} is (generalized) arc-consistent if all its constraints are generalized arc-consistent.
Generalized Arc Consistency: Update Rule

To enforce generalized arc consistency, repeatedly apply

$$D_i \leftarrow D_i \cap \pi_i(R_S \Join D_s \{v_i\})$$

Note how this generalizes the usual arc consistency update rule:

$$D_i \leftarrow D_i \cap \pi_i(R_{ij} \Join D_j)$$
Alternatives to Generalized Arc Consistency

- Like arc consistency, generalized arc consistency propagates constraints by considering a single constraint at a time.

- In particular, it considers how assignments to each individual variable are restricted by the values allowed for the other variables participating in the constraint.

- Alternatively, we can consider how each individual variable restricts the values allowed for the other variables participating in the constraint:

 \[R_s \setminus \{v_i\} \leftarrow R_s \setminus \{v_i\} \cap \pi_s \setminus \{v_i\}(R_s \Join D_i) \]

 (relational arc consistency)

- Note that in the case of binary constraints, these two cases are the same, so both approaches are natural generalizations of (binary) arc consistency.
Generalizations of Arc Consistency: Comparison

Generalized AC:
\[D_i \leftarrow D_i \cap \pi_i (R_S \otimes D_S \{v_i}) \]

Relational AC:
\[R_S \{v_i} \leftarrow R_S \{v_i} \cap \pi_S \{v_i} (R_S \otimes D_i) \]

Example
Consider a constraint network with three integer variables \(v_1, v_2, v_3 \geq 0 \) and the constraints \(v_3 \geq 13 \) and \(v_1 + v_2 + v_3 \leq 15 \).

- Generalized AC infers \(v_1 \leq 2, v_2 \leq 2 \).
- Relational AC infers \(v_1 + v_2 \leq 2 \).
Generalizations of Arc Consistency: Comparison

\[AC: \quad D_i \leftarrow D_i \cap \pi_i(R_{ij} \bowtie D_j) \]
\[\text{generalized AC:} \quad D_i \leftarrow D_i \cap \pi_i(R_S \bowtie D_{S\{v_i\}}) \]
\[\text{relational AC:} \quad R_{S\{v_i\}} \leftarrow R_{S\{v_i\}} \cap \pi_{S\{v_i\}}(R_S \bowtie D_i) \]

Example

Consider a constraint network with three integer variables \(v_1, v_2, v_3 \geq 0 \) and the constraints \(v_3 \geq 13 \) and \(v_1 + v_2 + v_3 \leq 15 \).

- Generalized AC infers \(v_1 \leq 2, \ v_2 \leq 2 \).
- Relational AC infers \(v_1 + v_2 \leq 2 \).
Generalizations of Arc Consistency: Comparison

AC: $D_i \leftarrow D_i \cap \pi_i(R_{ij} \bowtie D_j)$

Generalized AC: $D_i \leftarrow D_i \cap \pi_i(R_S \bowtie D_{S\{v_i\}})$

Relational AC: $R_{S\{v_i\}} \leftarrow R_{S\{v_i\}} \cap \pi_{S\{v_i\}}(R_S \bowtie D_i)$

Example

Consider a constraint network with three integer variables $v_1, v_2, v_3 \geq 0$ and the constraints $v_3 \geq 13$ and $v_1 + v_2 + v_3 \leq 15$.

- Generalized AC infers $v_1 \leq 2, v_2 \leq 2$.
- Relational AC infers $v_1 + v_2 \leq 2$.
Generalizations of Arc Consistency: Comparison

\[\text{AC: } D_i \leftarrow D_i \cap \pi_i(R_{ij} \Join D_j) \]
\[\text{generalized AC: } D_i \leftarrow D_i \cap \pi_i(R_S \Join D_{S\{v_i\}}) \]
\[\text{relational AC: } R_S\{v_i\} \leftarrow R_S\{v_i\} \cap \pi_S\{v_i\}(R_S \Join D_i) \]

Example

Consider a constraint network with three integer variables \(v_1, v_2, v_3 \geq 0\) and the constraints \(v_3 \geq 13\) and \(v_1 + v_2 + v_3 \leq 15\).

- Generalized AC infers \(v_1 \leq 2, v_2 \leq 2\).
- Relational AC infers \(v_1 + v_2 \leq 2\).
Rina Dechter.Constraint Processing,Chapter 3, Morgan Kaufmann, 2003

