Enforcing Consistency

- The more explicit and tight constraint networks are, the more restricted is the search space of partial solutions.
- **Idea:** infer at least a limited number of new constraints (by methods called local consistency-enforcing, bounded consistency inference, constraint propagation).
- Consistency-enforcing algorithms aim at assisting search: How can we extend a given partial solution of a small subnetwork to a partial solution of a larger subnetwork?

Arc Consistency

Convention

In what follows we will always assume that the variables of a constraint network appear in some order. Then we can write constraint networks in the form:

$$C = \langle V, D, C \rangle,$$

where D_i is the (possibly empty) domain of variable v_i, and constraints in the form R_{ijk}, where $\{v_i, v_j, v_k\}$ is the scope of the relation.

Further, we assume that C does not contain unary constraints, i.e., constraints in C are always relations with arity $n > 1$. This is possible, since we can define:

$$D_i := \text{dom}(v_i) \cap R_{v_i}$$

and then delete R_{v_i} from the original network. D_i will be referred to as domains, unary constraint, or domain constraint.
Arc Consistency

Let \(C = \langle V, D, C \rangle \) be a constraint network.

Definition

(a) A variable \(v_i \) is arc-consistent relative to variable \(v_j \) if for every value \(a_i \in D_i \) there exists an \(a_j \in D_j \) with \((a_i, a_j) \in R_{ij} \) (in case that \(R_{ij} \) exists in \(C \)).

(b) An "arc constraint" \(R_{ij} \) is arc-consistent if \(v_i \) is arc-consistent relative to \(v_j \) and \(v_j \) is arc-consistent relative to \(v_i \).

(c) A network \(C \) is arc-consistent if all its arc constraints are arc-consistent.

Lemma

Checking whether a network \(C = \langle V, D, C \rangle \) is arc-consistent requires \(e \cdot k^2 \) operations (where \(e \) is the number of its binary constraints and \(k \) is an upper bound of its domain sizes).

Example

Consider a constraint network with two variables \(v_1 \) and \(v_2 \), domains \(D_1 = D_2 = \{1, 2, 3\} \), and the binary constraint expressed by \(v_1 < v_2 \).

Revising a Single Domain

Lemma

The complexity of Revise is \(O(k^2) \), where \(k \) is an upper bound of the domain sizes.

Note: With a simple modification of the Revise algorithm one could improve to \(O(t) \), where \(t \) is the maximal number of tuples occurring in one of the binary constraints in the network.
Enforcing Arc Consistency: AC-1

AC-1(C):

Input: a constraint network \(C = (V, D, C) \)
Output: an equivalent, but arc-consistent network \(C' \)
repeat
 for each arc \(\{v_i, v_j\} \) with \(R_{ij} \in C \)
 Revise\((v_i, v_j) \)
 Revise\((v_j, v_i) \)
 endfor
until no domain is changed

Lemma
Let \(C \) be a constraint network with \(n \) variables, each with a domain of size \(\leq k \), and \(e \) binary constraints.
Applying AC-1 on the network runs in time \(O(e \cdot n \cdot k^3) \).

Proof.
One cycle through all binary constraints takes \(O(e \cdot k^2) \). In the worst case, one cycle just removes one value from one domain. Moreover, there are at most \(n \cdot k \) values. This result in an upper bound of \(O(e \cdot n \cdot k^3) \).

Note: If the input network is already arc-consistent, then AC-1 runs in time \(O(e \cdot k^2) \).

Example: AC-1
Consider a constraint network with three variables \(v_1, v_2, \) and \(v_3 \), domains \(D_1 = D_2 = \{1, 2, 3\} \), and the binary constraints expressed by \(v_1 < v_2 \) and \(v_2 < v_3 \).

AC-3(C):

Input: a constraint network \(C = (V, D, C) \)
Output: an equivalent, but arc-consistent network \(C' \)
for each pair \(v_i, v_j \) that occurs in a constraint \(R_{ij} \)
 queue ← queue \(\cup \{ (v_i, v_j), (v_j, v_i) \} \)
endfor
while queue is not empty
 select and delete \((v_i, v_j) \) from queue
 Revise\((v_i, v_j) \)
 if Revise\((v_i, v_j) \) changes \(D_i \)
 then queue ← queue \(\cup \{ (v_k, v_i) : k \neq i, k \neq j \} \)
 endif
endwhile

Note: Enforcing arc consistency may already be sufficient to show that a constraint network is inconsistent. For example, add the constraint \(v_3 < v_1 \) to the network just considered.
Enforcing Arc Consistency: AC-3

Lemma
Let C be a constraint network with n variables, each with a domain of size $\leq k$, and e binary constraints.
Applying AC-3 on the network runs in time $O(e \cdot k^3)$.

Proof.
Consider a single constraint. Each time, when it is reintroduced into the queue, the domain of one of its variables must have been changed. Since there are at most $2 \cdot k$ values, AC-3 processes each constraint at most $2 \cdot k$ times. Because we have e constraints and processing of each is in time $O(k^2)$, we obtain $O(e \cdot k^3)$.

Note: If the input network is arc-consistent, then AC-3 runs in time $O(e \cdot k^2)$.

Enforcing Arc Consistency: AC-4

To verify that a network is arc-consistent needs $e \cdot k^2$ operations.
The following algorithm AC-4 achieves optimal performance, ... at the cost of "best case performance", which is $\Omega(e \cdot k^2)$.

Idea:
- Associate to each value a_i in the domain of variable v_i the amount of support from variable v_j (i.e., the number of values in D_j that are consistent with a_i);
- Delete a value a_i if it has no support from any other variable

Details:
- $List$: currently unsupported variable-value pairs;
- $counter(x_i, a_i, x_j)$: support for a_i from x_j;
- S_{x_i, a_i}: array pointing to all values in other variables supported by (x_j, a_i);
- M: list of removed values.

AC-4(C):

Input: a constraint network $C = \langle V, D, C \rangle$
Output: an equivalent, but arc-consistent network C'

$M \leftarrow \emptyset$
initialize S_{x_i, a_i} and $counter(x_i, a_i, x_j)$ for all R_{ij}
for each counter
 if $counter(x_i, a_i, x_j) = 0$
 then add (x_i, a_i) to $List$
 endif
endfor
while $List$ is not empty
 choose and remove (x_i, a_i) from $List$, and add it to M
 for each (x_j, a_j) in S_{x_i, a_i}
 decrement $counter(x_j, a_j, x_i)$
 if $counter(x_j, a_j, x_i) = 0$
 then add (x_j, a_j) to $List$
 endif
 endfor
endwhile
Example: AC-4

Consider the same network as for AC-3.

Constraints: \(v_3 \mid v_1 \) and \(v_3 \mid v_2 \).

The initialization steps yield:

\[
\begin{align*}
S_{v_1,2} &= \{(v_1, 2) \} & S_{v_5,5} &= \{(v_2, 5)\} \\
S_{v_2,2} &= \{(v_3, 2)\} & S_{v_5,2} &= \{(v_3, 5)\} \\
S_{v_1,2} &= \{(v_3, 2)\} & S_{v_1,4} &= \{(v_3, 2)\}
\end{align*}
\]

Furthermore:

\[\text{counter}(v_3, 2, v_1) = 2 \quad \text{and} \quad \text{counter}(v_3, 5, v_1) = 0.\]

All other counters are 1 (note: we only need consider counters between connected variables).

\(List = \{(v_3, 5)\} \) and \(M = \emptyset \).

When \((v_3, 5) \) is removed from \(List \) and added to \(M \), we obtain
\(\text{counter}(v_2, 5, v_3) = 0 \) and add \((v_2, 5) \) to \(List \). Then \((v_2, 5) \) is removed from \(List \) and added to \(M \). \((v_2, 5) \) is only supported by \((v_3, 5) \), but that pair is already in \(M \), and we are done.

Beyond Arc Consistency

- Sometimes “enforcing arc consistency” is sufficient for detecting inconsistent (unsolvable) networks; but . . .
- enforcing arc consistency is not complete for deciding consistency of networks; because . . .
- inferences rely only on domain constraints and single binary constraints defined on the domains.

\(\Rightarrow \) We consider further concepts of local consistency
An Example

\[\begin{align*}
\text{red} & \quad \text{blue} \\
\begin{tikzpicture}[node distance=1.5cm, thick, main/.style = {draw}]
 \node (v1) [main] {v_1};
 \node (v2) [main] at (1,0) {v_2};
 \node (v3) [main] at (2,0) {v_3};

 \path
 (v1) edge (v2)
 (v1) edge (v3)
 (v2) edge (v3);
\end{tikzpicture}
\end{align*} \]

Figure: This network is arc-consistent, but not path-consistent.

Revising a Path

Revise-3(\{v_i, v_j\}, v_k):

\textbf{Input:} a binary network \((V, D, C)\) with variables \(v_i, v_j, v_k\)

\textbf{Output:} a revised constraint \(R_{ij}\) path-consistent with \(v_k\)

\textbf{for} each pair \((a_i, a_j) \in R_{ij}\)

\textbf{if} there is no \(a_k \in D_k\) such that \((a_i, a_k) \in R_{ik}\)

\textbf{and} \((a_j, a_k) \in R_{jk}\)

\textbf{then} delete \((a_i, a_j)\) from \(R_{ij}\)

\textbf{endif}

\textbf{endfor}

This is equivalent to applying:

\[R_{ij} \leftarrow R_{ij} \cap \pi_{ij}(R_{ik} \bowtie D_k \bowtie R_{jk}) \]

Revising a Path: Properties

Lemma

When applied to a constraint network \(C\), procedure Revise-3(\{v_i, v_j\}, v_k):

- does not do anything if the pair \(v_i, v_j\) is path-consistent relative to \(v_k\), and otherwise
- transforms the network into an equivalent form
 where the pair \(v_i, v_j\) is path-consistent relative to \(v_k\).

Proof.

From the definition of path consistency.

Revising a Path: Complexity

Lemma

Let \(t\) be the maximal number of tuples in one of the binary constraints, and let \(k\) be an upper bound for the domain sizes.

The worst-case runtime of Revise-3 is \(O(t \cdot k)\).

The best-case runtime of Revise-3 is \(\Omega(t)\).

Note that \(t \leq k^2\), so the complexity of Revise-3 can also be expressed as \(O(k^3)\) in the worst and \(\Omega(k^2)\) in the best case.
Path Consistency

Enforcing Path Consistency: PC-1

PC-1(C):

Input: a constraint network \(C = (V, D, C) \)

Output: an equivalent, path-consistent network \(C' \)

repeat
 for each (ordered) triple of variables \(v_i, v_j, v_k \):
 Revise-3(\{v_i, v_j\}, v_k)
 endfor
until no constraint is changed

Enforcing Path Consistency: Soundness of PC-1

Lemma

When applied to a constraint network \(C \), the PC-1 algorithm computes a path-consistent constraint network which is equivalent to \(C \).

Proof.

Follows directly from the properties of Revise-3.

Enforcing Path Consistency: Complexity of PC-1

Lemma

Let \(C \) be a constraint network with \(n \) variables, each with a domain of size \(\leq k \). Let \(t \) be an upper bound of the number of tuples in one of the binary constraints in \(C \).

The worst-case runtime of PC-1 on this network is \(O(n^5 \cdot t^2 \cdot k) \).

The best-case runtime of PC-1 on this network is \(\Omega(n^3 \cdot t) \).

Because \(t \leq k^2 \), the runtime bounds can also be stated as \(O(n^5 \cdot k^5) \) and \(\Omega(n^3 \cdot k^2) \), respectively.

Enforcing Path Consistency: Complexity of PC-1

Proof (worst case).

In each iteration of the outer loop in PC-1, only one value pair might be deleted from one of the constraints. Hence the number of iterations may be as large as \(O(n^2 \cdot t) \).

Processing a specific triple of constraints (there are \(O(n^3) \) many such triples) costs \(O(t \cdot k) \).

Hence each iteration costs \(O(n^3 \cdot t \cdot k) \).

Proof (best case).

In the best case, the network is already path-consistent and only one iteration through the outer loop is needed. There are \(\Omega(n^3) \) calls to Revise-3, each requiring time \(\Omega(t) \) in the best case.
Enforcing Path Consistency: PC-2

PC-2(\(C\)):

Input: a constraint network \(C = (V, D, C)\)

Output: an equivalent, path-consistent network \(C'\)

\[
\text{queue} \leftarrow \{(i, k, j) : 1 \leq i < j \leq n, 1 \leq k \leq n, k \neq i, k \neq j\}
\]

while queue is not empty

select and delete a triple \((i, k, j)\) from queue

Revise-3({\(v_i, v_j\)}, \(v_k\))

if \(R_{ij}\) has changed **then**

queue \leftarrow queue \(\cup\) \{(l, i, j) : 1 \leq l \leq n, l \neq i, l \neq j\}

endif

endwhile

Enforcing Path Consistency: Soundness of PC-2

Lemma

When applied to a constraint network \(C\), the PC-2 algorithm computes a path-consistent constraint network which is equivalent to \(C\).

Proof.

Equivalence follows directly from the properties of Revise-3.

To see that the remaining constraint network is path-consistent, verify the following invariant:

Before and after each iteration of the while-loop, for each pair \(v_i, v_j\) which is not path-consistent relative to \(v_k\), one of the triples \((i, k, j)\) and \((j, k, i)\) is contained in the queue.

Enforcing Path Consistency: Complexity of PC-2

Lemma

Let \(C\) be a constraint network with \(n\) variables, each with a domain of size \(\leq k\). Let \(t\) be an upper bound of the number of tuples in one of the binary constraints in \(C\).

The worst-case runtime of PC-2 on this network is \(O(n^3 \cdot t^2 \cdot k)\).

The best-case runtime of PC-2 on this network is \(\Omega(n^3 \cdot t)\).

Because \(t \leq k^2\), the runtime bounds can also be stated as \(O(n^3 \cdot k^5)\) and \(\Omega(n^3 \cdot k^2)\), respectively.

Proof (worst case).

There are initially \(O(n^3)\) elements in the queue. Whenever some constraint \(R_{ij}\) is reduced, which can happen at most \(O(n^2 \cdot t)\) many times, \(O(n)\) elements are added to the queue. Thus, the total number of elements added to the queue is bounded by \(O(n^3 \cdot t)\).

Each iteration of the while loop removes an element from the queue, so there are at most \(O(n^3 \cdot t)\) iterations and hence at most \(O(n^3 \cdot t)\) calls to Revise-3, each requiring time \(O(t \cdot k)\), for a total runtime bound of \(O(n^3 \cdot t^2 \cdot k)\).

Proof (best case).

Similar to PC-1.
Higher Levels of i-Consistency

The local consistency notions presented so far can be roughly summarized as follows:

- **Arc consistency**: Every consistent assignment to a single variable can be consistently extended to any second variable.
- **Path consistency**: Every consistent assignment to two variables can be consistently extended to any third variable.

(Side remark: This is a bit of an oversimplification because we ignored k-ary constraints with $k \geq 3$ so far. More on this later.)

It is easy to see that the general idea of local consistency can be readily extended to larger variable sets.

Global Consistency

Definition

- A network C is **strongly i-consistent** if it is j-consistent for each $j \leq i$.
- A network C with n variables is **globally consistent** if it is strongly n-consistent.

Note: Solutions to globally consistent networks can be found without search. (How?)
Arc/Path Consistency vs. 2/3-Consistency

Note:
- 2-consistency coincides with arc consistency.
- For networks containing binary constraints only, 3-consistency coincides with path consistency.
- Each 3-consistent network is path-consistent.
- The converse is not true: For networks with constraints of arity \(\geq 3 \), 3-consistency is stricter than path consistency.

3-Consistency: Examples

Example
\[V = \{v_1, v_2, v_3\} \]
\[D_1 = D_2 = D_3 = \{0, 1\} \]
\[R_{123} = \{(0, 0, 0)\} \]

Example
\[V = \{v_1, v_2, v_3\} \]
\[D_1 = D_2 = D_3 = \{0, 1\} \]
\[R_{123} = \{(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)\} \]
\[R_{12} = R_{13} = R_{23} = \{(0, 1), (1, 0), (1, 1)\} \]

Revise-\(i\)

\[\text{Revise-}i(\{v_1, \ldots, v_{i-1}\}, v_i): \]
\[\text{Input:} \text{ a network } \langle V, D, C \rangle \text{ and a constraint } R_S \]
\[\text{with scope } S = \{v_1, \ldots, v_{i-1}\} \]
\[\text{Output:} \text{ a constraint } R_S \text{ which is } i\text{-consistent rel. to } v_i \]
\[
\text{for each instantiation } \bar{a}_{i-1} \in R_S \\
\text{if there is no } a_i \in D_i \text{ such that } (\bar{a}_{i-1}, a_i) \text{ is consistent} \\
\text{then delete } \bar{a}_{i-1} \text{ from } R_S
\]

\[R_S \text{ can be the universal relation wrt. } S. \]
- If the input network is binary, then Revise-\(i\) runs in time \(O(k^i)\).
- In general, Revise-\(i\) runs in time \(O((2 \cdot k)^i)\), since \(O(2^i)\) constraints must be processed for each tuple.

3-Consistency: Algorithm

\[\text{Enforce } i\text{-Consistency}(C): \]
\[\text{Input:} \text{ A constraint network } C = \langle V, D, C \rangle. \]
\[\text{Output:} \text{ An } i\text{-consistent network equivalent to } C. \]
\[
\text{repeat} \\
\text{for each subset of } S \subseteq V \text{ of size } i - 1 \text{ and each } v_i \notin S \\
\text{Revise-}i(\{v_1, \ldots, v_{i-1}\}, v_i) \\
\text{endfor} \\
\text{until no constraint is changed}
\]

The Revise-\(i\) call can equivalently be stated as follows:
Let \(S \) be the set of all subsets of \(\{v_1, \ldots, v_i\} \) that contain \(v_i \) and occur as scopes of some constraint in the network. Then apply
\[R_S \leftarrow R_S \cap \pi_S(\exists x \in S R_S'). \]
i-Consistency: Complexity

Lemma

Let C be a constraint network with n variables, each with a domain of size $\leq k$. When applied to C, the “Enforce i-Consistency” algorithm runs in time $O(2^i \cdot (n \cdot k)^{2^{i-1}})$.

Proof.

Each call to Revise-i requires time $O((2 \cdot k)^i)$. In each iteration of the outer loop, $O(n^i)$ combinations of S and v_i need to be processed. If only one tuple is removed from one constraint in each iteration up to the final one, the outer loop may need to iterate $O(n^{i-1} \cdot k^{i-1})$ times. This leads to an overall runtime of $O(2^i \cdot (n \cdot k)^{2^{i-1}})$. □

Note: Improvements similar to AC-4 and PC-4 exist and achieve a worst-case runtime of $O(n^i \cdot k^i)$.

Extensions of Arc Consistency

- General i-consistency is powerful, but expensive to enforce.
- Usually, arc consistency and path consistency offer a good compromise between pruning power and computational overhead.
- However, they are of limited usefulness for constraints on more than two variables.

Example

Consider a constraint network with three integer variables $v_1, v_2, v_3 \geq 0$ and the constraints $v_3 \geq 13$ and $v_1 + v_2 + v_3 \leq 15$.

We should be able to infer $v_1 \leq 2$ and $v_2 \leq 2$, but regular arc consistency is not enough!

Consider generalizations of arc consistency to non-binary constraints.

i-Consistency: Comparison to AC-x and PC-x

<table>
<thead>
<tr>
<th>i-consistency, $i = 2$</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC-1</td>
<td>$O(n \cdot k \cdot e \cdot t) = O(n^3 \cdot k^3)$</td>
</tr>
<tr>
<td>AC-3</td>
<td>$O(e \cdot k \cdot t) = O(n^2 \cdot k^3)$</td>
</tr>
<tr>
<td>AC-4</td>
<td>$O(e \cdot t) = O(n^2 \cdot k^2)$</td>
</tr>
<tr>
<td>improved i-consistency*, $i = 2$</td>
<td>$O(n^2 \cdot k^2)$</td>
</tr>
<tr>
<td>i-consistency, $i = 3$</td>
<td>$O(n^3 \cdot k^3)$</td>
</tr>
<tr>
<td>PC-1</td>
<td>$O(n^5 \cdot t^2 \cdot k) = O(n^5 \cdot k^3)$</td>
</tr>
<tr>
<td>PC-2</td>
<td>$O(n^3 \cdot t^2 \cdot k) = O(n^3 \cdot k^5)$</td>
</tr>
<tr>
<td>PC-4*</td>
<td>$O(n^3 \cdot t \cdot k) = O(n^3 \cdot k^3)$</td>
</tr>
<tr>
<td>improved i-consistency*, $i = 3$</td>
<td>$O(n^3 \cdot k^3)$</td>
</tr>
</tbody>
</table>

*not discussed in this lecture

Remark: $O(n^i \cdot k^i)$ is the optimal (worst-case) runtime for enforcing i-consistency, i.e., there are (arbitrarily large) constraint networks for which no better algorithm exists.

Generalized Arc Consistency

Let $C = \langle V, D, C \rangle$ be a constraint network.

Definition

(a) A variable v_i is (generalized) arc-consistent relative to a constraint $R \in C$ whose scope contains v_i if for every value $a_i \in D_i$ there exists a tuple $\bar{a} \in R$ with $\bar{a}_i = a_i$.

(b) A constraint $R \in C$ is (generalized) arc-consistent iff all variables in its scope are generalized arc-consistent relative to R.

(c) A network C is (generalized) arc-consistent if all its constraints are generalized arc-consistent.
Generalized Arc Consistency: Update Rule

To enforce generalized arc consistency, repeatedly apply

\[D_i \leftarrow D_i \cap \pi_i(R_S \triangleright D_{S \setminus \{v_i\}}) \]

Note how this generalizes the usual arc consistency update rule:

\[D_i \leftarrow D_i \cap \pi_i(R_{ij} \triangleright D_j) \]

Alternatives to Generalized Arc Consistency

- Like arc consistency, generalized arc consistency propagates constraints by considering a single constraint at a time.
- In particular, it considers how assignments to each individual variable are restricted by the values allowed for the other variables participating in the constraint.
- Alternatively, we can consider how each individual variable restricts the values allowed for the other variables participating in the constraint:

\[R_S\setminus\{v_i\} \leftarrow R_S\setminus\{v_i\} \cap \pi_S\setminus\{v_i\}(R_S \triangleright D_i) \]

(relation arc consistency)

- Note that in the case of binary constraints, these two cases are the same, so both approaches are natural generalizations of (binary) arc consistency.

Generalizations of Arc Consistency: Comparison

\[
\begin{align*}
\text{AC:} & \quad D_i \leftarrow D_i \cap \pi_i(R_{ij} \triangleright D_j) \\
\text{generalized AC:} & \quad D_i \leftarrow D_i \cap \pi_i(R_S \triangleright D_{S \setminus \{v_i\}}) \\
\text{relational AC:} & \quad R_{S\setminus\{v_i\}} \leftarrow R_{S\setminus\{v_i\}} \cap \pi_{S\setminus\{v_i\}}(R_S \triangleright D_i)
\end{align*}
\]

Example

Consider a constraint network with three integer variables \(v_1, v_2, v_3 \geq 0\) and the constraints \(v_3 \geq 13\) and \(v_1 + v_2 + v_3 \leq 15\).

- Generalized AC infers \(v_1 \leq 2, v_2 \leq 2\).
- Relational AC infers \(v_1 + v_2 \leq 2\).

Literature