
Constraint Satisfaction Problems
Enforcing Consistency

Bernhard Nebel and Stefan Wölfl

based on a slideset by

Malte Helmert and Stefan Wölfl
(summer term 2007)

Albert-Ludwigs-Universität Freiburg

October 26/28, 2009

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 1 / 48

Constraint Satisfaction Problems
October 26/28, 2009 — Enforcing Consistency

Arc Consistency

Path Consistency

Higher Levels of i-Consistency

Extensions of Arc Consistency

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 2 / 48

Enforcing Consistency

I The more explicit and tight constraint networks are, the more
restricted is the search space of partial solutions.

I Idea: infer at least a limited number of new constraints (by methods
called local consistency-enforcing, bounded consistency inference,
constraint propagation).

I Consistency-enforcing algorithms aim at assisting search: How can we
extend a given partial solution of a small subnetwork to a partial
solution of a larger subnetwork?

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 3 / 48

Arc Consistency

Convention

In what follows we will always assume that the variables of a constraint
network appear in some order. Then we can write constraint networks in
the form:

C = 〈V ,D,C 〉 ,

where Di is the (possibly empty) domain of variable vi , and constraints in
the form Rijk , where {vi , vj , vk} is the scope of the relation.
Further, we assume that C does not contain unary constraints, i.e.,
constraints in C are always relations with arity n > 1.
This is possible, since we can define:

Di := dom(vi) ∩ Rvi

and then delete Rvi from the original network.
Di will be referred to as domains, unary constraint, or domain constraint.

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 4 / 48

Arc Consistency

Arc Consistency

Let C = 〈V ,D,C 〉 be a constraint network.

Definition

(a) A variable vi is arc-consistent relative to variable vj if for every value
ai ∈ Di there exists an aj ∈ Dj with (ai , aj) ∈ Rij (in case that Rij

exists in C).

(b) An “arc constraint” Rij is arc-consistent if vi is arc-consistent relative
to vj and vj is arc-consistent relative to vi .

(c) A network C is arc-consistent if all its arc constraints are
arc-consistent.

Lemma
Checking whether a network C = 〈V ,D,C 〉 is arc-consistent requires e · k2

operations (where e is the number of its binary constraints and k is an
upper bound of its domain sizes).

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 5 / 48

Arc Consistency

Example

Consider a constraint network with two variables v1 and v2, domains
D1 = D2 = {1, 2, 3}, and the binary constraint expressed by v1 < v2.

1

2

3

1

2

3

v1 v2

Figure: A network that is not arc-consistent

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 6 / 48

Arc Consistency

Revising a Single Domains

Revise (vi , vj):

Input: a network with two variables vi , vj ,
domains Di and Dj , and constraint Rij

Output: a network with refined Di such that vi

is arc-consistent relative to vj

for each ai ∈ Di

if there is no aj ∈ Dj with (ai , aj) ∈ Rij

then delete ai from Di

endif
endfor

This is equivalent to applying:

Di ← Di ∩ πi (Rij ./ Dj)

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 7 / 48

Arc Consistency

Revising a Single Domain

Lemma
The complexity of Revise is O(k2), where k is an upper bound of the
domain sizes.

Note: With a simple modification of the Revise algorithm one could
improve to O(t), where t is the maximal number of tuples occurring in
one of the binary constraints in the network.

11

22

33

1

2

3

v1 v2

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 8 / 48

Arc Consistency

Enforcing Arc Consistency: AC-1

AC-1(C):

Input: a constraint network C = 〈V ,D,C 〉
Output: an equivalent, but arc-consistent network C′

repeat
for each arc {vi , vj} with Rij ∈ C

Revise(vi , vj)
Revise(vj , vi)

endfor
until no domain is changed

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 9 / 48

Arc Consistency

Enforcing Arc Consistency: AC-1

Lemma
Let C be a constraint network with n variables, each with a domain of size
≤ k, and e binary constraints.
Applying AC-1 on the network runs in time O(e · n · k3).

Proof.
One cycle through all binary constraints takes O(e · k2). In the worst case,
one cycle just removes one value from one domain. Moreover, there are at
most n · k values. This result in an upper bound of O(e · n · k3).

Note: If the input network is already arc-consistent, then AC-1 runs in
time O(e · k2).

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 10 / 48

Arc Consistency

Example: AC-1

Consider a constraint network with three variables v1, v2, and v3, domains
D1 = D2 = {1, 2, 3}, and the binary constraints expressed by v1 < v2 and
v2 < v3.

1

2

3

1

2

3

1

2

3

v1

v2

v3

Note: Enforcing arc consistency may already be sufficient to show that a
constraint network is inconsistent. For example, add the constraint
v3 < v1 to the network just considered.

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 11 / 48

Arc Consistency

Enforcing Arc Consistency: AC-3
Idea: no need to process all constraints if only a few domains have changed.

Operate on a queue of constraints to be processed.

AC-3(C):

Input: a constraint network C = 〈V ,D,C 〉
Output: an equivalent, but arc-consistent network C′

for each pair vi , vj that occurs in a constraint Rij

queue← queue ∪ {(vi , vj), (vj , vi)}
endfor
while queue is not empty

select and delete (vi , vj) from queue
Revise(vi , vj)
if Revise(vi , vj) changes Di

then queue← queue ∪ {(vk , vi) : k 6= i , k 6= j}
endif

endwhile

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 12 / 48

Arc Consistency

Enforcing Arc Consistency: AC-3

Lemma
Let C be a constraint network with n variables, each with a domain of size
≤ k, and e binary constraints.
Applying AC-3 on the network runs in time O(e · k3).

Proof.
Consider a single constraint. Each time, when it is reintroduced into the
queue, the domain of one of its variables must have been changed. Since
there are at most 2 · k values, AC-3 processes each constraint at most 2 · k
times. Because we have e constraints and processing of each is in time
O(k2), we obtain O(e · k3).

Note: If the input network is arc-consistent, then AC-3 runs in time
O(e · k2).

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 13 / 48

Arc Consistency

Enforcing Arc Consistency: AC-3

Example: Consider a constraint network with 3 variables v1, v2, v3 with
domains D1 = {2, 4} and D2 = D3 = {2, 5}, and two constraints expressed
by v3|v1 and v3|v2 (“divides”).

2,4v1 2,4v1 2,4v1 2,5 v22,5 v22,5 v22 v2

2,5v3 2,5v3 2,5v3 2v3 2v3 Queue

(v1, v3)
(v3, v1)
(v2, v3)
(v3, v2)
(v3, v2)
(v2, v3)
(v3, v1)
(v2, v3)
(v2, v3)
(v1, v3)

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 14 / 48

Arc Consistency

Enforcing Arc Consistency: AC-4

I To verify that a network is arc-consistent needs e · k2 operations.

I The following algorithm AC-4 achieves optimal performance, . . .

I at the cost of “best case performance”, which is Ω(e · k2).

Idea:

I Associate to each value ai in the domain of variable vi the amount of
support from variable vj (i.e., the number of values in Dj that are consistent
with ai);

I Delete a value ai if it has no support from any other variable

Details:

I List: currently unsupported variable-value pairs;

I counter(xi , ai , xj): support for ai from xj ;

I Sxj ,aj : array pointing to all values in other variables supported by (xj , aj);

I M: list of removed values.

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 15 / 48

Arc Consistency

Enforcing Arc Consistency: AC-4
AC-4(C):

Input: a constraint network C = 〈V , D, C〉
Output: an equivalent, but arc-consistent network C′

M ← ∅
initialize Sxi ,ai and counter(xi , ai , xj) for all Rij

for each counter
if counter(xi , ai , xj) = 0

then add (xi , ai) to List
endif

endfor
while List is not empty

choose and remove (xi , ai) from List, and add it to M
for each (xj , aj) in Sxi ,ai

decrement counter(xj , aj , xi)
if counter(xj , aj , xi) = 0

then add (xj , aj) to List
endif

endfor
endwhile

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 16 / 48

Arc Consistency

Example: AC-4
Consider the same network as for AC-3.
Constraints: v3|v1 and v3|v2.

2,4v1 2,5 v2

2,5v3

The initialization steps yield:

Sv3,2 = {(v1, 2), (v1, 4), (v2, 2)} Sv3,5 = {(v2, 5)}
Sv2,2 = {(v3, 2)} Sv2,5 = {(v3, 5)}
Sv1,2 = {(v3, 2)} Sv1,4 = {(v3, 2)}

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 17 / 48

Arc Consistency

Example: AC-4
The initialization steps yield:

Sv3,2 = {(v1, 2), (v1, 4), (v2, 2)} Sv3,5 = {(v2, 5)}
Sv2,2 = {(v3, 2)} Sv2,5 = {(v3, 5)}
Sv1,2 = {(v3, 2)} Sv1,4 = {(v3, 2)}

Furthermore:

counter(v3, 2, v1) = 2 and counter(v3, 5, v1) = 0.

All other counters are 1 (note: we only need consider counters between
connected variables).

List = {(v3, 5)} and M = ∅.

When (v3, 5) is removed from List and added to M, we obtain
counter(v2, 5, v3) = 0 and add (v2, 5) to List. Then (v2, 5) is removed
from List and added to M. (v2, 5) is only supported by (v3, 5), but that
pair is already in M, and we are done.

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 18 / 48

Path Consistency

Beyond Arc Consistency

I Sometimes “enforcing arc consistency” is sufficient for detecting
inconsistent (unsolvable) networks; but . . .

I enforcing arc consistency is not complete for deciding consistency of
networks; because . . .

I inferences rely only on domain constraints and single binary
constraints defined on the domains.

⇒ We consider further concepts of local consistency

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 19 / 48

Path Consistency

Path Consistency

Definition

(a) A binary constraint Rij for variables vi , vj is path-consistent relative to
a third variable vk if for every pair (ai , aj) ∈ Rij , there exists an
ak ∈ Dk such that (ai , ak) ∈ Rik and (ak , aj) ∈ Rkj .

(b) A pair of distinct variables vi , vj is path-consistent relative to variable
vk if any instantiation a of {vi , vj} with (a(vi), a(vj)) ∈ Rij can be
extended to an instantiation a′ of {vi , vj , vk} such that
(a′(vi), a

′(vk)) ∈ Rik and (a′(vk), a′(vj)) ∈ Rkj (“extended” means:
a = a′|{vi ,vj}).

(c) A set of distinct variables {vi , vj , vk} is path-consistent if any pair of
these variables is path-consistent relative to the omitted third variable.

(d) A constraint network is path-consistent if all its three-element subsets
of variables are path-consistent.

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 20 / 48

Path Consistency

An Example

red
blue

v1

red
blue

v2

red
blue

v3

6= 6=

6=

Figure: This network is arc-consistent, but not path-consistent.

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 21 / 48

Path Consistency

Revising a Path

Revise-3({vi , vj}, vk):

Input: a binary network 〈V ,D,C 〉 with variables vi , vj , vk

Output: a revised constraint Rij path-consistent with vk

for each pair (ai , aj) ∈ Rij

if there is no ak ∈ Dk such that (ai , ak) ∈ Rik

and (aj , ak) ∈ Rjk

then delete (ai , aj) from Rij

endif
endfor

This is equivalent to applying:

Rij ← Rij ∩ πij(Rik ./ Dk ./ Rkj)

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 22 / 48

Path Consistency

Revising a Path: Properties

Lemma
When applied to a constraint network C, procedure Revise-3({vi , vj}, vk):

I does not do anything if the pair vi , vj is path-consistent relative to
vk , and otherwise

I transforms the network into an equivalent form
where the pair vi , vj is path-consistent relative to vk .

Proof.
From the definition of path consistency.

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 23 / 48

Path Consistency

Revising a Path: Complexity

Lemma
Let t be the maximal number of tuples in one of the binary constraints,
and let k be an upper bound for the domain sizes.

The worst-case runtime of Revise-3 is O(t · k).
The best-case runtime of Revise-3 is Ω(t).

Note that t ≤ k2, so the complexity of Revise-3 can also be expressed as
O(k3) in the worst and Ω(k2) in the best case.

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 24 / 48

Path Consistency

Enforcing Path Consistency: PC-1

PC-1(C):

Input: a constraint network C = 〈V ,D,C 〉
Output: an equivalent, path-consistent network C′

repeat
for each (ordered) triple of variables vi , vj , vk :

Revise-3({vi , vj}, vk)
endfor

until no constraint is changed

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 25 / 48

Path Consistency

Enforcing Path Consistency: Soundness of PC-1

Lemma
When applied to a constraint network C, the PC-1 algorithm computes a
path-consistent constraint network which is equivalent to C.

Proof.
Follows directly from the properties of Revise-3.

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 26 / 48

Path Consistency

Enforcing Path Consistency: Complexity of PC-1

Lemma
Let C be a constraint network with n variables, each with a domain of size
≤ k. Let t be an upper bound of the number of tuples in one of the binary
constraints in C.

The worst-case runtime of PC-1 on this network is O(n5 · t2 · k).
The best-case runtime of PC-1 on this network is Ω(n3 · t).

Because t ≤ k2, the runtime bounds can also be stated as O(n5 · k5) and
Ω(n3 · k2), respectively.

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 27 / 48

Path Consistency

Enforcing Path Consistency: Complexity of PC-1

Proof (worst case).

In each iteration of the outer loop in PC-1, only one value pair might be
deleted from one of the constraints. Hence the number of iterations may
be as large as O(n2 · t).
Processing a specific triple of constraints (there are O(n3) many such
triples) costs O(t · k).
Hence each iteration costs O(n3 · t · k).

Proof (best case).

In the best case, the network is already path-consistent and only one
iteration through the outer loop is needed. There are Ω(n3) calls to
Revise-3, each requiring time Ω(t) in the best case.

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 28 / 48

Path Consistency

Enforcing Path Consistency: PC-2

PC-2(C):

Input: a constraint network C = 〈V ,D,C 〉
Output: an equivalent, path-consistent network C′

queue← {(i , k, j) : 1 ≤ i < j ≤ n, 1 ≤ k ≤ n, k 6= i , k 6= j}
while queue is not empty

select and delete a triple (i , k , j) from queue
Revise-3({vi , vj}, vk)
if Rij has changed then

queue← queue ∪ {(l , i , j), (l , j , i) : 1 ≤ l ≤ n, l 6= i , j}
endif

endwhile

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 29 / 48

Path Consistency

Enforcing Path Consistency: Soundness of PC-2

Lemma
When applied to a constraint network C, the PC-2 algorithm computes a
path-consistent constraint network which is equivalent to C.

Proof.
Equivalence follows directly from the properties of Revise-3.
To see that the remaining constraint network is path-consistent, verify the
following invariant:

Before and after each iteration of the while-loop, for each pair
vi , vj which is not path-consistent relative to vk , one of the
triples (i , k , j) and (j , k , i) is contained in the queue.

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 30 / 48

Path Consistency

Enforcing Path Consistency: Complexity of PC-2

Lemma
Let C be a constraint network with n variables, each with a domain of size
≤ k. Let t be an upper bound of the number of tuples in one of the binary
constraints in C.

The worst-case runtime of PC-2 on this network is O(n3 · t2 · k).
The best-case runtime of PC-2 on this network is Ω(n3 · t).

Because t ≤ k2, the runtime bounds can also be stated as O(n3 · k5) and
Ω(n3 · k2), respectively.

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 31 / 48

Path Consistency

Enforcing Path Consistency: Complexity of PC-2

Proof (worst case).

There are initially O(n3) elements in the queue. Whenever some
constraint Rij is reduced, which can happen at most O(n2 · t) many times,
O(n) elements are added to the queue. Thus, the total number of
elements added to the queue is bounded by O(n3 · t).
Each iteration of the while loop removes an element from the queue, so
there are at most O(n3 · t) iterations and hence at most O(n3 · t) calls to
Revise-3, each requiring time O(t · k), for a total runtime bound of
O(n3 · t2 · k).

Proof (best case).

Similar to PC-1.

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 32 / 48

Path Consistency

Arc and Path Consistency: Overview

Worst Case Best Case

AC-1 O(n · k · e · t) Ω(e · k)

AC-3 O(e · k · t) Ω(e · k)

AC-4 O(e · t) Ω(e · k2)

PC-1 O(n5 · t2 · k) Ω(n3 · t)

PC-2 O(n3 · t2 · k) Ω(n3 · t)

PC-4∗ O(n3 · t · k) Ω(n3 · t · k)
∗not discussed in this lecture

Remark: O(n3 · t · k) is the optimal (worst-case) runtime for enforcing
path consistency, i.e., there are (arbitrarily large) constraint networks for
which no better algorithm exists.

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 33 / 48

i-Consistency

Higher Levels of i -Consistency

The local consistency notions presented so far can be roughly summarized
as follows:

I Arc consistency: Every consistent assignment to a single variable can
be consistently extended to any second variable.

I Path consistency: Every consistent assignment to two variables can
be consistently extended to any third variable.

(Side remark: This is a bit of an oversimplification because we ignored
k-ary constraints with k ≥ 3 so far. More on this later.)

It is easy to see that the general idea of local consistency can be readily
extended to larger variable sets.

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 34 / 48

i-Consistency

i -Consistency

Let C = 〈V ,D,C 〉 be a constraint network.

Definition

(a) A relation RS ∈ C with scope S of size i − 1 is i-consistent relative to
variable vi /∈ S if for every tuple t ∈ RS , there exists an a ∈ Di such
that (t, a) is consistent.

(b) A constraint network is i-consistent if any consistent instantiation of
i − 1 (distinct) variables v1, . . . , vi−1 of the network can be extended
to a consistent instantiation of the variables v1, . . . , vi , where vi is any
variable in V distinct from v1, . . . , vi−1.

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 35 / 48

i-Consistency

Global Consistency

Definition

I A network C is strongly i-consistent if it is j-consistent for each j ≤ i .

I A network C with n variables is globally consistent if it is strongly
n-consistent.

Note: Solutions to globally consistent networks can be found without
search. (How?)

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 36 / 48

i-Consistency

Arc/Path Consistency vs. 2/3-Consistency

Note:

I 2-consistency coincides with arc consistency.

I For networks containing binary constraints only, 3-consistency
coincides with path consistency.

I Each 3-consistent network is path-consistent.

I The converse is not true: For networks with constraints of arity ≥ 3,
3-consistency is stricter than path consistency.

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 37 / 48

i-Consistency

3-Consistency: Examples

Example

V = {v1, v2, v3}
D1 = D2 = D3 = {0, 1}
R123 = {(0, 0, 0)}

Example

V = {v1, v2, v3}
D1 = D2 = D3 = {0, 1}
R123 = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}
R12 = R13 = R23 = {(0, 1), (1, 0), (1, 1)}

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 38 / 48

i-Consistency

Revise-i
Revise-i({v1, . . . , vi−1}, vi):

Input: a network 〈V ,D,C 〉 and a constraint RS

with scope S = {v1, . . . , vi−1}
Output: a constraint RS which is i-consistent rel. to vi

for each instantiation ai−1 ∈ RS

if there is no ai ∈ Di such that (ai−1, ai)
is consistent
then delete ai−1 from RS

endif
endfor

I RS can be the universal relation wrt. S .

I If the input network is binary, then Revise-i runs in time O(k i).

I In general, Revise-i runs in time O((2 · k)i), since O(2i) constraints must be
processed for each tuple.

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 39 / 48

i-Consistency

i -Consistency: Algorithm

Enforce i-Consistency(C):

Input: A constraint network C = 〈V ,D,C 〉.
Output: An i-consistent network equivalent to C.

repeat
for each subset of S ⊆ V of size i − 1 and each vi /∈ S

Revise-i({v1, . . . , vi−1}, vi)
endfor

until no constraint is changed

The Revise-i call can equivalently be stated as follows:
Let S be the set of all subsets of {v1, . . . , vi} that contain vi and occur as scopes
of some constraint in the network. Then apply

RS ← RS ∩ πS(./S′∈S RS′).

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 40 / 48

i-Consistency

i -Consistency: Complexity

Lemma
Let C be a constraint network with n variables, each with a domain of size
≤ k. When applied to C, the “Enforce i-Consistency” algorithm runs in
time O(2i · (n · k)2i−1).

Proof.
Each call to Revise-i requires time O((2 · k)i). In each iteration of the
outer loop, O(ni) combinations of S and vi need to be processed. If only
one tuple is removed from one constraint in each iteration up to the final
one, the outer loop may need to iterate O(ni−1 · k i−1) times.
This leads to an overall runtime of O(2i · (n · k)2i−1).

Note: Improvements similar to AC-4 and PC-4 exist and achieve a
worst-case runtime of O(ni · k i).

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 41 / 48

i-Consistency

i -Consistency: Comparison to AC-x and PC-x

Worst Case

i-consistency, i = 2 O(n3 · k3)
AC-1 O(n · k · e · t) = O(n3 · k3)
AC-3 O(e · k · t) = O(n2 · k3)
AC-4 O(e · t) = O(n2 · k2)

improved i-consistency∗, i = 2 O(n2 · k2)

i-consistency, i = 3 O(n5 · k5)
PC-1 O(n5 · t2 · k) = O(n5 · k5)
PC-2 O(n3 · t2 · k) = O(n3 · k5)
PC-4∗ O(n3 · t · k) = O(n3 · k3)

improved i-consistency∗, i = 3 O(n3 · k3)
∗not discussed in this lecture

Remark: O(ni · k i) is the optimal (worst-case) runtime for enforcing
i-consistency, i.e., there are (arbitrarily large) constraint networks for
which no better algorithm exists.

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 42 / 48

AC Extensions

Extensions of Arc Consistency

I General i-consistency is powerful, but expensive to enforce.

I Usually, arc consistency and path consistency offer a good
compromise between pruning power and computational overhead.

I However, they are of limited usefulness for constraints on more than
two variables.

Example

Consider a constraint network with three integer variables v1, v2, v3 ≥ 0
and the constraints v3 ≥ 13 and v1 + v2 + v3 ≤ 15.
We should be able to infer v1 ≤ 2 and v2 ≤ 2, but regular arc consistency
is not enough!

 Consider generalizations of arc consistency to non-binary constraints.

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 43 / 48

AC Extensions

Generalized Arc Consistency

Let C = 〈V ,D,C 〉 be a constraint network.

Definition

(a) A variable vi is (generalized) arc-consistent relative to a constraint
R ∈ C whose scope contains vi if for every value ai ∈ Di there exists a
tuple a ∈ R with ai = ai .

(b) A constraint R ∈ C is (generalized) arc-consistent iff all variables in its
scope are generalized arc-consistent relative to R.

(c) A network C is (generalized) arc-consistent if all its constraints are
generalized arc-consistent.

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 44 / 48

AC Extensions

Generalized Arc Consistency: Update Rule

To enforce generalized arc consistency, repeatedly apply

Di ← Di ∩ πi (RS ./ DS\{vi})

Note how this generalizes the usual arc consistency update rule:

Di ← Di ∩ πi (Rij ./ Dj)

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 45 / 48

AC Extensions

Alternatives to Generalized Arc Consistency

I Like arc consistency, generalized arc consistency propagates
constraints by considering a single constraint at a time.

I In particular, it considers how assignments to each individual variable
are restricted by the values allowed for the other variables
participating in the constraint.

I Alternatively, we can consider how each individual variable restricts
the values allowed for the other variables participating in the
constraint:

RS\{vi} ← RS\{vi} ∩ πS\{vi}(RS ./ Di)

(relational arc consistency)

I Note that in the case of binary constraints, these two cases are the
same, so both approaches are natural generalizations of (binary) arc
consistency.

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 46 / 48

AC Extensions

Generalizations of Arc Consistency: Comparison

AC: Di ← Di ∩ πi (Rij ./ Dj)

generalized AC: Di ← Di ∩ πi (RS ./ DS\{vi})

relational AC: RS\{vi} ← RS\{vi} ∩ πS\{vi}(RS ./ Di)

Example

Consider a constraint network with three integer variables v1, v2, v3 ≥ 0
and the constraints v3 ≥ 13 and v1 + v2 + v3 ≤ 15.

I Generalized AC infers v1 ≤ 2, v2 ≤ 2.

I Relational AC infers v1 + v2 ≤ 2.

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 47 / 48

AC Extensions

Literature

Rina Dechter.
Constraint Processing,
Chapter 3, Morgan Kaufmann, 2003

Alan K. Mackworth.
Constraint satisfaction.
In S. C. Shapiro, editor, Encyclopedia of Artificial Intelligence, pages
205–211. Wiley, Chichester, England, 1987.

Alan K. Mackworth.
Consistency in networks of relations.
Artificial Intelligence, 8:99–118, 1977.

Ugo Montanari.
Networks of constraints: fundamental properties and applications to picture
processing.
Information Science, 7:95–132, 1974.

Nebel and Wölfl (Universität Freiburg) Constraint Satisfaction Problems October 26/28, 2009 48 / 48

	Arc Consistency
	Path Consistency
	Higher Levels of i-Consistency
	Extensions of Arc Consistency

