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Constraint Networks

Definition

A constraint network is a triple

C = 〈V,dom, C〉
where:

V is a non-empty and finite set of variables.

dom is a function that assigns a non-empty (value) set
(domain) to each variable v ∈ V .

C is a set of relations over variables of V (constraints),
i.e., each constraint is a relation Rv1,...,vn over some
variables v1, . . . , vn in V .

The set of scopes {S1, . . . St} is called network scheme.
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Example: 4-Queens Problem

Consider variables v1, . . . , v4 (associated to the columns of a
4× 4-chess board).
Each of these variables vi has as its domain {1, . . . , 4} (conceived of
as the row positions of a queen in column i).

v1 v2 v3 v4
1

2

3

4

Define then binary constraints (thus en-
coding possible queen movements):

Rv1,v2 := {(1, 3), (1, 4), (2, 4), (3, 1),
(4, 1), (4, 2)}

Rv1,v3 := {(1, 2), (1, 4), (2, 1), (2, 3),
(3, 2), (3, 4), (4, 1), (4, 3)}

. . .
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Graph Representation of Binary Constraint
Networks

Constraint networks with binary constraints only can be
represented by a directed labelled graph
(even: an undirected graph if all constraints are symmetric).

Example: The constraint network defined by:
V = {v1, v2, v3},
dom(vi) = {red, blue} (i = 1..3),
C = {((v1, v2), 6=), ((v2, v1), 6=), ((v1, v3), 6=)}

red
blue

v1

red
blue

v2
red
blue

v3

6=
6=

6=
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Graph Representation of Binary Constraint
Networks

Constraint networks with binary constraints only can be
represented by a directed labelled graph
(even: an undirected graph if all constraints are symmetric).

Example: The constraint network defined by:
V = {v1, v2, v3},
dom(vi) = {red, blue} (i = 1..3),
C = {((v1, v2), 6=), ((v2, v1), 6=), ((v1, v3), 6=)}

red
blue

v1

red
blue

v2
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Solvability of Networks

Definition

A constraint network is solvable (or: satisfiable) if there exists
an assignment

a : V →
⋃
v∈V

dom(v)

such that

(a) a(v) ∈ dom(v), for each v ∈ V ,

(b) (a(v1), . . . , a(vn)) ∈ Rv1,...,vn for all constraints Rv1,...,vn .

A solution of a constraint network is an assignment that solves
the network.
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Instantiation, Partial Solution

Let C = 〈V,dom, C〉 be a constraint network.

Definition

(a) An instantiation of a subset V ′ of V is an assignment
a : V ′ →

⋃
v∈V ′ dom(vi) with a(vi) ∈ dom(vi).

(b) An instantiation a is a partial solution if a satisfies each
constraint with scope S ⊆ V ′.
We also say: a is consistent relative to C.

(c) For an instantiation a of a subset V ′ = {v1, . . . , vn} and a
constraint R with scope S ⊆ V ′, let

a[S] := (a(v1), . . . , a(vn)).

Hence a solution is an instantiation of all variables in V that is
consistent relative to C.
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Instantiation, Solution

Note:

(a) An instantiation of variables in V ′ ⊆ V , a, is a partial
solution (consistent relative to C) iff

a[S] ∈ R, for each constraint R with scope S ⊆ V ′.
(b) Not every partial solution is part of a (full) solution, i.e.,

there may be partial solutions of a constraint network that
cannot be extended to a solution. For the 4-queens
problem, for example,

v1 v2 v3 v4

1 q

2 q

3

4 q
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Normalized Constraint Networks

Let C = 〈V,dom, C〉 be a constraint network.
According to our definition it is possible that C contains
constraints

Rvi1
,...,vik

and Svj1
,...,vjk

where (j1, . . . , jk) is just a permutation of (i1, . . . , ik).

Without changing the set of solutions, we can simplify the
network by deleting Svj1

,...,vjk
from C and rewriting Rvi1

,...,vik

as follows:

Rvi1
,...,vik

← Rvi1
,...,vik

∩ πvi1
,...,vik

(Svj1
,...,vjk

).

Given a fixed order on the set of variables V , we can
systematically delete-and-refine constraints. The result is a
constraint network that contains at most one constraint for
each subset of variables. This network is referred to as a
normalized constraint network.
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Normalized Constraint Networks

Let C = 〈V,dom, C〉 be a constraint network.
According to our definition it is possible that C contains
constraints

Rvi1
,...,vik

and Svj1
,...,vjk

where (j1, . . . , jk) is just a permutation of (i1, . . . , ik).

Without changing the set of solutions, we can simplify the
network by deleting Svj1

,...,vjk
from C and rewriting Rvi1

,...,vik

as follows:

Rvi1
,...,vik

← Rvi1
,...,vik

∩ πvi1
,...,vik

(Svj1
,...,vjk

).

Given a fixed order on the set of variables V , we can
systematically delete-and-refine constraints. The result is a
constraint network that contains at most one constraint for
each subset of variables. This network is referred to as a
normalized constraint network.
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Normalized Constraint Networks

Let C = 〈V,dom, C〉 be a constraint network.
According to our definition it is possible that C contains
constraints

Rvi1
,...,vik

and Svj1
,...,vjk

where (j1, . . . , jk) is just a permutation of (i1, . . . , ik).

Without changing the set of solutions, we can simplify the
network by deleting Svj1

,...,vjk
from C and rewriting Rvi1

,...,vik

as follows:

Rvi1
,...,vik

← Rvi1
,...,vik

∩ πvi1
,...,vik

(Svj1
,...,vjk

).

Given a fixed order on the set of variables V , we can
systematically delete-and-refine constraints. The result is a
constraint network that contains at most one constraint for
each subset of variables. This network is referred to as a
normalized constraint network.
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Equivalence

Let C and C′ be constraint networks on the same set of
variables and on the same domains for each variable.

Definition

C and C′ are equivalent if each solution of C is a solution of C′,
and vice versa.

Example:
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Tightness

Let C and C′ be (normalized) constraint networks on the same
set of variables and on the same domains for each variable.

Definition

C is as tight as C′ if for each constraint R of C with scope S,

(a) C′ has no constraint with scope S, or

(b) R ⊆ R′, where R′ is the constraint of C′ with scope S.

Notes:

Constraint tightness has a large influence on the solubility
of constraint networks.

Be warned: different concepts of tightness can be found in
the literature

Here: Tightness does not account for comparing
constraints with different arities
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Intersection of Networks

Let C and C′ be constraint networks as above.

Definition

The intersection of C and C′, C ∩ C′, is the network defined by
intersecting for each scope S of constraints RS ∈ C and
R′S ∈ C ′ the respective relations, i.e.,

R′′S := RS ∩R′S .

If for a scope S only one of the networks contains a constraint,
then we set:

R′′S := RS (or := R′S , resp.)

Lemma

If C and C′ are equivalent networks, then C ∩ C′ is equivalent to
both networks and as tight as both networks.
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Minimal Network

Definition

Let C0 be a constraint network and let C1 . . . , Ck be the set of
all constraint networks (defined on the same set of variables
and the same domains) that are equivalent to C0.⋂

1≤i≤k

Ci

is the minimal network of C0.

Lemma

The minimal network is equivalent to and as tight as all the
constraint networks Ci. There is no network equivalent to C0
that is tighter than the minimal network.
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Projecting Relations

Let RS be a relation with scope S = {v1, . . . , vk} (we can
think of RS as a constraint network . . . ).

Definition

The projection network of RS , Proj(RS), is the constraint
network defined by:

V := S

dom(vi) := πvi(RS)
Rvi,vj := πvi,vj (RS)

Note: The projection network is an upper approximation by
binary networks in the following sense:

Lemma

Any solution of RS (as a network) defines a solution of
Proj(RS).
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Binary Representation

Definition

A relation RS with scope S has a binary representation if the
relation (conceived of as a network) is equivalent to Proj(RS).

From the fact that a relation has a binary representation, it
does not follow that all its projections have binary
representations as well (Exercise!).

Definition

A relation RS with scope S is binary decomposable if the
relation itself and all its projections to subsets of S (with at
least 3 elements) have a binary representation.
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Primal Constraint Graphs

Let C = 〈V,dom, C〉 be a (normalized) constraint network.

Definition

The primal constraint graph of a network C = 〈V,dom, C〉 is
the undirected graph

GC := 〈V,EC〉
where

{u, v} ∈ EC ⇐⇒ {u, v} is a subset of the scope
of some constraint in C.
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Primal Constraint Graph: Example

Consider a constraint network with variables v1, . . . , v5 and two
ternary constraints Rv1,v2,v3 and Sv3,v4,v5 .

Then the primal constraint graph of the network has the form:

v1 v2

v3

v4 v5

Absence of an edge between two variables/nodes means that
there is no direct constraint between these variables.
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Dual Constraint Graphs

Definition

The dual constraint graph of a constraint network
C = 〈V,dom, C〉 is the labeled graph

DC :=
〈
V ′, EC , l

〉
with

X ∈ V ′ ⇐⇒ X is the scope of some constraint in C
{X,Y } ∈ EC ⇐⇒ X ∩ Y 6= ∅

l : EC → 2V , {X,Y } 7→ X ∩ Y

In the example above, the dual constraint graph is:

v1, v2, v3 v3, v4, v5
v3
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Constraint Hypergraph

Definition

The constraint hypergraph of a constraint network
C = 〈V,dom, C〉 is the hypergraph

HC := 〈V,EC〉

with

X ∈ EC ⇐⇒ X is the scope of some constraint in C.

In the example above (constraint network with variables
v1, . . . , v5 and two ternary constraints Rv1,v2,v3 and Sv3,v4,v5)
the hyperedges of the constraint hypergraph are:

EC =
{
{v1, v2, v3}, {v3, v4, v5}

}
.
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Simple Solution Strategy: Guess and Check

Backtracking: search systematically for consistent partial
instantiations in a depth-first manner:

forward phase: extend the current partial solution by
assigning a consistent value to some new variable (if
possible)

backward phase: if no consistent instantiation for the
current variable exists, we return to the previous variable.
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Backtracking Algorithm

Backtracking(C, a):

Input: a constraint network C = 〈V,D,C〉 and
a partial assignment a of C
(e.g., the empty instantiation a = { })

Output: a solution of C or “inconsistent”

if a is not consistent with C:
return “inconsistent”

if a is defined for all variables in V :
return a

select some variable vi for which a is not defined
for each value x from Di:

a′ := a ∪ {vi 7→ x}
a′′ ← Backtracking(C, a′)
if a′′ is not “inconsistent”:

return a′′

return “inconsistent”
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