Constraint Satisfaction Problems Constraint Networks

Bernhard Nebel and Stefan Wölfl

based on a slideset by Malte Helmert and Stefan Wölfl (summer term 2007)

Albert-Ludwigs-Universität Freiburg

October 26, 2009

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

October 26, 2009

1 / 22

Constraint Networks

Constraint Networks

Definition

A constraint network is a triple

$$C = \langle V, \text{dom}, C \rangle$$

where:

- ▶ *V* is a non-empty and finite set of variables.
- ▶ dom is a function that assigns a non-empty (value) set (domain) to each variable $v \in V$.
- ► C is a set of relations over variables of V (constraints), i.e., each constraint is a relation $R_{v_1,...,v_n}$ over some variables $v_1,...,v_n$ in V.

The set of scopes $\{S_1, \dots S_t\}$ is called network scheme.

Constraint Satisfaction Problems

October 26, 2009 — Constraint Networks

Constraint Networks

Solution

Normalized Constraint Networks

Deduction

Minimal Networks

Projection Networks

Constraint Networks and Graphs

Primal Constraint Graphs

Dual Constraint Graph

Constraint Hypergraph

Solving Constraint Networks

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

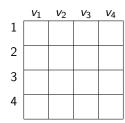
October 26, 2009

2 / 22

Constraint Networks

Example: 4-Queens Problem

Consider variables v_1, \ldots, v_4 (associated to the columns of a 4 × 4-chess board). Each of these variables v_i has as its domain $\{1, \ldots, 4\}$ (conceived of as the row positions of a queen in column i).



Define then binary constraints (thus encoding possible queen movements):

$$\begin{split} R_{\nu_1,\nu_2} &:= \{(1,3),(1,4),(2,4),(3,1),\\ &(4,1),(4,2)\} \\ R_{\nu_1,\nu_3} &:= \{(1,2),(1,4),(2,1),(2,3),\\ &(3,2),(3,4),(4,1),(4,3)\} \end{split}$$

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

October 26, 2009

Constraint Networks

Graph Representation of Binary Constraint Networks

Constraint networks with binary constraints only can be represented by a directed labelled graph

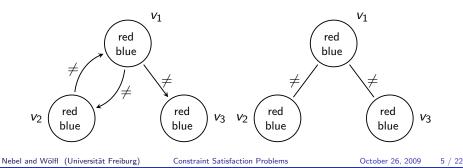
(even: an undirected graph if all constraints are symmetric).

Example: The constraint network defined by:

$$V = \{v_1, v_2, v_3\},$$

$$dom(v_i) = \{ red, blue \} \ (i = 1..3),$$

$$C = \{((v_1, v_2), \neq), ((v_2, v_1), \neq), ((v_1, v_3), \neq)\}$$



Constraint Networks Solution

Instantiation, Partial Solution

Let $C = \langle V, \text{dom}, C \rangle$ be a constraint network.

Definition

- (a) An instantiation of a subset V' of V is an assignment $a: V' \to \bigcup_{v \in V'} \operatorname{dom}(v_i)$ with $a(v_i) \in \operatorname{dom}(v_i)$.
- (b) An instantiation a is a partial solution if a satisfies each constraint with scope $S \subseteq V'$.

We also say: a is consistent relative to C.

(c) For an instantiation a of a subset $V' = \{v_1, \dots, v_n\}$ and a constraint R with scope $S \subseteq V'$, let

$$\overline{a}[S] := (a(v_1), \ldots, a(v_n)).$$

Hence a solution is an instantiation of all variables in V that is consistent relative to C.

Constraint Networks Solution

Solvability of Networks

Definition

A constraint network is solvable (or: satisfiable) if there exists an assignment

$$a\colon V\to \bigcup_{v\in V}\mathrm{dom}(v)$$

such that

- (a) $a(v) \in dom(v)$, for each $v \in V$,
- (b) $(a(v_1), \ldots, a(v_n)) \in R_{v_1, \ldots, v_n}$ for all constraints R_{v_1, \ldots, v_n} .

A solution of a constraint network is an assignment that solves the network.

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

October 26, 2009

Constraint Networks Solution

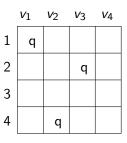
Instantiation, Solution

Note:

(a) An instantiation of variables in $V'\subseteq V$, a, is a partial solution (consistent relative to $\mathcal C$) iff

 $\overline{a}[S] \in R$, for each constraint R with scope $S \subseteq V'$.

(b) Not every partial solution is part of a (full) solution, i.e., there may be partial solutions of a constraint network that cannot be extended to a solution. For the 4-queens problem, for example,



Normalized Constraint Networks

Let $C = \langle V, \text{dom}, C \rangle$ be a constraint network. According to our definition it is possible that C contains constraints

$$R_{v_{i_1},\dots,v_{i_k}}$$
 and $S_{v_{j_1},\dots,v_{j_k}}$

where (j_1, \ldots, j_k) is just a permutation of (i_1, \ldots, i_k) .

Without changing the set of solutions, we can simplify the network by deleting $S_{v_i,...,v_{i_k}}$ from C and rewriting $R_{v_i,...,v_{i_k}}$ as follows:

$$R_{v_{i_1},...,v_{i_k}} \leftarrow R_{v_{i_1},...,v_{i_k}} \cap \pi_{v_{i_1},...,v_{i_k}}(S_{v_{j_1},...,v_{j_k}}).$$

Given a fixed order on the set of variables V, we can systematically delete-and-refine constraints. The result is a constraint network that contains at most one constraint for each subset of variables. This network is referred to as a normalized constraint network.

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

October 26, 2009

9 / 22

Constraint Networks Deduction

Tightness

Let C and C' be (normalized) constraint networks on the same set of variables and on the same domains for each variable.

Definition

 \mathcal{C} is as tight as \mathcal{C}' if for each constraint R of \mathcal{C} with scope S,

- (a) C' has no constraint with scope S, or
- (b) $R \subseteq R'$, where R' is the constraint of C' with scope S.

Notes:

- ► Constraint tightness has a large influence on the solubility of constraint networks.
- ▶ Be warned: different concepts of tightness can be found in the literature
- ► Here: Tightness does not account for comparing constraints with different arities

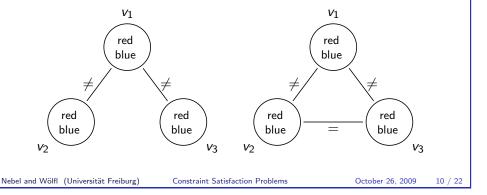
Equivalence

Let \mathcal{C} and \mathcal{C}' be constraint networks on the same set of variables and on the same domains for each variable.

Definition

 $\mathcal C$ and $\mathcal C'$ are equivalent if each solution of $\mathcal C$ is a solution of $\mathcal C'$, and vice versa.

Example:



Constraint Networks Deduct

Intersection of Networks

Let $\mathcal C$ and $\mathcal C'$ be constraint networks as above.

Definition

The intersection of C and C', $C \cap C'$, is the network defined by intersecting for each scope S of constraints $R_S \in C$ and $R'_S \in C'$ the respective relations, i.e.,

$$R_S'':=R_S\cap R_S'$$
.

If for a scope S only one of the networks contains a constraint, then we set:

 $R_S'':=R_S$ (or $:=R_S'$, resp.)

Lemma

If C and C' are equivalent networks, then $C \cap C'$ is equivalent to both networks and as tight as both networks.

Minimal Network

Definition

Let C_0 be a constraint network and let C_1, \ldots, C_k be the set of *all* constraint networks (defined on the same set of variables and the same domains) that are equivalent to C_0 .

$$\bigcap_{1\leq i\leq k}\mathcal{C}_i$$

is the minimal network of C_0 .

Lemma

The minimal network is equivalent to and as tight as all the constraint networks C_i . There is no network equivalent to C_0 that is tighter than the minimal network.

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

October 26, 2009

13 / 22

Projection Networks

Binary Representation

Definition

A relation R_S with scope S has a binary representation if the relation (conceived of as a network) is equivalent to $Proj(R_S)$.

From the fact that a relation has a binary representation, it does not follow that all its projections have binary representations as well (Exercise!).

Definition

A relation R_S with scope S is binary decomposable if the relation itself and all its projections to subsets of S (with at least 3 elements) have a binary representation.

Projection Networks

Projecting Relations

Let R_S be a relation with scope $S = \{v_1, \dots, v_k\}$ (we can think of R_S as a constraint network ...).

Definition

The projection network of R_S , $Proj(R_S)$, is the constraint network defined by:

$$V:=S$$

$$\mathrm{dom}(v_i):=\pi_{v_i}(R_S)$$
 $R_{v_i,v_i}:=\pi_{v_i,v_i}(R_S)$

Note: The projection network is an upper approximation by binary networks in the following sense:

Lemma

Any solution of R_S (as a network) defines a solution of $Proj(R_S)$.

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

October 26, 2009

14 / 22

Constraint Networks and Graphs Primal Constraint Graphs

Primal Constraint Graphs

Let $C = \langle V, \text{dom}, C \rangle$ be a (normalized) constraint network.

Definition

The primal constraint graph of a network $\mathcal{C} = \langle V, \text{dom}, \mathcal{C} \rangle$ is the undirected graph

 $G_{\mathcal{C}}:=\langle V,E_{\mathcal{C}}\rangle$

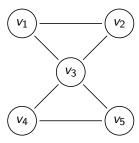
where

 $\{u,v\} \in E_{\mathcal{C}} \iff \{u,v\}$ is a subset of the scope of some constraint in \mathcal{C} .

Primal Constraint Graph: Example

Consider a constraint network with variables v_1, \ldots, v_5 and two ternary constraints R_{v_1,v_2,v_3} and S_{v_3,v_4,v_5} .

Then the primal constraint graph of the network has the form:



Absence of an edge between two variables/nodes means that there is no direct constraint between these variables.

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

October 26, 2009

17 / 22

Constraint Networks and Graphs Constraint Hypergraph

Constraint Hypergraph

Definition

The constraint hypergraph of a constraint network $\mathcal{C} = \langle V, \text{dom}, \mathcal{C} \rangle$ is the hypergraph

$$H_{\mathcal{C}}:=\langle V, E_{\mathcal{C}} \rangle$$

with

 $X \in E_{\mathcal{C}} \iff X$ is the scope of some constraint in \mathcal{C} .

In the example above (constraint network with variables v_1, \ldots, v_5 and two ternary constraints R_{v_1,v_2,v_3} and S_{v_3,v_4,v_5}) the hyperedges of the constraint hypergraph are:

$$E_{\mathcal{C}} = \{\{v_1, v_2, v_3\}, \{v_3, v_4, v_5\}\}.$$

Dual Constraint Graphs

Definition

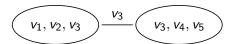
The dual constraint graph of a constraint network $\mathcal{C} = \langle V, \text{dom}, \mathcal{C} \rangle$ is the labeled graph

$$D_{\mathcal{C}} := \langle V', E_{\mathcal{C}}, I \rangle$$

with

$$X \in V' \iff X$$
 is the scope of some constraint in \mathcal{C} $\{X,Y\} \in E_{\mathcal{C}} \iff X \cap Y \neq \emptyset$ $I: E_{\mathcal{C}} \to 2^V, \quad \{X,Y\} \mapsto X \cap Y$

In the example above, the dual constraint graph is:



Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

October 26, 2009

18 / 22

Solving Constraint Networks

Simple Solution Strategy: Guess and Check

Backtracking: search systematically for consistent partial instantiations in a depth-first manner:

- ▶ forward phase: extend the current partial solution by assigning a consistent value to some new variable (if possible)
- **backward** phase: if no consistent instantiation for the current variable exists, we return to the previous variable.

Solving Constraint Networks

Backtracking Algorithm

```
Backtracking(C, a):
```

```
Input: a constraint network C = \langle V, D, C \rangle and
           a partial assignment a of \mathcal C
          (e.g., the empty instantiation a = \{ \} )
Output: a solution of \mathcal C or "inconsistent"
if a is not consistent with C:
    return "inconsistent"
if a is defined for all variables in V:
    return a
select some variable v_i for which a is not defined
for each value x from D_i:
    a' := a \cup \{v_i \mapsto x\}
    a'' \leftarrow \mathsf{Backtracking}(\mathcal{C}, a')
    if a'' is not "inconsistent":
         return a"
return "inconsistent"
```

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

October 26, 2009

21 / 22

Solving Constraint Networks

Literature

Rina Dechter.

Constraint Processing,

Chapter 2, Morgan Kaufmann, 2003

Nebel and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

October 26, 2009