
Theoretical Computer Science II (ACS II)
9. Time complexity

Malte Helmert Andreas Karwath

Albert-Ludwigs-Universität Freiburg

January 27th, 2010

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 1 / 76

Theoretical Computer Science II (ACS II)
January 27th, 2010 — 9. Time complexity

Motivation

Asymptotic growth

Models of computation

P and NP

Polynomial reductions

NP-hardness and NP-completeness

Some NP-complete problems

Summary

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 2 / 76

Motivation

A scenario

Example scenario

I You are a programmer working for a logistics company.
I Your boss asks you to implement a program that optimizes the travel

route of your company’s delivery truck:
I The truck is initially located in your company’s depot.
I There are 50 locations the truck must visit on its route.
I You know the travel distances between all locations (including the

depot).
I Your job is to write a program that determines a route from the depot

via all locations back to the depot that minimizes total travel distance.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 3 / 76

Motivation

A scenario (ctd.)

Example scenario (ctd.)

I You try solving the problem for weeks, but don’t manage to come up
with a program. All your attempts either
I cannot guarantee optimality or
I don’t terminate within reasonable time

(say, a month of computation).

I What do you tell your boss?

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 4 / 76

Motivation

What you don’t want to say

“I can’t find an efficient algorithm,
I guess I’m just too dumb.”

source: M. Garey & D. Johnson, Computers and Intractability, Freeman 1979, p. 2

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 5 / 76

Motivation

What you would ideally like to say

“I can’t find an efficient algorithm,
because no such algorithm is possible!”

source: M. Garey & D. Johnson, Computers and Intractability, Freeman 1979, p. 2

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 6 / 76

Motivation

What complexity theory allows you to say

“I can’t find an efficient algorithm,
but neither can all these famous people.”

source: M. Garey & D. Johnson, Computers and Intractability, Freeman 1979, p. 3

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 7 / 76

Motivation

Why complexity theory?

Complexity theory

Complexity theory tells us which problems can be solved quickly (“easy
problems”) and which ones cannot (“hard problems”).

I This is useful because different algorithmic techniques are required for
problems for easy and hard problems.

I Moreover, if we can prove a problem to be hard, we should not waste
our time looking for “easy” algorithms.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 8 / 76

Motivation

Why reductions?

Reductions
One important part of complexity theory are reductions
that show how a new problem P can be expressed in terms of
a known problem Q

I This is useful for theoretical analyses of P because it allows us to
apply our knowledge about Q.

I It is also often useful for practical algorithms because we can use the
best known algorithm for Q and apply it to P.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 9 / 76

Motivation

Complexity pop quiz

I The following slide contains a selection of graph problems.

I In all cases, the input is a directed, weighted graph G = 〈V ,A,w〉
with positive edge weights.

I How hard do you think these graph problems are?

I Sort from easiest (requires least time to solve)
to hardest (requires most time to solve).

I No justifications needed, just follow your intuition!

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 10 / 76

Motivation

Some graph problems

1. Find a cycle-free path from u ∈ V to v ∈ V
with minimum cost.

2. Find a cycle-free path from u ∈ V to v ∈ V
with maximum cost

3. Determine if G is strongly connected (paths exist from everywhere to
everywhere).

4. Determine if G is weakly connected (paths exist from everywhere to
everywhere, ignoring arc directions).

5. Find a directed cycle.

6. Find a directed cycle involving all vertices.

7. Find a directed cycle involving a given vertex u.

8. Find a path visiting all vertices without repeating a vertex.

9. Find a path using all arcs without repeating an arc.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 11 / 76

Motivation

Overview of this chapter

Chapter overview:

I Refresher: asymptotic growth (“big-O notation”)

I models of computation

I P and NP

I polynomial reductions

I NP-hardness and NP-completeness

I some NP-complete problems

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 12 / 76

Asymptotic growth

Asymptotic growth: motivation

I Often, we are interested in how an algorithm behaves on large inputs,
as these tend to be most critical in practice.

I For example, consider the following problem:

Duplicate elimination

Input: a sequence of words s1, . . . , sn over some alphabet
Output: the same words, in any order, without duplicates
I Here are three algorithms for the problem:

A1 The naive algorithm with two nested for loops.
A2 Sort input; traverse sorted list and skip duplicates.
A3 Hash & report new entries upon insertion.

I Which one is fastest? Let’s compare!

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 13 / 76

Asymptotic growth

Runtimes for duplicate elimination algorithms
Assume that on an input with n words, the algorithms
require the following amount of time (in µs):

A1 f1(n) = 0.1n2

A2 f2(n) = 10n log n + 0.1n

A3 f3(n) = 30n

10 µs

100 µs

1 ms

10 ms

100 ms

1 s

10 s

100 s

1000 s

100 101 102 103 104 105 106 107 108

ru
nt

im
e

input size

A1
A2
A3

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 14 / 76

Asymptotic growth

Runtime growth in the limit

I For very small inputs, A1 is faster than A2,
which is faster than A3.

I However, for very large inputs, the ordering is opposite.

I Big-O notation captures this by considering how runtime grows in the
limit of large input sizes.

I It also ignores constant factors, since for large enough inputs, these
do not matter compared to differences in growth rate.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 15 / 76

Asymptotic growth

Big-O: Definition

Definition (O(g))

Let g : N0 → R be a function mapping from the natural numbers to the
real numbers.

O(g) is the set of all functions f : N0 → R such that
for some c ∈ R+ and M ∈ N0, we have
f (n) ≤ c · g(n) for all n ≥ M.

In words: from a certain point onwards, f is bounded by g multiplied with
some constant.

Intuition: If f ∈ O(g), then f does not grow faster than g
(maybe apart from constant factors that we do not care about).

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 16 / 76

Asymptotic growth

Big-O: Notational conventions
“f is O(g):”

I Formally, O(g) is a set of functions, so to express that function f
belongs to this class, we should write f ∈ O(g).

I However, it is much more common to write f = O(g)
instead of f ∈ O(g).

I In this context, “=” is pronounced “is”, not “equals”:
“f is O of g .”

I Note that this is not the usual meaning for “=”.

I For example, it is not symmetric: we write f = O(g),
but not O(g) = f .

Further abbreviations:

I Notation like f = O(g) where g(n) = n2

is often abbreviated to f = O(n2).

I Similarly, if for example f (n) = n log n, we can further abbreviate this
to n log n ∈ O(n2).

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 17 / 76

Asymptotic growth

Big-O example (1)

Big-O example

Let f (n) = 3n2 + 14n + 7.
We show that f = O(n2).

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 18 / 76

Asymptotic growth

Big-O example (2)

Big-O example

Let f (n) = 3n2 + 14n + 7.
We show that f = O(n3).

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 19 / 76

Asymptotic growth

Big-O example (3)

Big-O example

Let f (n) = n100.
We show that f = O(2n).

(We may use that log2(x) ≤
√

x for all x ≥ 25.)

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 20 / 76

Asymptotic growth

Big-O for the duplicate elimination example

I In the duplicate elimination example, using big-O notation
we can show that
I f1 = O(n2)
I f2 = O(n log n)
I f3 = O(n)

which emphasizes the essential aspects of the different runtime
growths for the algorithms.

I Moreover, big-O notation allows us to order the runtimes:
I f3 = O(f1), but not f1 = O(f3)
I f2 = O(f1), but not f1 = O(f2)
I f3 = O(f2), but not f2 = O(f3)

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 21 / 76

Models of computation

What is runtime complexity?

I Runtime complexity is a measure that tells us
how much time we need to solve a problem.

I How do we define this appropriately?

Examples of different statements about runtime:

I “Running sort /usr/share/dict/words on computer alfons
requires 0.242 seconds.”

I “On an input file of size 1 MB, sort requires at most 1 second on a
modern computer.”

I “Quicksort is faster than Insertion sort.”

I “Insertion sort is slow.”

These are very different statements, each with different advantages and
disadvantages.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 22 / 76

Models of computation

Precise statements vs. general statements

Example statement about runtime

“Running sort /usr/share/dict/words on computer alfons requires
0.242 seconds.”

Advantage: very precise

Disadvantage: not general

I input-specific:
What if we want to sort other files?

I machine-specific:
What if we run the program on another machine?

I even situation-specific:
If we run the program again tomorrow,
will we get the same result?

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 23 / 76

Models of computation

General statements about runtime

In this course, we want to make general statements about runtime. This is
accomplished in three ways:

1. Rather than consider runtime for a particular input,
we consider general classes of inputs:
I Example: worst-case runtime to sort any input of size n
I Example: average-case runtime to sort any input of size n

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 24 / 76

Models of computation

General statements about runtime

In this course, we want to make general statements about runtime. This is
accomplished in three ways:

2. Rather than consider runtime on a particular machine, we consider
more abstract cost measures:
I Example: count executed x86 machine code instructions
I Example: count executed Java bytecode instructions
I Example: for sort algorithms, count number of comparisons

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 25 / 76

Models of computation

General statements about runtime

In this course, we want to make general statements about runtime. This is
accomplished in three ways:

3. Rather than consider all implementation details, we ignore
“unimportant” aspects:
I Example: rather than saying that we need 4n − d1.2n log ne+ 10

instructions, we say that we need
a linear number (O(n)) of instructions.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 26 / 76

Models of computation

Which computational model do we use?

We know many models of computation:
I programs in some programming language

I for example Java, C++, Scheme, . . .

I Turing machines
I Variants: single-tape or multi-tape
I Variants: deterministic or nondeterministic

I push-down automata
I finite automata

I variants: deterministic or nondeterministic

Here, we use Turing machines because they are the most powerful of our
formal computation models.
(Programming languages are equally powerful, but not formal enough, and
also too complicated.)

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 27 / 76

Models of computation

Are Turing machines an adequate model?

I According to the Church-Turing thesis, everything that can be
computed can be computed by a Turing machine.

I However, many operations that are easy on an actual computer
require a lot of time on a Turing machine.

 Runtime on a Turing machine is not necessarily indicative of runtime
on an actual machine!

I The main problem of Turing machines is that they do not allow
random access.

I Alternative formal models of computation exist:

I Examples: lambda calculus, register machines, random access machines
(RAMs)

I Some of these are closer to how today’s computers actually work (in
particular, RAMs).

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 28 / 76

Models of computation

Turing machines are an adequate enough model

I So Turing machines are not the most accurate model for an actual
computer.

I However, everything that can be done in a “more realistic model” in
n computation steps can be done on a TM with at most polynomial
overhead (e. g., in n2 steps).

I For the big topic of this part of the course, the P vs. NP question, we
do not care about polynomial overhead.

I Hence, for this purpose TMs are an adequate model,
and they have the advantage of being easy to analyze.

I Hence, we use TMs in the following.

For more fine-grained questions (e. g., linear vs. quadratic algorithms), one
should use a different computation model.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 29 / 76

Models of computation

Which flavour of Turing machines do we use?

There are many variants of Turing machines:

I deterministic or nondeterministic

I one tape or multiple tapes

I one-way or two-way infinite tapes

I tape alphabet size: 2, 3, 4, . . .

Which one do we use?

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 30 / 76

Models of computation

Deterministic or nondeterministic Turing machines?

I We earlier proved that deterministic TMs (DTMs) and
nondeterministic ones (NTMs) have the same power.

I However, there we did not care about speed.

I The DTM simulation of an NTM we presented can cause an
exponential slowdown.

I Are NTMs more powerful than DTMs if we care about speed, but
don’t care about polynomial overhead?

I Actually, that is the big question:
it is one of the most famous open problems in mathematics and
computer science.

I To get to the core of this question, we will consider
both kinds of TM separately.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 31 / 76

Models of computation

What about the other variations?

We do not have to consider other TM variations separately:

I Multi-tape TMs can be simulated on single-tape TMs
with quadratic overhead.

I TMs with two-way infinite tapes can be simulated
on TMs with one-way infinite tapes
with constant-factor overhead, and vice versa.

I TMs with tape alphabets of any size K can be simulated
on TMs with tape alphabet {0, 1,�}
with constant-factor overhead dlog2 Ke.

 Whenever we want a simple model, we can limit ourselves to
single-tape one-way infinite TMs with Σ = {0, 1} and Γ = Σ ∪ {�}.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 32 / 76

P and NP

Nondeterministic Turing machines

Definition (nondeterministic Turing machine)

A nondeterministic Turing machine (NTM) is a 6-tuple
〈Σ,�,Q, q0, qacc, δ〉, where

I Σ is the finite, non-empty input alphabet (often {0, 1})
I � /∈ Σ is the blank symbol

I Σ� := Σ ∪ {�} is the tape alphabet

I Q is the finite set of states
I q0 ∈ Q is the initial state, qacc ∈ Q the accepting state

I Q ′ := Q \ {qacc} is the set of nonterminal states

I δ ⊆ (Q ′ × Σ�)× (Q × Σ� × {−1,+1})
is the transition relation

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 33 / 76

P and NP

Deterministic Turing machines

Definition (deterministic Turing machine)

An NTM 〈Σ,�,Q, q0, qacc, δ〉 is called deterministic
(a DTM) if for all q ∈ Q ′, a ∈ Σ� there is exactly one triple 〈q′, a′,∆〉
with 〈〈q, a〉, 〈q′, a′,∆〉 ∈ δ.

We then denote this triple with δ(q, a).

Note: In this definition, a DTM is a special case of an NTM, so if we
define something for all NTMs, it is automatically defined for DTMs.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 34 / 76

P and NP

Turing machine configurations

Definition (configuration)

Let M = 〈Σ,�,Q, q0, qacc, δ〉 be an NTM.

A configuration of M is a triple 〈w , q, x〉 ∈ Σ∗� × Q × Σ+
�.

I w : tape contents before tape head

I q: current state

I x : tape contents after and including tape head

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 35 / 76

P and NP

Turing machine transitions

Definition (yields relation)

Let M = 〈Σ,�,Q, q0, qacc, δ〉 be an NTM.

A configuration c of M yields a configuration c ′ of M,
in symbols c ` c ′, as defined by the following rules,
where a, a′, b ∈ Σ�, w , x ∈ Σ∗�, q, q′ ∈ Q and
〈〈q, a〉, 〈q′, a′,∆〉〉 ∈ δ:

〈w , q, ax〉 ` 〈wa′, q′, x〉 if ∆ = +1, |x | ≥ 1

〈w , q, a〉 ` 〈wa′, q′,�〉 if ∆ = +1

〈wb, q, ax〉 ` 〈w , q′, ba′x〉 if ∆ = −1

〈ε, q, ax〉 ` 〈ε, q′,�a′x〉 if ∆ = −1

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 36 / 76

P and NP

Acceptance of configurations

Definition (acceptance of configurations within time n)

Let c be a configuration of an NTM M.
Acceptance within time n is inductively defined as follows:

I If c = 〈w , qacc, x〉 where qacc is the accepting state of M,
then M accepts c within time n for all n ∈ N0.

I If c ` c ′ and M accepts c ′ within time n − 1,
then M accepts c within time n.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 37 / 76

P and NP

Acceptance of words and languages

Definition (acceptance of words within time n)

Let M = 〈Σ,�,Q, q0, qacc, δ〉 be an NTM.

M accepts the word w ∈ Σ∗ within time n ∈ N0

iff M accepts 〈ε, q0,w〉 within time n.
I Special case: M accepts ε within time n ∈ N0

iff M accepts 〈ε, q0,�〉 within time n.

Definition (acceptance of languages within time f)

Let M be an NTM with input alphabet Σ.
Let f : N0 → N0.

M accepts the language L ⊆ Σ∗ within time f
iff M accepts each word w ∈ L within time at most f (|w |),
and M does not accept any word w /∈ L.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 38 / 76

P and NP

P and NP

Definition (P and NP)

P is the set of all languages L for which
there exists a DTM M and a polynomial p
such that M accepts L within time p.

NP is the set of all languages L for which
there exists an NTM M and a polynomial p
such that M accepts L within time p.

Notes:

I Sets of languages like P and NP that are defined in terms of resource
bounds for TMs are called complexity classes.

I We know that P ⊆ NP. (Why?)

I Whether the converse holds is an open problem:
this is the famous P vs. NP question.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 39 / 76

P and NP

General algorithmic problems vs. decision problems

I An important aspect of complexity theory is to compare the difficulty
of solving different algorithmic problems.
I Examples: sorting, finding shortest paths, finding cycles in graphs

including all vertices, . . .

I Solutions to algorithmic problems take different forms.
I Examples: a sorted sequence, a path, a cycle, . . .

I To simplify the study, it is common in complexity theory to limit
attention to decision problems, i. e., problems where the “solution” is
an answer of the form Yes or No.
I Examples: Is this sequence sorted?

Is there a path from u to v of cost at most K?
Is there a cycle in this graph that includes all vertices?

I If we pick the decision problems properly, we can usually show that if
the decision problem is easy to solve, then the corresponding
algorithmic problem is also easy to solve.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 40 / 76

P and NP

Decision problems: example

Using decision problems to solve more general problems

[O] Shortest path optimization problem:

I Input: Directed, weighted graph G = 〈V ,A,w〉 with positive edge
weights w : A→ N1, vertices u ∈ V , v ∈ V .

I Output: A shortest (= minimum-cost) path from u to v

[D] Shortest path decision problem:

I Input: Directed, weighted graph G = 〈V ,A,w〉 with positive edge
weights w : A→ N1, vertices u ∈ V , v ∈ V , cost bound K ∈ N0.

I Question: Is there a path from u to v with cost ≤ K?

I If we can solve [O] in polynomial time, we can solve [D] in polynomial
time and vice versa.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 41 / 76

P and NP

Decision problems as languages

Decision problems can be represented as languages:

I For every decision problem, if we want to pose it to a computer (or
other computational device), we must express the input as a word
over some alphabet Σ.

I The language defined by the decision problem then contains a word
w ∈ Σ∗ iff
I w is a well-formed input for the decision problem, and
I the correct answer for input w is Yes.

Example (shortest path decision problem): w ∈ SP iff
I the input properly describes G , u, v , K such that G is a graph, arc

weights are positive, etc.
I that graph G has a path of cost at most K from u to v

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 42 / 76

P and NP

Decision problems as languages (ctd.)

I Since decision problems can be represented as languages, we do not
distinguish between “languages” and (decision) “problems” from now
on.

I For example, we can say that P is the set of all decision problems that
can be solved in polynomial time by a DTM.

I Similarly, NP is the set of all decision problems that can be solved in
polynomial time by an NTM.
I From the definition of NTM acceptance, “solved” means

I If w is a Yes instance, then the NTM has some polynomial-time
accepting computation for w

I If w is a No instance (or not a well-formed input), then the NTM never
accepts it.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 43 / 76

P and NP

Example: HamiltonianCycle ∈ NP

HamiltonianCycle ∈ NP
The HamiltonianCycle problem is defined as follows:

Given: An undirected graph G = 〈V ,E 〉
Question: Does G contain a Hamiltonian cycle?

A Hamiltonian cycle is a path π = 〈v0, v1, . . . , vn〉 such that

I π is a path: for all i ∈ {0, . . . , n − 1}, {vi , vi+1} ∈ E

I π is a cycle: v0 = vn

I π is simple: vi 6= vj for all i , j ∈ {1, . . . , n} with i 6= j

I π is Hamiltonian: for all v ∈ V , there exists i ∈ {1, . . . , n} such that
v = vi

We show that HamiltonianCycle ∈ NP.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 44 / 76

P and NP

Guess and check

I The (nondeterministic) Hamiltonian Cycle algorithm
illustrates a general design principle for NTMs:
guess and check.

I NTMs can solve decision problems in polynomial time by
I nondeterministically guessing a “solution” (also called “witness” or

“proof”) for the instance
I deterministically verifying that the guessed witness indeed describes a

proper solution, and accepting iff it does

I It is possible to prove that all decision problems in NP can be solved
by an NTM using such a guess-and-check approach.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 45 / 76

Polynomial reductions

Polynomial reductions: idea

I Reductions are a very common and powerful idea in mathematics and
computer science.

I The idea is to solve a new problem by reducing (mapping) it to one
for which already now how to solve it.

I Polynomial reductions (also called Karp reductions) are an example of
this in the context of decision problems.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 46 / 76

Polynomial reductions

Polynomial reductions

Definition (Polynomial reductions/Karp reductions)

Let A ⊆ Σ∗ and B ⊆ Σ∗ be decision problems for alphabet Σ.
We say that A is polynomially reducible to B, written A ≤p B,
if there exists a DTM M with the following properties:
I M is polynomial-time

I i. e., there is a polynomial p such that M stops within time p(|w |) on
any input w ∈ Σ∗.

I M reduces A to B
I i. e., for all w ∈ Σ∗: (w ∈ A iff fM(w) ∈ B),
I where fM : Σ∗ → Σ∗ is the function computed by M, i. e.,

when M is run on input w ∈ Σ∗, then fM(w) is the
tape content of M after stopping, ignoring blanks

M is called a polynomial reduction from A to B.

Polynomial reductions are also called Karp reductions.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 47 / 76

Polynomial reductions

Polynomial reduction: example

HamiltonianCycle ≤p TSP

The TSP (Travelling Salesperson) problem is defined as follows:

Given: A finite nonempty set of locations L, a symmetric travel cost
function cost : L× L→ N0, a cost bound K ∈ N0

Question: Is there a tour of total cost at most K , i. e., a permutation
〈l1, . . . , ln〉 of the locations such that

∑n−1
i=1 cost(li , li+1) + cost(ln, l1) ≤ K?

We show that HamiltonianCycle ≤p TSP.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 48 / 76

Polynomial reductions

Properties of polynomial reductions

Theorem (properties of polynomial reductions)

Let A, B, C be decision problems over alphabet Σ.

1. If A ≤p B and B ∈ P, then A ∈ P.

2. If A ≤p B and B ∈ NP, then A ∈ NP.

3. If A ≤p B and A /∈ P, then B /∈ P.

4. If A ≤p B and A /∈ NP, then B /∈ NP.

5. If A ≤p B and B ≤p C, then A ≤p C.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 49 / 76

NP-hardness and NP-completeness

NP-hardness and NP-completeness

Definition (NP-hard, NP-complete)

Let B be a decision problem.
B is called NP-hard if A ≤p B for all problems A ∈ NP.
B is called NP-complete if B ∈ NP and B is NP-hard.

I NP-hard problems are “at least as hard”
as all problems in NP.

I NP-complete problems are “the hardest” problems in NP.

I Do NP-complete problems exist?

I If A ∈ P for any NP-complete problem A, then P = NP. Why?

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 50 / 76

NP-hardness and NP-completeness

SAT is NP-complete

Definition (SAT)

The SAT (satisfiability) problem is defined as follows:

Given: A propositional logic formula ϕ

Question: Is ϕ satisfiable?

Theorem (Cook, 1971)

SAT is NP-complete.

Proof.
SAT ∈ NP: Guess and check.
SAT is NP-hard: This is more involved. . .
(Continued on next slide.)

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 51 / 76

NP-hardness and NP-completeness

NP-hardness proof for SAT

Proof (ctd.)

We must show that A ≤p SAT for all A ∈ NP.

Let A ∈ NP. This means that there exists a polynomial p and an NTM M
s.t. M accepts A within time p.

Let w ∈ Σ∗ be the input for A.

We must, in polynomial time, construct a propositional logic formula f (w)
s.t. w ∈ A iff f (w) ∈ SAT (i. e., is satisfiable).

Idea: Construct a logical formula that encodes the possible configurations
that M can reach from input w and which is satisfiable iff an accepting
configuration is reached.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 52 / 76

NP-hardness and NP-completeness

NP-hardness proof for SAT (ctd.)

Proof (ctd.)

Let M = 〈Σ,�,Q, q0, qacc, δ〉 be the NTM for A. We assume (w.l.o.g.)
that it never moves to the left of the initial position.
Let w = w1 . . .wn ∈ Σ∗ be the input for M.
Let p be the run-time bounding polynomial for M.
Let N = p(n) + 1 (w.l.o.g. N ≥ n).

 During any computation that takes time p(n),
M can only visit the first N tape cells.

 We can encode any configuration of M that can possibly be part of
an accepting configuration by denoting:
I what the current state of M is
I which of the tape cells {1, . . . ,N} is the current location of the tape

head
I which of the symbols in Σ� is contained in each of the tape cells
{1, . . . ,N}

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 53 / 76

NP-hardness and NP-completeness

NP-hardness proof for SAT (ctd.)

Proof (ctd.)

Use these propositional variables in formula f (w):

I statet,q (t ∈ {0, . . . ,N}, q ∈ Q)
 encode Turing Machine state in t-th configuration

I headt,i (t ∈ {0, . . . ,N}, i ∈ {1, . . . ,N})
 encode tape head location in t-th configuration

I contentt,i ,a (t ∈ {0, . . . ,N}, i ∈ {1, . . . ,N}, a ∈ Σ�)
 encode tape contents in t-th configuration

Construct f (w) in such a way that every satisfying assignment

I describes a sequence of configurations of the TM

I that starts from the initial configuration

I and reaches an accepting configuration

I and follows the transition rules in δ

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 54 / 76

NP-hardness and NP-completeness

NP-hardness proof for SAT (ctd.)

Proof (ctd.)

oneof X := (
∨

x∈X x) ∧ ¬(
∨

x∈X

∨
y∈X\{x}(x ∧ y))

1. Describe a sequence of configurations of the TM:

Valid :=
N∧

t=0

(oneof {statet,q | q ∈ Q} ∧

oneof {headt,i | i ∈ {1, . . . ,N}} ∧
N∧

i=1

oneof {contentt,i ,a | a ∈ Σ�})

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 55 / 76

NP-hardness and NP-completeness

NP-hardness proof for SAT (ctd.)

Proof (ctd.)

2. Start from the initial configuration:

Init := state0,q0 ∧ head0,1 ∧
n∧

i=1

content0,i ,wi
∧

N∧
i=n+1

content0,i ,�

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 56 / 76

NP-hardness and NP-completeness

NP-hardness proof for SAT (ctd.)

Proof (ctd.)

3. Reach an accepting configuration:

Accept :=
N∨

t=0

statet,qacc

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 57 / 76

NP-hardness and NP-completeness

NP-hardness proof for SAT (ctd.)

Proof (ctd.)

4. Follow the transition rules in δ:

Trans :=
N−1∧
t=0

((statet,qacc → Noopt) ∧

(¬statet,qacc →
∨
R∈δ

N∨
i=1

Rulet,i ,R))

where . . .

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 58 / 76

NP-hardness and NP-completeness

NP-hardness proof for SAT (ctd.)

Proof (ctd.)

4. Follow the transition rules in δ (ctd.):

Noopt :=
∧
q∈Q

(statet,q → statet+1,q) ∧

N∧
i=1

(headt,i → headt+1,i) ∧

N∧
i=1

∧
a∈Σ�

(contentt,i ,a → contentt+1,i ,a)

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 59 / 76

NP-hardness and NP-completeness

NP-hardness proof for SAT (ctd.)

Proof (ctd.)

4. Follow the transition rules in δ (ctd.):

Rulet,i ,〈〈q,a〉,〈q′,a′,∆〉〉 :=

(statet,q ∧ statet+1,q′) ∧
(headt,i ∧ headt+1,i+∆) ∧
(contentt,i ,a ∧ contentt+1,i ,a′) ∧∧
j∈{1,...,N}\{i}

∧
a∈Σ�

(contentt,j ,a → contentt+1,j ,a)

(Replace by ⊥ if i + ∆ = 0 or i + ∆ = N + 1: these correspond to
situations where M leaves the “allowed” part of the tape.)

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 60 / 76

NP-hardness and NP-completeness

NP-hardness proof for SAT (ctd.)

Proof (ctd.)

Putting it all together:

Define f (w) := Valid ∧ Init ∧ Accept ∧ Trans.

I f (w) can be computed in polynomial time in |w |.
I w ∈ A iff M accepts w within time p(|w |)

w ∈ A iff f (w) is satisfiable
w ∈ A iff f (w) ∈ SAT

 A ≤p SAT

Since A ∈ NP was chosen arbitrarily, we can conclude that SAT is
NP-hard and hence NP-complete.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 61 / 76

Some NP-complete problems

More NP-complete problems

I The proof of NP-hardness of SAT was rather involved.

I However, now that we have it, we can prove other problems NP-hard
much more easily.

I Simply prove A ≤p B for some known NP-hard problem A (such as
SAT). This immediately proves that B is NP-hard. Why?

I A huge number of problems are known to be NP-complete.

I Garey & Johnson’s textbook “Computers and Intractability — A
Guide to the Theory of NP-Completeness” (1979) lists several
hundred such problems, with references to proofs.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 62 / 76

Some NP-complete problems

3SAT is NP-complete

Definition (3SAT)

The 3SAT problem is defined as follows:

Given: A propositional logic formula ϕ in CNF with
Given: at most three literals per clause.

Question: Is ϕ satisfiable?

Theorem
3SAT is NP-complete.

Proof.
3SAT ∈ NP: Guess and check.
3SAT is NP-hard: SAT ≤p 3SAT (whiteboard)

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 63 / 76

Some NP-complete problems

Clique is NP-complete

Definition (Clique)

The Clique problem is defined as follows:

Given: An undirected graph G = 〈V ,E 〉 and a number K ∈ N0

Question: Does G contain a clique of size at least K ,
Question: i. e., a vertex set C ⊆ V with |C | ≥ K
Question: such that 〈u, v〉 ∈ E for all u, v ∈ C with u 6= v?

Theorem
Clique is NP-complete.

Proof.
Clique ∈ NP: Guess and check.
Clique is NP-hard: 3SAT ≤p Clique (whiteboard)

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 64 / 76

Some NP-complete problems

IndSet is NP-complete

Definition (IndSet)

The IndSet problem is defined as follows:

Given: An undirected graph G = 〈V ,E 〉 and a number K ∈ N0

Question: Does G contain an independent set of size
Question: at least K , i. e., a vertex set I ⊆ V with |I | ≥ K
Question: such that for all u, v ∈ I , 〈u, v〉 /∈ E?

Theorem
IndSet is NP-complete.

Proof.
IndSet ∈ NP: Guess and check.
IndSet is NP-hard: Clique ≤p IndSet (exercises)

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 65 / 76

Some NP-complete problems

VertexCover is NP-complete

Definition (VertexCover)

The VertexCover problem is defined as follows:

Given: An undirected graph G = 〈V ,E 〉 and a number K ∈ N0

Question: Does G contain an vertex cover of size at most K ,
Question: i. e., a vertex set C ⊆ V with |C | ≤ K
Question: s. t. for all 〈u, v〉 ∈ E , we have u ∈ C or v ∈ C?

Theorem
VertexCover is NP-complete.

Proof.
VertexCover ∈ NP: Guess and check.
VertexCover is NP-hard: IndSet ≤p VertexCover
(exercises)

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 66 / 76

Some NP-complete problems

DirHamiltonianCycle is NP-complete

Definition (DirHamiltonianCycle)

The DirHamiltonianCycle problem is defined as follows:

Given: A directed graph G = 〈V ,A〉
Question: Does G contain a directed Hamiltonian cycle
Question: (i. e., a cyclic path visiting each vertex exactly once)?

Theorem
DirHamiltonianCycle is NP-complete.

Proof sketch.
DirHamiltonianCycle ∈ NP: Guess and check.
DirHamiltonianCycle is NP-hard:
3SAT ≤p DirHamiltonianCycle (next slides)

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 67 / 76

Some NP-complete problems

DirHamiltonianCycle is NP-complete (ctd.)

Proof sketch (ctd.)

3SAT ≤p DirHamiltonianCycle:

I A 3SAT instance ϕ is given.

I W.l.o.g. each clause has exactly three literals,
and there are no repetitions within a clause.

I Let v1, . . . , vn be the propositional variables in ϕ.

I Let c1, . . . , cm be the clauses of ϕ, where each ci is of the form
li1 ∨ li2 ∨ li3.

I The reduction generates a graph f (ϕ) with 6m + n vertices, described
in the following.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 68 / 76

Some NP-complete problems

DirHamiltonianCycle is NP-complete (ctd.)

Proof sketch (ctd.)

I Introduce vertex xi with indegree 2 and outdegree 2 for each variable
vi :

x1 x2 . . . xn

I Introduce subgraph Cj with six vertices for each clause cj :

a

b

c

A

B

C

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 69 / 76

Some NP-complete problems

DirHamiltonianCycle is NP-complete (ctd.)

Proof sketch (ctd.)

Let π be a directed Hamiltonian cycle of the overall graph.

I Whenever π traverses Cj , it must leave it at the corresponding “exit”
for the given “entrance”
(i. e., a −→ A, b −→ B, c −→ C).
Otherwise π cannot be a Hamiltonian cycle.

I The following are all valid possibilities for Hamiltonian cycles in
graphs containing Cj :
I π crosses Cj once, entering at any entrance
I π crosses Cj twice, entering at any two different entrances
I π crosses Cj three times, entering once at each entrance

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 70 / 76

Some NP-complete problems

DirHamiltonianCycle is NP-complete (ctd.)

Proof sketch (ctd.)

Connect the “open ends” of the graph as follows:

I Identify the entrances and exits of the Cj graphs with the three
literals of clause cj .

I One exit of xi is positive, one negative.
I For the positive exit, determine the clauses in which the positive

literal vi occurs
I Connect the positive xi exit to the vi entrance of the Cj graph for the

first such clause.
I Connect the vi exit of that graph to the xi entrance of the second such

clause, and so on.
I Connect the vi exit of the last such clause to the positive entrance of

xi+1 (or x1 if n = 1).

I Similarly for the negative exit of xi and literal ¬vi .

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 71 / 76

Some NP-complete problems

DirHamiltonianCycle is NP-complete (ctd.)

Proof sketch (ctd.)

This is a reduction (which is clearly polynomial):
I (⇒):

I Given a satisfying truth assignment α(vi), we can construct a
Hamiltonian cycle by leaving xi through the positive exit if α(vi) = T;
the negative exit if α(vi) = F.

I We can then visit all Cj graphs for clauses made true by that literal.
I Overall, we visit each Cj graph 1–3 times.

I (⇐):
I A Hamiltonian cycle visits each vertex xi and leaves it through the

positive or negative exit.
I Set vi to true or false according to which exit is chosen.
I This gives a satisfying truth assignment.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 72 / 76

Some NP-complete problems

HamiltonianCycle is NP-complete

Theorem
HamiltonianCycle is NP-complete.

Proof sketch.

I HamiltonianCycle ∈ NP : Guess and check.

I HamiltonianCycle is NP-hard:
DirHamiltonianCycle ≤p HamiltonianCycle

I Basic gadget of the reduction:

v =⇒ v1 v2 v3

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 73 / 76

Some NP-complete problems

TSP is NP-complete

Theorem
TSP is NP-complete.

Proof.

I TSP ∈ NP : Guess and check.

I TSP is NP-hard:
HamiltonianCycle ≤p TSP was already shown earlier.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 74 / 76

Some NP-complete problems

And many, many more. . .

More NP-complete problems:

I SubsetSum: Given natural numbers a1, . . . , an and a target K , is
there a subsequence with sum exactly K?

I BinPacking: Given objects of size a1, . . . , an, can the objects fit
into K bins with capacity B each?

I MineSweeperConsistency: In a given Minesweeper position, is a
given cell safe?

I GeneralizedFreeCell: Does a given generalized FreeCell deal
(i. e., one that may have more than 52 cards) have a solution?

I . . .

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 75 / 76

Summary

Summary

I Complexity theory is about proving which problems are “easy” to
solve and which ones are “hard”.

I Two important classes of problems are
I P (problems that can be solved in polynomial time by a regular

computing mechanism) and
I NP (problems that can be solved in polynomial time using

nondeterminism).

I We know P ⊆ NP, but we do not know whether P = NP.

I Many practically relevant problems are NP-complete, i. e., as hard as
any other problem in NP.

I If there exists an efficient algorithm for one NP-complete problem,
then there exists an efficient algorithm for all problems in NP.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II January 27th, 2010 76 / 76

	Motivation
	Asymptotic growth
	Models of computation
	P and NP
	Polynomial reductions
	NP-hardness and NP-completeness
	Some NP-complete problems
	Summary

