Overview

Decidability

Andreas Karwath und Malte Helmert

Informatik Theorie II (A) WS2009/10
1
acs-07: Decidability

Decidable problems ?

* Acceptance problem :
* decide whether an automaton accepts a string
* Equivalence problem :
* Decide whether two automata are equivalent, i.e. accept the same language
* Emptiness testing problem :
* Decide whether the language of an automaton is empty
* Can be applied to
* DFA, NFA, REX, PDA, CFG, TM,...
* An investigation into the solvable/decidable
* Decidable languages
* The halting problem (undecidable)

Informatik Theorie II (A) WS2009/10

acs-07: Decidability

Acceptance problem for DFAs (T 4.1)

To decide whether a particular DFA accept a given string w, we express this in a language: $\mathrm{A}_{\mathrm{DFA}}$.
$A_{\text {DFA }}$ contains the encodings of all DFAs together with the string w the DFAs accept:

$$
A_{D F A}=\{\langle B, w\rangle \mid B \text { is a DFA that accepts input string } w\}
$$

The problem of testing whether a DFA B accepts w is the same as the problem of whether $\langle B, w\rangle$ is a member of language $A_{\text {DFA }}$.

Theorem 4.1

$A_{D F A}$ is a decidable language
Proof
$M=$ "On input $\langle B, w\rangle$, where B is a DFA and w is a string:

1. Simulate B on input w.
2. If the simulation ends in an accept state, accept. If it ends in a nonaccepting state, reject.'

Acceptance problem for NFAs (T 4.2)

$A_{\text {NFA }}=\{\langle B, w\rangle \mid B$ is an NFA that accepts input string $w\}$

Theorem 4.2
$A_{\text {NFA }}$ is a decidable language
Proof
$N=$ "On input $\langle B, w\rangle$ where B is an NFA, and w is a string:

1. Convert NFA B to an equivalent DFA C using the procedure for this conversion given in Theorem 1.19 (TS2, slide 30 ff).
2. Run TM M from Theorem 4.1 on input $\langle C, w\rangle$.
3. If M accepts, accept; otherwise reject."

Running TM M in stage 2 means incorporating M into the design of N as a subprocedure.

Acceptance problem for Regular Expressions (T 4.3)

$A_{R E X}=\{\langle R, w\rangle \mid R$ is a regular expression that generates input string $w\}$

Theorem 4.3

$A_{R E X}$ is a decidable language
Proof The following TM P decides $\mathrm{A}_{\text {REX }}$
$P=$ "On input $\langle R, w\rangle$ where R is a regular expression and w is a string:

1. Convert regular expression R to an equivalent DFA A by using the procedure for this conversion given in Theorem 1.28.
2. Run TM M on input $\langle A, w\rangle$.
3. If M accepts, accept; if M rejects, reject."

Informatik Theorie II (A) WS2009/10

acs-07: Decidability

Equivalence problem for DFAs (T 4.5)
$E Q_{D F A}=\{\langle A, B\rangle \mid A$ and B are DFAs and $L(A)=L(B)\}$
Theorem 4.5
$E Q_{D F A}$ is a decidable language
Proof

$$
L(C)=(L(A) \cap \overline{L(B)}) \cup(\overline{L(A)} \cap L(B))
$$

This expression is sometimes called the symmetric difference of $L(A)$ and $L(B)$. Here $\overline{L(A)}$ is the complement of $L(A)$. The symmetric difference is useful here because $L(C)=\varnothing$ if and only if $L(A)=L(B)$. One can construct C from A and B with the constructions for proving the class of regular languages are closed under the complement, union, and intersection. These constructions are algorithms that can be carried out by Turing machines. Once C has been constructed one can use Theorem 4.4 to test whether $L(C)$ is empty. If it is empty, $L(A)$ and $L(B)$ must be equal.
$F=$ "On input $\langle A, B\rangle$, where A and B are DFA's:

1. Construct DFA C as described.
2. Run TM T from Theorem 4.4 on input $\langle C\rangle$.
3. If T accepts, accept. If T rejects, reject."

Acceptance problem for CFGs (T 4.6)

$A_{C F G}=\{\langle G, w\rangle \mid G$ is a CFG that generates input string $w\}$

Theorem 4.6

$A_{C F G}$ is a decidable language
Proof
Relies on the following property :
If G is in Chomsky Normal Form, then any derivation of w has length at most $2|w|-1$
There are only finitely many derivations of length less than n.
The TM S for $A_{C F G}$ follows.
$S=$ "On input $\langle G, w\rangle$, where G is a CFG and w is a string

1. Convert G to an equivalent grammar in Chomsky normal form.
2. List all derivations with $2 n-1$ steps, where n is the length of w,
except if $n=0$, then instead list all derivations with 1 step
3. If any of these derivations generate w, accept; if not, reject."

Emptiness testing problem for CFGs
(T 4.7)
$E_{C F G}=\{\langle G\rangle \mid G$ is a CFG for which $L(G)=\varnothing\}$

Theorem 4.7

$E_{C F G}$ is a decidable language
Proof
Determine for each variable whether that variable
is capable of generating a string of terminals
$R=$ "On input $\langle G\rangle$, where G is a CFG:

1. Mark all terminal symbols in G.
2. Repeat until no new variables get marked:
3. Mark any variable A where G has a rule $A \rightarrow U_{1} U_{2} \ldots U_{k}$ and each symbol U_{1}, \ldots, U_{k} has already been marked.
4. If the start symbol is not marked, accept; otherwise reject."
acs-07: Decidability

Equivalence problem for CFGs

$E Q_{C F G}=\{\langle G, H\rangle \mid G$ and H are CFGs and $L(G)=L(H)\}$
Theorem
$E Q_{C F G}$ is not decidable
Proof
Follows later
The problem with adapting the proof for DFAs
is that the class of context free languages
is not closed under complementation or intersection !

Every CFL is decidable (T 4.8)

Theorem 4.8

Every context free language is decidable

Proof

Let G be a CFG for A and design a TM M_{G} that decides A. We build a copy of G into M_{G}. It works as follows.
$M_{G}=$ "On input w :

1. Run TM S (from T4.6) on input $\langle G, w\rangle$
2. If this machine accepts, accept; if it rejects, reject."

The relationship amoung classes of languages

Informatik Theorie II (A) WS2009/10
acs-07: Decidability

The halting problem (T 4.9)

$$
A_{T M}=\{\langle M, w\rangle \mid M \text { is a TM that accepts } w\}
$$

Theorem

$A_{T M}$ is Turing recognizable

Proof

Consider U : (Universal Turing Machine)
On input $<M, w>$, where M is a TM and w a string

1. Simulate M on w
2. If M ever enters its accept state, accept,
if M ever enters its reject state, reject
U loops when M does, the halting problem:
Theorem $A_{T M}$ is undecidable
shows that recognizers are more powerful than deciders requires quite involved proof Informatik Theorie II (A) WS2009/10

The halting problem

* There is a specific problem that is algorithmically unsolvable (undecidable), e.g. the halting problem
* Philosophical implications: computers are fundamentally limited

acs-07: Decidability

Diagonalization

* Georg Cantor 1873
* Measure the size of (infinite) sets
* Consider the function $f: A \rightarrow B$
* f is injective (one-to-one), if $f(a) \neq f(b)$ whenever $a \neq b$
* f is surjective (onto), if for every $b \in B$ there is an $a \in A$: $f(a)=b$
* f is bijective (corresponence) if it is injective and surjective
* A and B are said to be the same size, if there exists a bijective function f , i.e. for every element in A there exists an unique element in B.
* Example: $f: N$ (natural numbers) $\rightarrow E$ (even numbers)
$f(n)=2 n$ is a bijective function
Both sets have the same size
* Definition: A set is countable, if it is finite or has the same size as N

\mathbb{R} is uncountable (T 4.14)

$Q=\left\{\left.\frac{m}{n} \right\rvert\, m, n \in N\right\}$ the positive rational numbers
Theorem
Q is countable
Proof idea

Figure 4.3
A correspondence of \mathcal{N} and \mathcal{Q}
Informatik Theorie || (A) WS2009/10
$R=$ the set of real numbers (have a decimal representation)
Theorem (T 4.14)
R is uncountable
Proof idea
We prove (by contradiction) that there is no correspondence between R and N Assume that there were a correspondence f
We now construct an $x \in R$ that is not paired with any element of N
Choose i-th fractional digit of x different from $i-t h$ frac. digit of $f(i)$

Informatik Theorie II (A) WS2009/10
acs-07: Decidability

Example
$n \quad f(n)$
$\begin{array}{ll}1 & 3.1414 \ldots \\ 2 & 5.567 \ldots\end{array}$
3 0.888888..
$x=0.275 \ldots$
So, $x \neq f(n)$ for all n
$B=$ the set of all infinite binary strings

Lemma

B is uncountable

Proof idea

By analogy to R

Let L be the set of all languages over Σ

Lemma

L is uncountable
Proof idea
We define a correspondence between L and B
Let $\Sigma^{*}=\left\{s_{1}, s_{2}, \ldots\right\}$; which is countable
Each language A in L has a unique characteristic sequence χ_{A} in B defined as follows
$\Sigma^{*}=\{\varepsilon, 0,1,00,01,10,11,000,001, \ldots\} ;$
$A=\{\quad 0, \quad 00,01, \quad 000,001, \ldots\}$
$\chi_{A}=\begin{array}{llllllllll}0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & \ldots\end{array}$

acs-07: Decidability

Some languages are not Turing-

recognizable (T 4.15)

Theorem (T4.15)
Some languages are not Turing recognizable
Proof
There is a countable number of Turing Machines
(Each Turing Machine can be encoded in a string;
the set of all strings over a finite alphabet is countable;
not all strings need to encode legal TMs)

The set of all languages is uncountable

Therefore there is no correspondence between the
set of all TMs and the set of all languages.

cs-07: Decidability

$A_{T M}$ is undecidable (T4.9)

$A_{\text {TM }}=\{\langle M, w\rangle \mid M$ is a TM that accepts $w\}$
Theorem (T4.9)
$A_{T M}$ is undecidable
Proof by contradiction; assume $A_{T M}$ is decidable
Suppose H is a decider for $A_{T M}$
$H(<M, w\rangle)=\left\{\begin{array}{c}\text { accept } \text { if } M \text { accepts } w \\ \text { reject if } M \text { does not accept } w\end{array}\right.$
acs-07: Decidability

$A_{T M}$ is undecidable (T4.9) (cont.)

Use H to define D :

On input $\langle M\rangle$, where M is a TM

1. Run H on input $<M,<M \gg$
2. Output the opposite of what H outputs ;

So, $D(<M>)=\left\{\begin{array}{c}\text { accept } \text { if } M \text { does not accept }<M> \\ \text { reject if } M \text { accepts }<M>\end{array}\right.$
and
$D(<D>)=\left\{\begin{array}{c}\text { accept if } D \text { does not accept }<D> \\ \text { reject if } D \text { accepts }<D>\end{array}\right.$
This is impossible !

Further Explanations

H accepts $\langle M, w\rangle$ when M accepts w D rejects $\langle M\rangle$ when M accepts $\langle M\rangle$ D rejects $\langle D\rangle$ when D accepts $\langle D\rangle$
acs-07: Decidability
Entry i, j is accept if M_{i} accepts $\left\langle M_{j}\right\rangle$

Entry i, j is the value of H on input $\left\langle M_{i},<M_{j} \gg\right.$

	<M1>	<M2>	<M3>	<M4>	\ldots
M1	accept	reject	accept	reject	
M2	accept	accept	accept	accept	
M4	reject	reject	reject	reject	\ldots
accept	reject	accept	reject		
M					

Informatik Theorie II (A) WS2009/10
acs-07: Decidability

T 4.16

A language is co-Turing recognizable if it is the complement of a language that is Turing recognizable

Theorem (T 4.16)
A language is decidable if and only if it is both Turing-recognizable and co-Turing recognizable Proof

1. If A is decidable then A and \bar{A} Turing recognizable

Trivial
2. If A and \bar{A} are Turing recognizable then A is decidable

Let M_{1} and M_{2} be TMs for A and \bar{A}

Define M :
On input w

1. Run both M_{1} and M_{2} on w in parallel
2. If M_{1} accepts, then accepts;

If M_{2} accepts, then reject;

M decides A

all strings are either in A or \bar{A} either M_{1} or M_{2} must accept any given string M always terminates with correct answer

What happens if \boldsymbol{D} occurs?

Informatik Theorie II (A) WS2009/10
cs-07: Decidability
$A_{T M}$ is not Turing-recognizable

Theorem (T4.17)
$\overline{A_{T M}}$ is not Turing-recognizable
Proof
$A_{T M}$ is Turing-recognizable
If $\overline{A_{T M}}$ were also Turing-recognizable
Then $A_{T M}$ would be decidable.

The relationship amoung languages

