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Overview

An investigation into the solvable/decidable

Decidable languages

The halting problem (undecidable)
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Decidable problems ?

Acceptance problem : 
decide whether an automaton accepts a string 

Equivalence problem :
Decide whether two automata are equivalent, i.e. 
accept the same language

Emptiness testing problem :
Decide whether the language of an automaton is 
empty

Can be applied to 
DFA, NFA, REX, PDA, CFG, TM,…
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 4.1
is a decidable language

="On input , ,  where  is a DFA and  is a string:
        1. Simulate  on input .
        2. If the simulation ends in an accept state, . If it ends

DFAA

M B w B w
B w

accept

Theorem

Proof

in a
            nonaccepting state, ."reject

Acceptance problem for DFAs (T 4.1)

To decide whether a particular DFA accept a given string w, we express this in a 
language: ADFA. 
ADFA contains the encodings of all DFAs together with the string w the DFAs accept: 

{ , |  is a DFA that accepts input string }DFAA B w B w=

The problem of testing whether a DFA B accepts w is the same as the problem of 
whether <B,w> is a member of language ADFA . 
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Acceptance problem for NFAs (T 4.2)

{ , |  is an NFA that accepts input string }
 4.2

is a decidable language

NFA

NFA

A B w B w

A

=

Theorem

Proof
="On input  where  is an NFA, and  is a string:

         1. Convert NFA  to an equivalent DFA  using the procedure for 
             this conversion given in Theorem 1.19 (TS2, slide 30 ).
    

N B,w B w
B C

ff
     2. Run TM  from Theorem 4.1 on input 

         3. If  accepts, ; otherwise "
Running TM  in stage 2 means incorporating  into the design of  as a 
subprocedure.

M C,w .
M accept reject.

M M N
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Acceptance problem for Regular 
Expressions (T 4.3)

{ , |  is a regular expression that generates input string }
 4.3

is a decidable language
 The following TM P decides A

REX

REX

REX

A R w R w

A

=

Theorem

Proof

="On input  where  is a regular expression and  is a string:
      1. Convert regular expression  to an equivalent DFA  by using the
          procedure for this conversion given in Theorem 1.28

P R,w R w
R A

.
      2. Run TM  on input .
      3. If  accepts,  if  rejects, "

M A,w
M accept; M reject.
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Emptiness testing problem for DFAs
(T 4.4)

{ |  is DFA for which ( ) }
 4.4

is a decidable language

DFA

DFA

E A A L A

E

= = ∅

Theorem

Proof
A DFA accepts some string if and only if reaching an accept state from the start state by traveling 
along the arrows of the DFA is possible. To test this condition we can design a TM  that uses a 
mar

T
king algorithm similar to that used in the example about connected graphs in acs-06, slide 33.

="On input  where  is a DFA:
      1. Mark the start state of 
      2. Repeat until no new states get 

T A A
A.

marked:
      3.       Mark any state that has a transition coming into it from
                any state that is already marked.
      4. If no accept state is marked, ; otherwise "accept reject.
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Equivalence problem for DFAs (T 4.5)

                    

This expression is sometimes called the  of  and . Here  is the complement 
of  The symmetric difference is useful h

L(C ) ( L( A ) L( B ) ) ( L( A ) L( B ))

symmetric difference L( A ) L( B ) L( A )
L( A ).

= ∩ ∪ ∩

ere because  if and only if  
One can construct  from  and  with the constructions for proving the class of regular languages are closed 
under the complement, union, and intersection

L(C ) L( A ) L( B ).
C A B

= ∅ =

. These constructions are algorithms that can be carried out by 
Turing machines. Once  has been  constructed one can use Theorem 4.4 to test whether  is empty. 
If it is empty,  and  must 

C L(C )
L( A ) L( B ) be equal.

="On input  where  and  are DFA´s:
       1. Construct DFA  as described.
       2. Run TM  from Theorem 4.4 on input 
       3. If  accepts,  If  rejects, "

F A,B , A B
C

T C .
T accept. T reject.

{ , |  and are DFAs and ( ) ( )}
 4.5

is a decidable language

DFA

DFA

EQ A B A B L A L B

EQ

= =

Theorem

Proof

L(B)L(A)

The symmetric difference of L(A) and L(B)
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Acceptance problem for CFGs (T 4.6)

{ , |  is a CFG that generates input string }
 4.6

is a decidable language

Relies on the following property :
If  is in Chomsky Normal Form, then any derivation of has length at mo

CFG

CFG

A G w G w

A

G w

=

Theorem

Proof

st 2 w 1
There are only finitely many derivations of length less than .n

−

The TM  for  follows.
="On input  where  is a CFG and  is a string:

      1. Convert  to an equivalent grammar in Chomsky normal form.
      2. List all derivations with  steps, where  

CFGS A
S G,w , G w

G
2n 1 n− is the length of ,

          except if  then instead list all derivations with 1 step.
      3. If any of these derivations generate  ; if not, "

w
n 0,

w, accept reject.
=
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Emptiness testing problem for CFGs
(T 4.7)

{ | is a CFG for which ( ) }
 4.7

is a decidable language

Determine for each variable whether that variable 
is capable of generating a string of terminals

CFG

CFG

E G G L G

E

= = ∅

Theorem

Proof

="On input , where  is a CFG:
       1. Mark all terminal symbols in  
       2. Repeat until no new variables get marked:
       3.     Mark any variable  where  has a rule  and
       

1 2 k

R G G
G.

A G A U U ...U→
        each symbol  has already been marked.

       4. If the start symbol is not marked, ; otherwise "
1 kU ,...,U

accept reject.
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Equivalence problem for CFGs

{ , |  and are CFGs and ( ) ( )}

is not decidable 

Follows later 
The problem with adapting the proof for DFAs
is that the class of context free languages
is not closed under comp

CFG

CFG

EQ G H G H L G L H

EQ

= =

Theorem

Proof

lementation or intersection !
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Every CFL is decidable (T 4.8)

 4.8
Every context free language is decidable

Let  be a CFG for  and design a TM  that decides . We build
a copy of  into . It works as follows.

="On input :
        1. Run TM  (fro

G

G

G

G A M A
G M

M w
S

Theorem

Proof

m T4.6) on input ,
        2. If this machine accepts, ; if it rejects, ."

G w
accept reject
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The relationship amoung classes of languages

regular

context fre
e

decid
able

Turin
g 

recogniza
ble
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The halting problem

There is a specific problem that is algorithmically 
unsolvable (undecidable), e.g. the halting 
problem

Philosophical implications : computers are 
fundamentally limited
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The halting problem (T 4.9)
{ , |  is a TM that accepts }

is Turing recognizable

Consider : ( )
On input < , , where is a TM and a string
      1. Simulate  on 
      2. If ever enters its 

TM

TM

A M w M w

A

U Universal Turing Machine
M w M w

M w
M

=

>

Theorem

Proof

halting 

accept state, ,
         if ever enters its reject state, 

 loops when does, the problem:
 is undecidable

shows that recognizers are more powerful than deciders requires qu
TM

accept
M reject

U M
ATheorem

ite involved proof
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Diagonalization
Georg Cantor 1873
Measure the size of (infinite) sets

Consider the function f: A→B
f is injective (one-to-one), if f(a) ≠ f(b) whenever a ≠ b
f is surjective (onto), if for every b ∈ B there is an a ∈ A: f(a) = b
f is bijective (corresponence) if it is injective and surjective

A and B are said to be the same size, if there exists a bijective function
f, i.e. for every element in A there exists an unique element in B.

Example: f: N(natural numbers) → E(even numbers)
f(n) = 2n is a bijective function
Both sets have the same size

Definition: A set is countable, if it is finite or has the same size as N.

……

2iI

63

42

21

f(n)= 2nn
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{ | , } the positive rational numbers

is countable
 idea

mQ m n N
n

Q

= ∈

Theorem

Proof

Informatik Theorie II (A) WS2009/10

acs-07: Decidability

19

ℝ is uncountable (T 4.14)

the set of real numbers (have a decimal representation)
 (T 4.14)

is uncountable
 idea

We prove (by contradiction) that there is no correspondence between and 
Assume that there were a cor

R

R

R N

=
Theorem

Proof

respondence 
We now construct an  that is not paired with any element of 
Choose  fractional digit of  different from frac. digit of ( )

f
x R N

i th x i th f i
∈

− −
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Example

n f(n)
1 3.1414…
2 5.567…
3 0.888888…
… …

x = 0.275…

So, x ≠ f(n) for all n
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the set of all infinite binary strings

is uncountable
 idea

By analogy to 

Let be the set of all languages over 

is uncountable
 idea

We define a correspondence between   and 
Let

B

B

R

L

L

L B

=

Σ

Lemma

Proof

Lemma

Proof

*
1 2

*

 { , ,...};  which is countable
Each language  in has a unique in  defined as follows

{ , 0, 1, 00, 01, 10, 11, 000, 001, ... } ;
{ 0, 00, 01

characteristic

, 000, 001, ... } ;

 sequence 

0 1 0 1 1 0 0 1 1 ... .

: : (

 

A

A

s s
A L B

A

f L B f

χ

ε

χ

Σ =

Σ =
=
=

→ )  is a correspondenceAA χ=
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Some languages are not Turing-
recognizable (T 4.15)

 (T4.15)
Some languages are not Turing recognizable

There is a countable number of Turing Machines 
(Each Turing Machine can be encoded in a string;
the set of all strings over a finite alphab

Theorem

Proof

et is countable;
not all strings need to encode legal TMs)

The set of all languages is uncountable

Therefore there is no correspondence between the
set of all TMs and the set of all languages.
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ATM is undecidable (T4.9)

{ , |  is a TM that accepts }
 (T4.9)

is undecidable
by contradiction; assume is decidable

Suppose is a decider for 
 if accepts 

( , )
if  does not accept 

TM

TM

TM

TM

A M w M w

A
A

H A
accept M w

H M w
reject M w

=

⎧
< > = ⎨

⎩

Theorem

Proof
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ATM is undecidable (T4.9) (cont.)

2. Output the opposite of what outputs ;

So, 

Use to define :
On input , where is a TM

1. Run  on input  < ,

 if does not accept 
( )

 if  accepts 

 if does
( )

M
H

H D
M M
H M

accept M M
D M

reject M M
and

accept D
D D

< >>

< >⎧
< > = ⎨ < >⎩

< > =
 not accept 

 if  accepts 
This is impossible !

D
reject D D

< >⎧
⎨ < >⎩

 
accepts ,  when  accepts 

 rejects when  accepts 

 rejects  when accepts 

H M w M w

D M M M

D D D D

Further Explanations
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Entry i,j is accept if Mi accepts <Mj>

⋮⋮

acceptacceptM4

...M3

acceptacceptacceptacceptM2

acceptacceptM1

...<M4><M3><M2><M1>
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Entry i,j is the value of H on input <Mi,<Mj>>

⋮⋮

rejectacceptrejectacceptM4

...rejectrejectrejectrejectM3

acceptacceptacceptacceptM2

rejectacceptrejectacceptM1

...<M4><M3><M2><M1>

Informatik Theorie II (A) WS2009/10

acs-07: Decidability

27

What happens if D occurs?

⋱⋮⋮

?acceptacceptrejectrejectD

⋱⋮⋮

acceptrejectacceptrejectacceptM4

...reject...rejectrejectrejectrejectM3

acceptacceptacceptacceptacceptM2

acceptrejectacceptrejectacceptM1

...<D>...<M4><M3><M2><M1>
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T 4.16
A language is  if it is the complement of a language that is Turing recognizable

 (T 4.16)
A language is decidable if and only if it is both Turi

co-Turi

ng-reco

ng recogni

gnizable and co-Tu

za

rin

ble

Theorem

1 2

g recognizable

1. If  is decidable then  and  Turing recognizable
   Trivial

2. If  and  are Turing recognizable  then is decidable

    Let and be TMs for  and  
    Define :
      On inpu

A A A

A A A

M M A A
M

Proof

1 2

1

2

t 
           1. Run both and on  in parallel
           2. If  accepts, then accepts;
               If  accepts, then reject;

w
M M w

M
M

1 2

    decides 

         all strings are either in  or 
          either  or must accept any given string
           always terminates with correct answer
               

M A

A A
M M

M
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ATM is not Turing-recognizable

 (T4.17)

 is not Turing-recognizable

 is Turing-recognizable

If were also Turing-recognizable
Then  would be decidable.

TM

TM

TM

TM

A

A

A
A

Theorem

Proof
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Summary

regular

context fre
e

decid
able

Turin
g 

recogniza
ble

ADFA, ANFA, AREX, 
ACFG,
EDFA, ECFG,
EQDFA

ATM

ATM

The relationship amoung languages


