
Informatik Theorie II (A) WS2009/10

acs-07: Decidability

1

Decidability

Andreas Karwath und Malte Helmert

Informatik Theorie II (A) WS2009/10

acs-07: Decidability

2

Overview

An investigation into the solvable/decidable

Decidable languages

The halting problem (undecidable)

Informatik Theorie II (A) WS2009/10

acs-07: Decidability

3

Decidable problems ?

Acceptance problem :
decide whether an automaton accepts a string

Equivalence problem :
Decide whether two automata are equivalent, i.e.
accept the same language

Emptiness testing problem :
Decide whether the language of an automaton is
empty

Can be applied to
DFA, NFA, REX, PDA, CFG, TM,…

Informatik Theorie II (A) WS2009/10

acs-07: Decidability

4

 4.1
is a decidable language

="On input , , where is a DFA and is a string:
 1. Simulate on input .
 2. If the simulation ends in an accept state, . If it ends

DFAA

M B w B w
B w

accept

Theorem

Proof

in a
 nonaccepting state, ."reject

Acceptance problem for DFAs (T 4.1)

To decide whether a particular DFA accept a given string w, we express this in a
language: ADFA.
ADFA contains the encodings of all DFAs together with the string w the DFAs accept:

{ , | is a DFA that accepts input string }DFAA B w B w=

The problem of testing whether a DFA B accepts w is the same as the problem of
whether <B,w> is a member of language ADFA .

Informatik Theorie II (A) WS2009/10

acs-07: Decidability

5

Acceptance problem for NFAs (T 4.2)

{ , | is an NFA that accepts input string }
 4.2

is a decidable language

NFA

NFA

A B w B w

A

=

Theorem

Proof
="On input where is an NFA, and is a string:

 1. Convert NFA to an equivalent DFA using the procedure for
 this conversion given in Theorem 1.19 (TS2, slide 30).

N B,w B w
B C

ff
 2. Run TM from Theorem 4.1 on input

 3. If accepts, ; otherwise "
Running TM in stage 2 means incorporating into the design of as a
subprocedure.

M C,w .
M accept reject.

M M N

Informatik Theorie II (A) WS2009/10

acs-07: Decidability

6

Acceptance problem for Regular
Expressions (T 4.3)

{ , | is a regular expression that generates input string }
 4.3

is a decidable language
 The following TM P decides A

REX

REX

REX

A R w R w

A

=

Theorem

Proof

="On input where is a regular expression and is a string:
 1. Convert regular expression to an equivalent DFA by using the
 procedure for this conversion given in Theorem 1.28

P R,w R w
R A

.
 2. Run TM on input .
 3. If accepts, if rejects, "

M A,w
M accept; M reject.

Informatik Theorie II (A) WS2009/10

acs-07: Decidability

7

Emptiness testing problem for DFAs
(T 4.4)

{ | is DFA for which () }
 4.4

is a decidable language

DFA

DFA

E A A L A

E

= = ∅

Theorem

Proof
A DFA accepts some string if and only if reaching an accept state from the start state by traveling
along the arrows of the DFA is possible. To test this condition we can design a TM that uses a
mar

T
king algorithm similar to that used in the example about connected graphs in acs-06, slide 33.

="On input where is a DFA:
 1. Mark the start state of
 2. Repeat until no new states get

T A A
A.

marked:
 3. Mark any state that has a transition coming into it from
 any state that is already marked.
 4. If no accept state is marked, ; otherwise "accept reject.

Informatik Theorie II (A) WS2009/10

acs-07: Decidability

8

Equivalence problem for DFAs (T 4.5)

This expression is sometimes called the of and . Here is the complement
of The symmetric difference is useful h

L(C) (L(A) L(B)) (L(A) L(B))

symmetric difference L(A) L(B) L(A)
L(A).

= ∩ ∪ ∩

ere because if and only if
One can construct from and with the constructions for proving the class of regular languages are closed
under the complement, union, and intersection

L(C) L(A) L(B).
C A B

= ∅ =

. These constructions are algorithms that can be carried out by
Turing machines. Once has been constructed one can use Theorem 4.4 to test whether is empty.
If it is empty, and must

C L(C)
L(A) L(B) be equal.

="On input where and are DFA´s:
 1. Construct DFA as described.
 2. Run TM from Theorem 4.4 on input
 3. If accepts, If rejects, "

F A,B , A B
C

T C .
T accept. T reject.

{ , | and are DFAs and () ()}
 4.5

is a decidable language

DFA

DFA

EQ A B A B L A L B

EQ

= =

Theorem

Proof

L(B)L(A)

The symmetric difference of L(A) and L(B)

Informatik Theorie II (A) WS2009/10

acs-07: Decidability

10

Acceptance problem for CFGs (T 4.6)

{ , | is a CFG that generates input string }
 4.6

is a decidable language

Relies on the following property :
If is in Chomsky Normal Form, then any derivation of has length at mo

CFG

CFG

A G w G w

A

G w

=

Theorem

Proof

st 2 w 1
There are only finitely many derivations of length less than .n

−

The TM for follows.
="On input where is a CFG and is a string:

 1. Convert to an equivalent grammar in Chomsky normal form.
 2. List all derivations with steps, where

CFGS A
S G,w , G w

G
2n 1 n− is the length of ,

 except if then instead list all derivations with 1 step.
 3. If any of these derivations generate ; if not, "

w
n 0,

w, accept reject.
=

Informatik Theorie II (A) WS2009/10

acs-07: Decidability

11

Emptiness testing problem for CFGs
(T 4.7)

{ | is a CFG for which () }
 4.7

is a decidable language

Determine for each variable whether that variable
is capable of generating a string of terminals

CFG

CFG

E G G L G

E

= = ∅

Theorem

Proof

="On input , where is a CFG:
 1. Mark all terminal symbols in
 2. Repeat until no new variables get marked:
 3. Mark any variable where has a rule and

1 2 k

R G G
G.

A G A U U ...U→
 each symbol has already been marked.

 4. If the start symbol is not marked, ; otherwise "
1 kU ,...,U

accept reject.

Informatik Theorie II (A) WS2009/10

acs-07: Decidability

12

Equivalence problem for CFGs

{ , | and are CFGs and () ()}

is not decidable

Follows later
The problem with adapting the proof for DFAs
is that the class of context free languages
is not closed under comp

CFG

CFG

EQ G H G H L G L H

EQ

= =

Theorem

Proof

lementation or intersection !

Informatik Theorie II (A) WS2009/10

acs-07: Decidability

13

Every CFL is decidable (T 4.8)

 4.8
Every context free language is decidable

Let be a CFG for and design a TM that decides . We build
a copy of into . It works as follows.

="On input :
 1. Run TM (fro

G

G

G

G A M A
G M

M w
S

Theorem

Proof

m T4.6) on input ,
 2. If this machine accepts, ; if it rejects, ."

G w
accept reject

Informatik Theorie II (A) WS2009/10

acs-07: Decidability

14

The relationship amoung classes of languages

regular

context fre
e

decid
able

Turin
g

recogniza
ble

Informatik Theorie II (A) WS2009/10

acs-07: Decidability

15

The halting problem

There is a specific problem that is algorithmically
unsolvable (undecidable), e.g. the halting
problem

Philosophical implications : computers are
fundamentally limited

Informatik Theorie II (A) WS2009/10

acs-07: Decidability

16

The halting problem (T 4.9)
{ , | is a TM that accepts }

is Turing recognizable

Consider : ()
On input < , , where is a TM and a string
 1. Simulate on
 2. If ever enters its

TM

TM

A M w M w

A

U Universal Turing Machine
M w M w

M w
M

=

>

Theorem

Proof

halting

accept state, ,
 if ever enters its reject state,

 loops when does, the problem:
 is undecidable

shows that recognizers are more powerful than deciders requires qu
TM

accept
M reject

U M
ATheorem

ite involved proof
Informatik Theorie II (A) WS2009/10

acs-07: Decidability

17

Diagonalization
Georg Cantor 1873
Measure the size of (infinite) sets

Consider the function f: A→B
f is injective (one-to-one), if f(a) ≠ f(b) whenever a ≠ b
f is surjective (onto), if for every b ∈ B there is an a ∈ A: f(a) = b
f is bijective (corresponence) if it is injective and surjective

A and B are said to be the same size, if there exists a bijective function
f, i.e. for every element in A there exists an unique element in B.

Example: f: N(natural numbers) → E(even numbers)
f(n) = 2n is a bijective function
Both sets have the same size

Definition: A set is countable, if it is finite or has the same size as N.

……

2iI

63

42

21

f(n)= 2nn

Informatik Theorie II (A) WS2009/10

acs-07: Decidability

18

{ | , } the positive rational numbers

is countable
 idea

mQ m n N
n

Q

= ∈

Theorem

Proof

Informatik Theorie II (A) WS2009/10

acs-07: Decidability

19

ℝ is uncountable (T 4.14)

the set of real numbers (have a decimal representation)
 (T 4.14)

is uncountable
 idea

We prove (by contradiction) that there is no correspondence between and
Assume that there were a cor

R

R

R N

=
Theorem

Proof

respondence
We now construct an that is not paired with any element of
Choose fractional digit of different from frac. digit of ()

f
x R N

i th x i th f i
∈

− −

Informatik Theorie II (A) WS2009/10

acs-07: Decidability

20

Example

n f(n)
1 3.1414…
2 5.567…
3 0.888888…
… …

x = 0.275…

So, x ≠ f(n) for all n

Informatik Theorie II (A) WS2009/10

acs-07: Decidability

21

the set of all infinite binary strings

is uncountable
 idea

By analogy to

Let be the set of all languages over

is uncountable
 idea

We define a correspondence between and
Let

B

B

R

L

L

L B

=

Σ

Lemma

Proof

Lemma

Proof

*
1 2

*

 { , ,...}; which is countable
Each language in has a unique in defined as follows

{ , 0, 1, 00, 01, 10, 11, 000, 001, ... } ;
{ 0, 00, 01

characteristic

, 000, 001, ... } ;

 sequence

0 1 0 1 1 0 0 1 1

: : (

A

A

s s
A L B

A

f L B f

χ

ε

χ

Σ =

Σ =
=
=

→) is a correspondenceAA χ=

Informatik Theorie II (A) WS2009/10

acs-07: Decidability

22

Some languages are not Turing-
recognizable (T 4.15)

 (T4.15)
Some languages are not Turing recognizable

There is a countable number of Turing Machines
(Each Turing Machine can be encoded in a string;
the set of all strings over a finite alphab

Theorem

Proof

et is countable;
not all strings need to encode legal TMs)

The set of all languages is uncountable

Therefore there is no correspondence between the
set of all TMs and the set of all languages.

Informatik Theorie II (A) WS2009/10

acs-07: Decidability

23

ATM is undecidable (T4.9)

{ , | is a TM that accepts }
 (T4.9)

is undecidable
by contradiction; assume is decidable

Suppose is a decider for
 if accepts

(,)
if does not accept

TM

TM

TM

TM

A M w M w

A
A

H A
accept M w

H M w
reject M w

=

⎧
< > = ⎨

⎩

Theorem

Proof

Informatik Theorie II (A) WS2009/10

acs-07: Decidability

24

ATM is undecidable (T4.9) (cont.)

2. Output the opposite of what outputs ;

So,

Use to define :
On input , where is a TM

1. Run on input < ,

 if does not accept
()

 if accepts

 if does
()

M
H

H D
M M
H M

accept M M
D M

reject M M
and

accept D
D D

< >>

< >⎧
< > = ⎨ < >⎩

< > =
 not accept

 if accepts
This is impossible !

D
reject D D

< >⎧
⎨ < >⎩

accepts , when accepts

 rejects when accepts

 rejects when accepts

H M w M w

D M M M

D D D D

Further Explanations

Informatik Theorie II (A) WS2009/10

acs-07: Decidability

25

Entry i,j is accept if Mi accepts <Mj>

⋮⋮

acceptacceptM4

...M3

acceptacceptacceptacceptM2

acceptacceptM1

...<M4><M3><M2><M1>

Informatik Theorie II (A) WS2009/10

acs-07: Decidability

26

Entry i,j is the value of H on input <Mi,<Mj>>

⋮⋮

rejectacceptrejectacceptM4

...rejectrejectrejectrejectM3

acceptacceptacceptacceptM2

rejectacceptrejectacceptM1

...<M4><M3><M2><M1>

Informatik Theorie II (A) WS2009/10

acs-07: Decidability

27

What happens if D occurs?

⋱⋮⋮

?acceptacceptrejectrejectD

⋱⋮⋮

acceptrejectacceptrejectacceptM4

...reject...rejectrejectrejectrejectM3

acceptacceptacceptacceptacceptM2

acceptrejectacceptrejectacceptM1

...<D>...<M4><M3><M2><M1>

Informatik Theorie II (A) WS2009/10

acs-07: Decidability

28

T 4.16
A language is if it is the complement of a language that is Turing recognizable

 (T 4.16)
A language is decidable if and only if it is both Turi

co-Turi

ng-reco

ng recogni

gnizable and co-Tu

za

rin

ble

Theorem

1 2

g recognizable

1. If is decidable then and Turing recognizable
 Trivial

2. If and are Turing recognizable then is decidable

 Let and be TMs for and
 Define :
 On inpu

A A A

A A A

M M A A
M

Proof

1 2

1

2

t
 1. Run both and on in parallel
 2. If accepts, then accepts;
 If accepts, then reject;

w
M M w

M
M

1 2

 decides

 all strings are either in or
 either or must accept any given string
 always terminates with correct answer

M A

A A
M M

M

Informatik Theorie II (A) WS2009/10

acs-07: Decidability

29

ATM is not Turing-recognizable

 (T4.17)

 is not Turing-recognizable

 is Turing-recognizable

If were also Turing-recognizable
Then would be decidable.

TM

TM

TM

TM

A

A

A
A

Theorem

Proof

Informatik Theorie II (A) WS2009/10

acs-07: Decidability

30

Summary

regular

context fre
e

decid
able

Turin
g

recogniza
ble

ADFA, ANFA, AREX,
ACFG,
EDFA, ECFG,
EQDFA

ATM

ATM

The relationship amoung languages

