
Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

1

Turing Machines

Andreas Karwath & Malte Helmert

Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

2

Overview

Turing machines
Variants of Turing machines

Multi-tape
Non-deterministic
…

The definition of algorithm
The Church-Turing Thesis

Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

3

Turing Machine

Infinite tape
Both read and write from tape
Move left and right
Special accept and reject state take immediate effect
Machine can accept, reject or loop

state
control

a a b b input□ □ □

Schematic of a Turing Machine

Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

4

*{ # | {0,1} }F w w w= ∈
= "On input string :

 1. Scan the input to be sure that it contains a single # symbol. If
 not,
 2. Zig-zag across the tape to corresponding positions on either side
 of

1M w

reject.

 the # symbol to check on whether these positions contain the
 same symbol. If they do not, Cross off symbols as they
 are checked to keep track of which symbols correspond.

reject.

 3. When all symbols to the left of the # have been crossed off, check
 for any remaining symbols to the right of the #. If any symbols
 remain, ; otherwise "reject accept.

Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

5

*{ # | {0,1} }F w w w= ∈

..
.□00011X#0001XX

..
.□XXXXXX#XXXXXX

..
.□00011X#00011X

..
.□00011X#00011X

..
.□000110#00011X

..
.□000110#000110

accept

Snapshots of the Turing machine computing on input 011000#011000

Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

6

Turing Machines

A is a 7-tuple, (), where

Γ are all finite sets and

1. Q is the set of states,
2. is the input alphabet not containing the special symbol ,
3. Γ is th

0 accept rejectTuring machine Q, , , q ,q ,q

Q, ,

blank

ΓΣ δ,

Σ

Σ
e tape alphabet, where Γ and Γ,

4. : Γ Γ { } is the transition function,
5. is the start state,
6. is the accept state, and

7. is the reject state, where

0

accept

reject reject acc

Q Q L,R
q Q
q Q

q Q q q

∈ Σ ⊆

δ × ⎯⎯→ × ×
∈

∈

∈ ≠ ept .

Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

7

Configurations

yields

yiel

 if (,) (, ,)

if (,) (, ,)

cannot go beyond left bord

er

d

!

s
i j i j

i j i j

ua q bv u q acv q b q c L

ua q bv uac q v q b q c R

δ

δ

=

=

0

1

1

start configuration
accepting configuration - state is
rejecting configuration - state is

A input if a sequence
of con

Turing Machin
figurations ,..., exists where

1. is

e acce

pts

accept

reject

k

q w
q

q

w
C C

C

1

start configuration
2. Each yields
3. is an accepting state

i i

k

C C
C

+

□ □

q7

A Turing machine with the configuration 1011q701111

1 0 1 1 0 1 1 1 1 □

Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

8

Languages

The collection of strings that M accepts is the
language of M, L(M) (or L(M) is language
recognized by M)
A language is Turing-recognizable (recursively
enumerable) if some Turing machine accepts it
Deciders halt on every input (i.e. they do not
loop)
A language is Turing-decidable (recursive) if
some Turing machine decides it

Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

9

Example 3.4

This is the description of a TM that recognizes the language consisting of
all strings of whose length is a power of 2. It decides the language

="On input string :
 1. Sweep l

n

2

2

2

M
0s

A {0 | n 0 }.

M w

= ≥

eft to right across the tape, crossing off every other 0.
 2. If in stage 1 the tape contained a single 0, .
 3. If in stage 1 the tape contained more than a single 0 and the

accept

 number of was odd,
 4. Return the head to the left-hand end of the tape.
 5. Go to stage 1."

0s reject.

Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

10

q1 q2

q5

q3

q4qacceptqreject

State diagram for Turing machine M2

0→□,R 0 → x,R
□ →R
x → R

□ → R

□ → R

x → R

x → R

x → R

0 → L
x → L

0 → x,R
0 → R

□ →
R

□
→

L

Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

11

0000q1 000q2□ 00q3x□ 0q40x□ □q3x0x□ □xq50x□ □x0q5x□ □x0xq5□ □x0x□q5 □x0xq2□ □x0q2x□ □xq3xx□ □xq5xx□ □q3xxx□ □xxq5x□ □xxx□q5 □xxxq5□ □xxxq2□ □xxq2x□ □q2xxx□ □xq2xx□ qaccept□xxx□

q1 q2

q5

q3

q4qacceptqreject

0→□,R 0 → x,R

□ →R
x → R

□ → R

□ → R

x → R

x → R

x → R

0 → L
x → L

0 → x,R
0 → R

□ →
R □

→
L

Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

12

Example 3.5

*{ # | {0,1} }F w w w= ∈

= "On input string :
 1. Scan the input to be sure that it contains a single # symbol. If
 not,
 2. Zig-zag across the tape to corresponding positions on either side
 of

1M w

reject.

 the # symbol to check on whether these positions contain the
 same symbol. If they do not, Cross off symbols as they
 are checked to keep track of which symbols correspond.

reject.

 3. When all symbols to the left of the # have been crossed off, check
 for any remaining symbols to the right of the #. If any symbols
 remain, ; otherwise "reject accept.

Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

13

Example 3.4
The TM is doing some elementary arithmetic. It

decides the language { and }.

"On input string :
 1. Scan the input from left to right to be sure that it is a member

3
i j k

3

M

C a b c | i j k i, j ,k 1

M w

= × = ≥

=

 of and if it isn t́.
 2. Return the head to the left-hand end of the tape.
 3. Cross off an and scan to the right until a occurs. Shuttle
 betw

* * *a b c reject

a b
een the ´s and the ´s, crossing off one of each until all

 ´s are gone.
 4. Restore the crossed off s and repeat stage 3 if there is another
 to cross off. If

b c
b

b́
a all ´s are crossed off, check on whether all

 ´s also are crossed off. If yes, ; otherwise, ."
a

c accept reject

Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

14

Example 3.7

The Turing machine is solving what is called the
 . It is given a list of strings over { } separated by

#s and its job is to accept if all the strings are different. The

4M element
distinctness problem 0,1

*

language is

 { | each { } and for each }

Machine works by comparing and through , then by comparing
 and through and so on. An informal description o

1 2 l i i j

4 1 2 l

2 3 l

E # x # x # ...# x x 0,1 x x i j

M x x x
x x x ,

= ∈ ≠ ≠

f the TM
deciding this language follows:

4M

Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

15

Example 3.7 (cont.)
"On input :

 1. Place a mark on top of the leftmost tape symbol. If that symbol
 was a blank, . If that symbol was a #, continue with the
 next stage. Otherwise,

4M w

accept

=

 2. Scan right to the next # and place a second mark on top of it. If
 no # is encountered before a blank symbol, only was present,
 so
 3. By z

1

reject.

x
accept.

ig-zagging, compare the two strings to the right of the
 marked #s. If they are equal,
 4. Move the rightmost of the two marks to the next # symbol to
 the right.

reject.

 If no # symbol is encountered before a blank symbol,
 move the leftmost mark to the next # to its right and the
 rightmost mark to the # after that. This time, if no # is available
 for the rightmost mark, all the strings have been compared, so

 5. Go to Stage 3."

accept.

Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

16

Variants of Turing Machines

Most of them turn out to be equivalent to original
model
E.g. consider movements of head on tape
{L,R,S} where S denotes “same” (for “same
position” or “stay put”)
Equivalent to original model (represent S
transition by first R and then L, or vice versa)

Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

17

Multi-tape Turing Machines

1 1

The input appears on Tape 1; others start off blank
Transition function becomes

: { , }
(, ,...,) (, ,..., , , ,...,)

k k k

i k j k

Q Q L R
q a a q b b L R R

δ
δ

×Γ → ×Γ ×
=

Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

18

Every multitape Turing machine has an equivalent single tape Turing machine.
Theorem

Representing three tapes with a single one

Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

19

A language is Turing recognizable if and only if some multitape TM recognizes it.
Corollary

="On input
 1. First puts its tape into the format that represents all tapes of . The formatted
 tape contains

 #
 2. To simula

1 n

• ••

1 2 n

S w w ...w :
S k M

w w ...w # # # ...#

=

te a single move, scans its tape from the first #, which marks the left-hand
 end, to the (k+1)st #, which marks the right-hand end, in order to determine the symbols
 under the v

S

irtual heads. Then makes a second pass to update the tapes according
 to the way that ´s transition function dictates.
 3. If at any point moves one of the virtual heads to the right

S
M

S onto a #, this action signifies
 that has moved the corresponding head onto the previously unread blank portion of
 that tape. So writes a blank symbol on this tape cell and shi

M
S fts the tape contents, from this

 cell until the rightmost #, one unit to the right. Then it continues the simulation as before."

Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

20

Non-deterministic TMs

1 1

Transition function becomes
: ({ , })
(,) {(, ,),..., (, ,)}

Same idea/method as for NFAs
k k

Q Q L R
q a q b L q b R

δ
δ

×Γ→ Ρ ×Γ×
=

q1

q1

q3q2q1

q3q1

q2q1 q3 q4

q4

q4

q2q1 q3

q3q1

q4

q4

Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

21

Non-deterministic TMs

Every non-deterministc Turing machine has an equivalent
deterministic Turing machine.

Theorem

q1

q1

q3q2q1

q3q1

q2q1 q3 q4

q4

q4

q2q1 q3

q3q1

q4

q4

Numbering the computation.
Work with three tapes :
1. input tape (unchanged)
2. simulator tape
3. index for computation path in the tree -

 alphabet {1,..., }b bΣ =

Proof idea

Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

22

1. Initially tape 1 contains the input and tapes 2 and 3 are empty.
2. Copy tape 1 to tape 2.
3. Use tape 2 to simulate with input on one branch of its non-
 deterministic computation. Before e

w,

N w
ach step of consult the next

 symbol on tape 3 to determine which choice to make among those
 allowed by s transition function. If no more symbols remain on
 tape 3 or if this nondeterminist

N

N´
ic chice is invalid, abort this branch by

 going to stage 4. Also go to stage 4 if a rejecting configuration is
 encountered. If an accepting configuration is encountered,
 the input.
4.

accept

Replace the string on tape 3 with the lexicographically next string.
 Simulate the next branch of s computation by going to stage 2.N´

q1

q1

q3q2q1

q3q1

q2q1 q3 q4

q4

q4

q2q1 q3

q3q1

q4

q4

Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

23

A language is Turing-recognizable if and only if some
non-deterministic TM recognizes it.

A language is decidable if and only if some non-deterministic
TM decides it.

Theorem

Corollary

Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

24

Enumerators

Turing recognizable = Recursively enumerable
Therefore, alternative model of TM,
Works with input tape (initially empty) and output tape (printer).
The language enumerated by an Enume

enumer

rator

ator

 E, is the collection of
all strings that it eventually prints out (in any order, with possible
repetitions).

Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

25

Theorem 3.13
A language is Turing-recognizable if and only if some enumerator enumerates it.

PROOF
First we show that if we have an enumerator that enumerates a languages
a TM recognizes
The TM works in

E A,
M A.

M the following way.
"On input :

 1. Run . Every time that outputs a string, compare it with
 2. If ever appears in the output of ."
Clearly, accepts those strings th

M w
E E w.

w E, accept
M

=

at appear on ´s list.E

Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

26

Theorem 3.13 (cont.)
A language is Turing-recognizable if and only if some enumerator enumerates it.

PROOF (other direction)
If TM recognizes a language , we can construct the
following enumerator for
Say that 1 2

M A
E A.

s ,s is a list of all possible strings in
="Ignore the input.

 1. Repeat tho following for
 2. Run for steps on each input,
 3.

3

1 2 i

,s ,... .
E

i 1,2,3,...
M i s ,s ,...,s .

∗Σ

=

 If any computations accept, print out the corresponding "

If accepts a particular string , eventually it will appear on the list genereated
by In fact, it will appear on the list infinit

js .

M s
E. ely many times because runs from

the beginning on each string for each repetition of step 1. This procedure gives
the effect of running in parallel on all possible input strings.

M

M

Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

27

Equivalence with other models

Many variants of TMs (and related constructs) exist.
All of them turn out to be equivalent in power (under
reasonable assumptions, such as finite amount of work
in single step)
Programming languages : Lisp, Haskell, Pascal, Java, C,
…
The class of algorithms described is natural and identical
for all these constructs.
For a given task, one type of construct may be more
elegant.

Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

28

The definition of an algorithm

David Hilbert
Paris, 1900, Intern. Congress of Maths.
23 mathematical problems formulated

10th problem
“to devise an algorithm that tests whether a
polynomial has an integral root”
Algorithm = “a process according to which it
can be determined by a finite number of
operations”

Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

29

Integral roots of polynomials

There is no algorithm that solves this task.
A formal notion of algorithm is necessary.
Alonso Church : λ-calculus (cf. functional programming)
Allen Turing : Turing machines

3 2 36 3 10
= assignment of values to variables so that

 val
root

integral root
ue of polynomial equals 0

= all values in assignment are integers

x yz xy x+ − −

Intuitive notion of algorithm
=

Turing machine algorithms

−Church Turing Thesis

Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

30

Integral roots of polynomials

There is no algorithm that solves this task.
A formal notion of algorithm is necessary.
Alonso Church : λ-calculus (cf. functional programming)
Allen Turing : Turing machines

1

1

{ | is a polynomial with an integral root}
Hilbert's 10th problem : is ?

is not decidable, but
Consider { | is a polynomial over

decidable
Turing recognizab

 with an integral root}
Define :

le

D p p
D

D
D p p x

M

=

=

1

1

"the input is a polynomial over
 1. Evaluate wrt set to 0,1,-1,2,-2,3,-3,...
 If at any point evaluates to 0, accept"
This is a f deciderrecogni or but not a

can be converted

zer

 into a d

x
p x

p
D

M max

1

1 max

1

ecider using the bounds for

: number of terms; : coefficient highest order term; : largest absol. value coeff.
Extension of exist to but remains a recognizer

ck x
c

k c c
M D

±

Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

31

Turing machines

Three levels of description
Formal description
Implementation level
High-level description

The algorithm is described
From now on, we use this level of description

1 1

: describes object

,..., : describes objects ,...,
Encodings can be done in multiple manners;
often not relevant because one encoding (and therefore TM
can be transformed into another one)

k k

O O

O O O O

STRINGS!!

Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

32

Connected graphs

{ | is a connected undirected graph}
connected = every node can be reached from every other node
A G G=

A (connected) graph G

4

1

23

G =

Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

33

="On input the encoding of a graph :
 1. Select the first node of and mark it.
 2. Repeat the following stage until no new nodes are marked.
 3. For each node in mar

M G , G
G

G, k it if it is attached by an edge to a
 node that is already marked.
 4. Scan all the nodes of to determine whether they all are marked.
 If they are, ; otherw

G
accept ise ."reject

A (connected) graph G and its encoding

<G> = (1,2,3,4) ((1,2),(2,3),(3,1),(1,4))

4

1

23

G =

Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

34

Summary

Turing machines
Variants of Turing machines

Multi-tape
Non-deterministic
…

The definition of algorithm
The Church-Turing Thesis

