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Overview

Turing machines 
Variants of Turing machines

Multi-tape
Non-deterministic
…

The definition of algorithm
The Church-Turing Thesis
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Turing Machine

Infinite tape
Both read and write from tape
Move left and right
Special accept and reject state take immediate effect
Machine can accept, reject or loop

state
control

a a b b input□ □ □

Schematic of a Turing Machine
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*{ # |  {0,1} }F w w w= ∈
= "On input string :

     1. Scan the input to be sure that it contains a single # symbol. If
         not, 
     2. Zig-zag across the tape to corresponding positions on either side
         of

1M w

reject.

 the # symbol to check on whether these positions contain the
         same symbol. If they do not,  Cross off symbols as they 
         are checked to keep track of which symbols correspond.
    

reject.

 3. When all symbols to the left of the # have been crossed off, check
         for any remaining symbols to the right of the #. If any symbols
         remain, ; otherwise "reject accept.
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*{ # |  {0,1} }F w w w= ∈

..
.□00011X#0001XX

..
.□XXXXXX#XXXXXX

..
.□00011X#00011X

..
.□00011X#00011X

..
.□000110#00011X

..
.□000110#000110

accept

Snapshots of the Turing machine computing on input 011000#011000  
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Turing Machines

A   is a 7-tuple, ( ), where

Γ are all finite sets and

1. Q is the set of states,
2.  is the input alphabet not containing the special  symbol ,
3. Γ is th

0 accept rejectTuring machine Q, , , q ,q ,q

Q, ,

blank

ΓΣ δ,

Σ

Σ
e tape alphabet, where Γ and Γ,

4. : Γ Γ { } is the transition function,
5.  is the start state,
6.  is the accept state, and

7.  is the reject state, where 

0

accept

reject reject acc

Q Q L,R
q Q
q Q

q Q q q

∈ Σ ⊆

δ × ⎯⎯→ × ×
∈

∈

∈ ≠ ept .
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Configurations

yields

yiel

  if ( , ) ( , , )

if ( , ) ( , , )

cannot go beyond left bord

 

er 

d

!

s
i j i j

i j i j

ua q bv u q acv q b q c L

ua q bv uac q v q b q c R

δ

δ

=

=

0

1

1

start configuration 
accepting configuration - state is 
rejecting configuration - state is 

A  input  if a sequence
of con

Turing Machin
figurations ,..., exists where

1.  is

e acce

 

pts

accept

reject

k

q w
q

q

w
C C

C

1

start configuration
2.  Each yields 
3.  is an accepting state

i i

k

C C
C

+

□ □

q7

A Turing machine with the configuration 1011q701111

1 0 1 1 0 1 1 1 1 □
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Languages

The collection of strings that M accepts is the 
language of M, L(M) (or L(M) is language 
recognized by M)
A language is Turing-recognizable (recursively 
enumerable) if some Turing machine accepts it
Deciders halt on every input (i.e. they do not 
loop)
A language is Turing-decidable (recursive) if 
some Turing machine decides it 
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Example 3.4

This is the description of a TM  that recognizes the language consisting of
all strings of  whose length is a power of 2. It decides the language

="On input string :
        1. Sweep l

n

2

2

2

M
0s

A {0 | n 0 }.

M w

= ≥

eft to right across the tape, crossing off every other 0.
        2. If in stage 1 the tape contained a single 0, .
        3. If in stage 1 the tape contained more than a single 0 and the
        

accept

    number of  was odd, 
        4. Return the head to the left-hand end of the tape.
        5. Go to stage 1."

0s reject.
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q1 q2

q5

q3

q4qacceptqreject

State diagram for Turing machine M2

0→□,R 0 → x,R
□ →R
x → R

□ → R

□ → R

x → R

x → R

x → R

0 → L
x → L

0 → x,R
0 → R

□ →
R

□
→

L
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0000q1 000q2□ 00q3x□ 0q40x□ □q3x0x□ □xq50x□ □x0q5x□ □x0xq5□ □x0x□q5 □x0xq2□ □x0q2x□ □xq3xx□ □xq5xx□ □q3xxx□ □xxq5x□ □xxx□q5 □xxxq5□ □xxxq2□ □xxq2x□ □q2xxx□ □xq2xx□ qaccept□xxx□

q1 q2

q5

q3

q4qacceptqreject

0→□,R 0 → x,R

□ →R
x → R

□ → R

□ → R

x → R

x → R

x → R

0 → L
x → L

0 → x,R
0 → R

□ →
R □

→
L
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Example 3.5

*{ # |  {0,1} }F w w w= ∈

= "On input string :
     1. Scan the input to be sure that it contains a single # symbol. If
         not, 
     2. Zig-zag across the tape to corresponding positions on either side
         of

1M w

reject.

 the # symbol to check on whether these positions contain the
         same symbol. If they do not,  Cross off symbols as they 
         are checked to keep track of which symbols correspond.
    

reject.

 3. When all symbols to the left of the # have been crossed off, check
         for any remaining symbols to the right of the #. If any symbols
         remain, ; otherwise "reject accept.
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Example 3.4
The TM  is doing some elementary arithmetic. It

decides the language {  and }.

"On input string :
          1. Scan the input from left to right to be sure that it is a member
  

3
i j k

3

M

C a b c | i j k i, j ,k 1

M w

= × = ≥

=

            of  and  if it isn t́.
          2. Return the head to the left-hand end of the tape.
          3. Cross off an  and scan to the right until a  occurs. Shuttle
              betw

* * *a b c reject

a b
een the ´s and the ´s, crossing off one of each until all 

              ´s are gone.
          4. Restore the crossed off s and repeat stage 3 if there is another 
               to cross off. If 

b c
b

b́
a all ´s are crossed off, check on whether all

              ´s also are crossed off. If yes, ; otherwise, ."
a

c accept reject
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Example 3.7

The Turing machine  is solving what is called the 
 . It is given a list of strings over { } separated by

#s and its job is to accept if all the strings are different. The 

4M element
distinctness problem 0,1

*

language is

      { | each { }  and  for each }

Machine  works by comparing  and  through , then by comparing
 and  through  and so on. An informal description o

1 2 l i i j

4 1 2 l

2 3 l

E # x # x # ...# x x 0,1 x x i j

M x x x
x x x ,

= ∈ ≠ ≠

f the TM 
deciding this language follows:

4M
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Example 3.7 (cont.)
"On input :

         1. Place a mark on top of the leftmost tape symbol. If that symbol
             was a blank, . If that symbol was a #, continue with the
             next stage. Otherwise,

4M w

accept

=

 
         2. Scan right to the next # and place a second mark on top of it. If
             no # is encountered before a blank symbol, only  was present,
             so 
         3. By z

1

reject.

x
accept.

ig-zagging, compare the two strings to the right of the 
             marked #s. If they are equal, 
         4. Move the rightmost of the two marks to the next # symbol to
             the right.

reject.

 If no # symbol is encountered before a blank symbol,
             move the leftmost mark to the next # to its right and the 
             rightmost mark to the # after that. This time, if no # is available
             for the rightmost mark, all the strings have been compared, so 
             
         5. Go to Stage 3."

accept.
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Variants of Turing Machines

Most of them turn out to be equivalent to original 
model
E.g. consider movements of head on tape 
{L,R,S} where S denotes “same” (for “same 
position” or “stay put”)
Equivalent to original model (represent S 
transition by first R and then L, or vice versa)
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Multi-tape Turing Machines

1 1

The input appears on Tape 1; others start off blank
Transition function becomes 

: { , }
( , ,..., ) ( , ,..., , , ,..., )

k k k

i k j k

Q Q L R
q a a q b b L R R

δ
δ

×Γ → ×Γ ×
=
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Every multitape Turing machine has an equivalent single tape Turing machine.
Theorem

Representing three tapes with a single one
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A language is Turing recognizable if and only if some multitape TM recognizes it.
Corollary

="On input 
      1. First  puts its tape into the format that represents all  tapes of . The formatted 
          tape contains

                    #
      2. To simula

1 n

• ••

1 2 n

S w w ...w :
S k M

w w ...w # # # ...#

=

te a single move,  scans its tape from the first #, which marks the left-hand 
          end, to the (k+1)st #, which marks the  right-hand end, in order to determine the symbols 
          under the v

S

irtual heads. Then  makes a second pass to update the tapes according 
          to the way that ´s transition function dictates.
      3. If at any point  moves one of the virtual heads to the right

S
M

S onto a #, this action signifies 
          that  has moved the corresponding head onto the previously unread blank portion of 
          that tape. So  writes a blank symbol on this tape cell and shi

M
S fts the tape contents, from this

          cell until the rightmost #, one unit to the right. Then it continues the simulation as before."
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Non-deterministic TMs

1 1

Transition function becomes 
: ( { , })
( , ) {( , , ),..., ( , , )}

Same idea/method as for NFAs
k k

Q Q L R
q a q b L q b R

δ
δ

×Γ→ Ρ ×Γ×
=

q1

q1

q3q2q1

q3q1

q2q1 q3 q4

q4

q4

q2q1 q3

q3q1

q4

q4
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Non-deterministic TMs

Every non-deterministc Turing machine has an equivalent 
deterministic Turing machine.

Theorem

q1

q1

q3q2q1

q3q1

q2q1 q3 q4

q4

q4

q2q1 q3

q3q1

q4

q4

 
Numbering the computation.
Work with three tapes :
1. input tape (unchanged)
2. simulator tape
3. index for computation path in the tree - 

   alphabet {1,..., }b bΣ =

Proof idea
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1. Initially tape 1 contains the input  and tapes 2 and 3 are empty.
2. Copy tape 1 to tape 2.
3. Use tape 2 to simulate  with input  on one branch of its non-
    deterministic computation. Before e

w,

N w
ach step of  consult the next

    symbol on tape 3 to determine which choice to make among those
    allowed by s transition function. If no more symbols remain on
    tape 3 or if this nondeterminist

N

N´
ic chice is invalid, abort this branch by

    going to stage 4. Also go to stage 4 if a rejecting configuration is
    encountered. If an accepting configuration is encountered,  
    the input.
4. 

accept

Replace the string on tape 3 with the lexicographically next string. 
    Simulate the next branch of s computation by going to stage 2.N´

q1

q1

q3q2q1

q3q1

q2q1 q3 q4

q4

q4

q2q1 q3

q3q1

q4

q4
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A language is Turing-recognizable if and only if some 
non-deterministic TM recognizes it.

A language is decidable if and only if some non-deterministic
TM decides it.

Theorem

Corollary
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Enumerators

Turing recognizable = Recursively enumerable
Therefore, alternative model of TM, 
Works with input tape (initially empty) and output tape (printer).
The language enumerated by an Enume

enumer

rator

ator

 E, is the collection of 
all strings that it eventually prints out (in any order, with possible
repetitions).
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Theorem 3.13
A language is Turing-recognizable if and only if some enumerator enumerates it.

PROOF
First we show that if we have an enumerator  that enumerates a languages  
a TM  recognizes  
The TM  works in 

E A,
M A.

M the following way.
"On input :

          1. Run . Every time that  outputs a string, compare it with 
          2. If  ever appears in the output of  ."
Clearly,  accepts those strings th

M w
E E w.

w E, accept
M

=

at appear on ´s list.E
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Theorem 3.13 (cont.)
A language is Turing-recognizable if and only if some enumerator enumerates it.

PROOF (other direction)
If TM  recognizes a language , we can construct the 
following enumerator  for  
Say that 1 2

M A
E A.

s ,s  is a list of all possible strings in 
="Ignore the input.

          1. Repeat tho following for 
          2.         Run  for  steps on each input, 
          3.    

3

1 2 i

,s ,... .
E

i 1,2,3,...
M i s ,s ,...,s .

∗Σ

=

     If any computations accept, print out the corresponding "

If  accepts a particular string , eventually it will appear on the list  genereated 
by  In fact, it will appear on the list infinit

js .

M s
E. ely many times because  runs from 

the beginning on each string for each repetition of step 1. This procedure gives
the effect of running  in parallel on all possible input strings.

M

M
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Equivalence with other models

Many variants of TMs (and related constructs) exist.
All of them turn out to be equivalent  in power (under 
reasonable assumptions, such as finite amount of work 
in single step)
Programming languages : Lisp, Haskell, Pascal, Java, C, 
…
The class of algorithms described is natural and identical 
for all these constructs.
For a given task, one type of construct may be more 
elegant.



Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

28

The definition of an algorithm

David Hilbert
Paris, 1900, Intern. Congress of Maths.
23 mathematical problems formulated

10th problem 
“to devise an algorithm that tests whether a 
polynomial has an integral root”
Algorithm = “a process according to which it 
can be determined by a finite number of 
operations”
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Integral roots of polynomials

There is no algorithm that solves this task. 
A formal notion of algorithm is necessary.
Alonso Church : λ-calculus (cf. functional programming)
Allen Turing : Turing machines

3 2 36 3 10
= assignment of values to variables so that 

           val
root 

integral root 
ue of polynomial equals 0

= all values in assignment are integers

x yz xy x+ − −

Intuitive notion of algorithm
=

Turing machine algorithms

−Church Turing Thesis
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Integral roots of polynomials

There is no algorithm that solves this task. 
A formal notion of algorithm is necessary.
Alonso Church : λ-calculus (cf. functional programming)
Allen Turing : Turing machines

1

1

{ | is a polynomial with an integral root}
Hilbert's 10th problem : is  ?

is not decidable, but 
Consider { | is a polynomial over 

decidable
Turing recognizab

 with an integral root}
Define :
   

le

D p p
D

D
D p p x

M

=

=

1

1

"the input is a polynomial over 
    1. Evaluate wrt set to 0,1,-1,2,-2,3,-3,...
        If at any point evaluates to 0, accept"
This is a  f deciderrecogni or but not a 

can be converted

zer

 into a d

x
p x

p
D

M max

1

1 max

1

ecider using the bounds for 

: number of terms; : coefficient highest order term; : largest absol. value coeff.
Extension of exist to  but remains a recognizer

ck x
c

k c c
M D

±
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Turing machines

Three levels of description 
Formal description
Implementation level
High-level description 

The algorithm is described
From now on, we use this level of description

1 1

: describes object 

,..., : describes objects ,...,
Encodings can be done in multiple manners;
often not relevant because one encoding (and therefore TM
can be transformed into  another one)

k k

O O

O O O O

STRINGS!!
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Connected graphs

{ | is a connected undirected graph}
connected = every node can be reached from every other node
A G G=

A (connected) graph G                             

4

1

23

G =
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="On input  the encoding of a graph :
        1. Select the first node of  and mark it.
        2. Repeat the following stage until no new nodes are marked.
        3.        For each node in  mar

M G , G
G

G, k it if it is attached by an edge to a
                   node that is already marked.
        4. Scan all the nodes of  to determine whether they all are marked.
            If they are, ; otherw

G
accept ise ."reject

A (connected) graph G and its encoding

<G> = (1,2,3,4) ((1,2),(2,3),(3,1),(1,4))

4

1

23

G =



Informatik Theorie II (A) WS2009/10

acs-06: Turing Machines

34

Summary

Turing machines 
Variants of Turing machines

Multi-tape
Non-deterministic
…

The definition of algorithm
The Church-Turing Thesis


