Overview

Turing Machines

Andreas Karwath \& Malte Helmert

Informatik Theorie II (A) WS2009/10
Informatik Theorie II (A) WS2009/10
acs-06: Turing Machines

$$
F=\left\{\mathbf{F}=H \mathbf{W} \mid \mathbf{W} \in\{0,1\}^{*}\right\}
$$

*Turing machines
*Variants of Turing machines
*Multi-tape

* Non-deterministic
*...
*The definition of algorithm * The Church-Turing Thesis
* Infinite tape
* Both read and write from tape
* Move left and right
* Special accept and reject state take immediate effect
* Machine can accept, reject or loop

Schematic of a Turing Machine

acs-06: Turing Machines

Turing Machine

$M_{1}=$ "On input string w :

1. Scan the input to be sure that it contains a single \# symbol. If not, reject.
2. Zig-zag across the tape to corresponding positions on either side of the \# symbol to check on whether these positions contain the same symbol. If they do not, reject. Cross off symbols as they are checked to keep track of which symbols correspond.
3. When all symbols to the left of the \# have been crossed off, check for any remaining symbols to the right of the \#. If any symbols remain, reject; otherwise accept."

$F=\left\{w \# w \mid w \in\{0,1\}^{*}\right\}$

Snapshots of the Turing machine computing on input 011000\#011000

Informatik Theorie II (A) WS2009/10
acs-06: Turing Machines

Configurations

ua q_{i} bv yields $u q_{j} a c v$ if $\delta\left(q_{i}, b\right)=\left(q_{j}, c, L\right)$
ua $q_{i} b v$ yields uac $q_{j} v$ if $\delta\left(q_{i}, b\right)=\left(q_{j}, c, R\right)$
cannot go beyond left border !
start configuration $q_{0} w$
accepting configuration - state is $q_{\text {accept }}$
rejecting configuration - state is $q_{\text {reject }}$
A Turing Machine accepts input w if a sequence of configurations C_{1}, \ldots, C_{k} exists where

1. C_{1} is start configuration
2. Each C_{i} yields C_{i+1}
3. C_{k} is an accepting state

Turing Machines

A Turing machine is a 7-tuple, $\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$, where
Q, Σ, Γ are all finite sets and

1. Q is the set of states,
2. Σ is the input alphabet not containing the special blank symbol \square,
3. Γ is the tape alphabet, where $\square \in \Gamma$ and $\Sigma \subseteq \Gamma$,
4. $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times\{L, R\}$ is the transition function,
5. $q_{0} \in Q$ is the start state,
6. $q_{\text {accept }} \in Q$ is the accept state, and
7. $q_{\text {reject }} \in Q$ is the reject state, where $q_{\text {reject }} \neq q_{\text {accept }}$.

acs-06: Turing Machines

Languages

* The collection of strings that M accepts is the language of $M, L(M)$ (or $L(M)$ is language recognized by M)
* A language is Turing-recognizable (recursively enumerable) if some Turing machine accepts it
* Deciders halt on every input (i.e. they do not loop)
* A language is Turing-decidable (recursive) if some Turing machine decides it

Example 3.4

This is the description of a TM M_{2} that recognizes the language consisting of all strings of $0 s$ whose length is a power of 2 . It decides the language $A=\left\{0^{2^{n}} \mid n \geq 0\right\}$.
acs-06: Turing Machines
\qquad

Example 3.5

$M_{1}=$ "On input string w :

1. Scan the input to be sure that it contains a single \# symbol. If not, reject.
2. Zig-zag across the tape to corresponding positions on either side of the \# symbol to check on whether these positions contain the same symbol. If they do not, reject. Cross off symbols as they are checked to keep track of which symbols correspond.
3. When all symbols to the left of the \# have been crossed off, check for any remaining symbols to the right of the \#. If any symbols remain, reject; otherwise accept."
$F=\left\{w \# w \mid w \in\{0,1\}^{*}\right\}$

Example 3.4

The TM M_{3} is doing some elementary arithmetic. It
decides the language $C=\left\{a^{i} b^{j} c^{k} \mid i \times j=k\right.$ and $\left.i, j, k \geq 1\right\}$.
acs-06: Turing Machine

Example 3.7 (cont.)

$M_{4}=$ "On input w :

1. Place a mark on top of the leftmost tape symbol. If that symbol was a blank, accept. If that symbol was a \#, continue with the next stage. Otherwise, reject.
2. Scan right to the next \# and place a second mark on top of it. If no \# is encountered before a blank symbol, only x_{1} was present so accept.
3. By zig-zagging, compare the two strings to the right of the marked \#s. If they are equal, reject.
4. Move the rightmost of the two marks to the next \# symbol to the right. If no \# symbol is encountered before a blank symbol, move the leftmost mark to the next \# to its right and the rightmost mark to the \# after that. This time, if no \# is available for the rightmost mark, all the strings have been compared, so accept.
5. Go to Stage 3."

Example 3.7

The Turing machine M_{4} is solving what is called the element
distinctness problem. It is given a list of strings over $\{0,1\}$ separated by
\#s and its job is to accept if all the strings are different. The language is

$$
E=\left\{\# x_{1} \# x_{2} \# \ldots \# x_{l} \mid \text { each } x_{i} \in\{0,1\}^{*} \text { and } x_{i} \neq x_{j} \text { for each } i \neq j\right\}
$$

Machine M_{4} works by comparing x_{1} and x_{2} through x_{l}, then by comparing x_{2} and x_{3} through x_{1}, and so on. An informal description of the TM M_{4} deciding this language follows:

cs-06: Turing Machine

Variants of Turing Machines

* Most of them turn out to be equivalent to origina model
* E.g. consider movements of head on tape $\{L, R, S\}$ where S denotes "same" (for "same position" or "stay put")
* Equivalent to original model (represent S transition by first R and then L, or vice versa)

Multi-tape Turing Machines

The input appears on Tape 1; others start off blank Transition function becomes

$$
\begin{aligned}
& \delta: Q \times \Gamma^{k} \rightarrow Q \times \Gamma^{k} \times\{L, R\}^{k} \\
& \delta\left(q_{i}, a_{1}, \ldots, a_{k}\right)=\left(q_{j}, b_{1}, \ldots, b_{k}, L, R, \ldots, R\right)
\end{aligned}
$$

Representing three tapes with a single one

Theorem
Every multitape Turing machine has an equivalent single tape Turing machine.
acs-06: Turing Machines
$S=$ "On input $w=w_{1} \ldots w_{n}$.

1. First S puts its tape into the format that represents all k tapes of M. The formatted tape contains

$$
\# \dot{\dot{w}_{1}} w_{2} \ldots w_{n} \# \square \ddot{\dot{\bullet}} \square \# \ldots \#
$$

Corollary

A language is Turing recognizable if and only if some multitape TM recognizes it.

Non-deterministic TMs

Theorem

Every non-deterministc Turing machine has an equivalent deterministic Turing machine

Proof idea

Numbering the computation.
Work with three tapes :

1. input tape (unchanged)
2. simulator tape
3. index for computation path in the tree -
alphabet $\Sigma_{b}=\{1, \ldots, b\}$
acs-06: Turing Machines
4. Initially tape 1 contains the input w, and tapes 2 and 3 are empty.
5. Copy tape 1 to tape 2 .
-3. Use tape 2 to simulate N with input w on one branch of its nondeterministic computation. Before each step of N consult the next symbol on tape 3 to determine which choice to make among those allowed by N^{\prime} s transition function. If no more symbols remain on tape 3 or if this nondeterministic chice is invalid, abort this branch by going to stage 4 . Also go to stage 4 if a rejecting configuration is encountered. If an accepting configuration is encountered, accept the input
6. Replace the string on tape 3 with the lexicographically next string. Simulate the next branch of $N^{\prime} s$ computation by going to stage 2 .

figure 3.7
Deterministic TM D simplating nondetermivistic TMN

Informatik Theorie II (A) WS2009/10
Informatik Theorie II (A) WS2009/10
acs-06: Turing Machine

Theorem

A language is Turing-recognizable if and only if some non-deterministic TM recognizes it.

Corollary

A language is decidable if and only if some non-deterministic TM decides it

cs-06: Turing Machine

Enumerators

Turing recognizable $=$ Recursively enumerable
Therefore, alternative model of TM, enumerator
Works with input tape (initially empty) and output tape (printer).
The language enumerated by an Enumerator E, is the collection of all strings that it eventually prints out (in any order, with possible repetitions).

Theorem 3.13

A language is Turing-recognizable if and only if some enumerator enumerates it.

PROOF
First we show that if we have an enumerator E that enumerates a languages A,
a TM M recognizes A.

Theorem 3.13 (cont.)

A language is Turing-recognizable if and only if some enumerator enumerates it.

PROOF (other direction)
If TM M recognizes a language A, we can construct the following enumerator E for A.
Say that $s_{1}, s_{2}, s_{3}, \ldots$ is a list of all possible strings in Σ^{*}.
$E=$ "Ignore the input.

1. Repeat tho following for $i=1,2,3, \ldots$
2. Run M for i steps on each input, $s_{1}, s_{2}, \ldots, s_{i}$.
3. If any computations accept, print out the corresponding s_{j}."

If M accepts a particular string s, eventually it will appear on the list genereated by E. In fact, it will appear on the list infinitely many times because M runs from the beginning on each string for each repetition of step 1 . This procedure gives the effect of running M in parallel on all possible input strings.
Informatik Theorie II (A) ws2009/10
acs-06: Turing Machines

Equivalence with other models

* Many variants of TMs (and related constructs) exist.
* All of them turn out to be equivalent in power (under reasonable assumptions, such as finite amount of work in single step)
* Programming languages : Lisp, Haskell, Pascal, Java, C,
* The class of algorithms described is natural and identical for all these constructs.
* For a given task, one type of construct may be more elegant.

acs-06: Turing Machines

The definition of an algorithm

* David Hilbert

*Paris, 1900, Intern. Congress of Maths.
*23 mathematical problems formulated

* $10^{\text {th }}$ problem
*"to devise an algorithm that tests whether a polynomial has an integral root"
* Algorithm = "a process according to which it can be determined by a finite number of operations"

Integral roots of polynomials

$6 x^{3} y z+3 x y^{2}-x^{3}-10$
root $=$ assignment of values to variables so that value of polynomial equals 0
integral root $=$ all values in assignment are integers

There is no
Church - Turing Thesis
A formal not Intuitive notion of algorithm
Alonso Chu
Allen Turing \qquad

Turing machine algorithms
Informatik Theorie II (A) WS2009/10

Integral roots of polynomials

$D=\{p \mid p$ is a polynomial with an integral root $\}$
acs-06: Turing Machine
Turing machines

* Three levels of description
* Formal description
* Implementation level
* High-level description
\star The algorithm is described
\star From now on, we use this level of description
STRINGS!!
$\rightarrow\langle O\rangle$: describes object O
${ }^{*}\left\langle O_{1}, \ldots, O_{k}\right\rangle$: describes objects O_{1}, \ldots, O_{k}
Encodings can be done in multiple manners;
often not relevant because one encoding (and therefore TM
can be transformed into another one)
acs-06: Turing Machines
Connected graphs
$A=\{\langle G\rangle \mid G$ is a connected undirected graph $\}$
connected $=$ every node can be reached from every other node

A (connected) graph G

Summary

$G=$
$<G>=(1,2,3,4)((1,2),(2,3),(3,1),(1,4))$

A (connected) graph G and its encoding
$M=$ "On input $\langle G\rangle$, the encoding of a graph G :

* Turing machines
* Variants of Turing machines
* Multi-tape
* Non-deterministic
*..
* The definition of algorithm * The Church-Turing Thesis

