acs-06: Turing Machines

acs-06: Turing Machines

Overview

Turing Machines

Andreas Karwath & Malte Helmert

#* Turing machines

#* Variants of Turing machines
* Multi-tape
* Non-deterministic
X,

#* The definition of algorithm
*The Church-Turing Thesis

Informatik Theorie Il (A) WS2009/10

Informatik Theorie Il (A) WS2009/10

acs-06: Turing Machines

Turing Machine

acs-06: Turing Machines

F={w#w|w €{0,1}"}

* Infinite tape
* Both read and write from tape
* Move left and right
* Special accept and reject state take immediate effect
* Machine can accept, reject or loop

state
control

[alalb[b[o[O]O]

Schematic of a Turing Machine

M,="On input string W

1. Scan the input to be sure that it contains a single # symbol. If
not, reject.

2. Zig-zag across the tape to corresponding positions on either side
of the # symbol to check on whether these positions contain the
same symbol. If they do not, reject. Cross off symbols as they
are checked to keep track of which symbols correspond.

3. When all symbols to the left of the # have been crossed off, check
for any remaining symbols to the right of the #. If any symbols
remain, reject; otherwise accept."

Informatik Theorie Il (A) WS2009/10

Informatik Theorie Il (A) WS2009/10

acs-06: Turing Machines

F={w#w|w €{0,1}"}

Snapshots of the Turing machine computing on input 011000#011000

Informatik Theorie Il (A) WS2009/10 5

acs-06: Turing Machines

Turing Machines

A Turing machine is a 7-tuple, (Q,Z,77,8, dy , Uaceept » Oreject)» Where
Q,Z,T" are all finite sets and

1. Q is the set of states,
2. X is the input alphabet not containing the special blank symbol [J,
3. T is the tape alphabet, where [le 'and X c T,

4.8: QxT'——>QxTI'x{L,R} is the transition function,
5., €Q is the start state,

6. Qe € Q 18 the accept state, and

7. Qreiece € Q 18 the reject state, where Qpgeee # Qageept -

Informatik Theorie Il (A) WS2009/10

acs-06: Turing Machines [I]

RN EEEE NN

A Turing machine with the configuration 1011q,01111

Configurations

ua g; bv yields u g; acv if 6(q;,b) =(q;,c, L)
ua g; bv yields uac q; vif 6(q;,b) = (q;,¢,R)
cannot go beyond left border !
start configuration g,w
accepting configuration - state is Qg
rejecting configuration - state is 0 gje
A Turing Machine accepts input w if a sequence
of configurations C,,...,C, exists where
1. C, is start configuration
2. Each Cyields C,,,

3. C, is an accepting state

Informatik Theorie 11 (A) WS2009/10 7

acs-06: Turing Machines

Languages

#* The collection of strings that M accepts is the
language of M, L(M) (or L(M) is language
recognized by M)

* A language is Turing-recognizable (recursively
enumerable) if some Turing machine accepts it

#* Deciders halt on every input (i.e. they do not
loop)

* A language is Turing-decidable (recursive) if
some Turing machine decides it

Informatik Theorie Il (A) WS2009/10

acs-06: Turing Machines

Example 3.4

This is the description of a TM M, that recognizes the language consisting of

all strings of 0s whose length is a power of 2. It decides the language
A={0% |n>0}.

acs-06: Turing Machines

Informatik Theorie Il (A) WS2009/10

0—L
X—L

Xx— R
x— R
(o2 \O
<l 0-0,R 92 0 - xR
o—-R

o—R
x—R

< 0—- xR

X~>R

(g

o— R

State diagram for Turing machine M,

Informatik Theorie Il (A) WS2009/10

acs-06: Turing Machines

’ % Q % Q % chcept

o—R
x—R

acs-06: Turing Machines

Example 3.5

Informatik Theorie Il (A) WS2009/10

M, = "On input string w:

1. Scan the input to be sure that it contains a single # symbol. If
not, reject.

2. Zig-zag across the tape to corresponding positions on either side
of the # symbol to check on whether these positions contain the
same symbol. If they do not, reject. Cross off symbols as they
are checked to keep track of which symbols correspond.

3. When all symbols to the left of the # have been crossed off, check
for any remaining symbols to the right of the #. If any symbols
remain, reject; otherwise accept."

F ={w#w|w €{0,1}"}

FIGURE 3.5
State diagram for Turing machine M,

Informatik Theorie Il (A) WS2009/10

acs-06: Turing Machines

Example 3.4

The TM M, is doing some elementary arithmetic. It
decides the language C = {a'b'c* |ix j=k and i, j,k > 1}.

acs-06: Turing Machines

Example 3.7

Informatik Theorie Il (A) WS2009/10 13

The Turing machine M, is solving what is called the element
distinctness problem. It is given a list of strings over {0,1} separated by
#s and its job is to accept if all the strings are different. The language is

E={#x#X#.#x|eachx €{0,1} and x, # X; for each i # j}
Machine M, works by comparing X, and X, through X, then by comparing

X, and X, through X, and so on. An informal description of the TM M,
deciding this language follows:

Informatik Theorie 11 (A) WS2009/10 14

acs-06: Turing Machines

Example 3.7 (cont.)

M, ="On input w:
1. Place a mark on top of the leftmost tape symbol. If that symbol
was a blank, accept. If that symbol was a #, continue with the
next stage. Otherwise, reject.

]

. Scan right to the next # and place a second mark on top of it. If
no # is encountered before a blank symbol, only X, was present,
so accept.

W

. By zig-zagging, compare the two strings to the right of the

marked #s. If they are equal, reject.

4. Move the rightmost of the two marks to the next # symbol to
the right. If no # symbol is encountered before a blank symbol,
move the leftmost mark to the next # to its right and the
rightmost mark to the # after that. This time, if no # is available
for the rightmost mark, all the strings have been compared, so
accept.

5. Go to Stage 3."

Informatik Theorie 11 (A) WS2009/10 15

acs-06: Turing Machines

Variants of Turing Machines

#* Most of them turn out to be equivalent to original
model

* E.g. consider movements of head on tape
{L,R,S} where S denotes “same” (for “same
position” or “stay put”)

#* Equivalent to original model (represent S
transition by first R and then L, or vice versa)

Informatik Theorie Il (A) WS2009/10 16

acs-06: Turing Machines

Multi-tape Turing Machines

The input appears on Tape 1; others start off blank
Transition function becomes

5:QxT* > QxT* x{L,R}

o(G;,a,,..,8,) =(0;,b,....b,L,R,..,R)

acs-06: Turing Machines

(a]afa]uT...
g &
[#]o1fol1 ol #lalal2]#[B]al*]c]...

Representing three tapes with a single one

Theorem
Every multitape Turing machine has an equivalent single tape Turing machine.

Informatik Theorie Il (A) WS2009/10 17 Informatik Theorie Il (A) WS2009/10 18
acs-06: Turing Machines acs-06: Turing Machines
Non-deterministic TMs
$="On input W= w,..W, : Transition function becomes
1. First S puts its tape into the format that represents all k tapes of M. The formatted
tape contains 5QXF—)P(QXFX{L,R})
w6 0(9,a)={(q,,b,L),...,(q,,b,,R)}
Same idea/method as for NFAs N
X
| !
d » \
® X
v v
Corollary ® ZXE
A language is Turing recognizable if and only if some multitape TM recognizes it.
20

Informatik Theorie 11 (A) WS2009/10 19

Informatik Theorie Il (A) WS2009/10

acs-06: Turing Machines

Non-deterministic TMs

@X‘E)@

Theorem

Every non-deterministc Turing machine has an equivalent

Sove,

o
OO
©&

deterministic Turing machine.

)
X

Proof idea

Numbering the computation.

X4
X

Work with three tapes :
1. input tape (unchanged)

acs-06: Turing Machines

1. Initially tape 1 contains the input W, and tapes 2 and 3 are empty.
2. Copy tape 1 to tape 2.

——3. Use tape 2 to simulate N with input W on one branch of its non-
deterministic computation. Before each step of N consult the next
symbol on tape 3 to determine which choice to make among those
allowed by N’s transition function. If no more symbols remain on
tape 3 or if this nondeterministic chice is invalid, abort this branch by
going to stage 4. Also go to stage 4 if a rejecting configuration is
encountered. If an accepting configuration is encountered, accept
the input.

4. Replace the string on tape 3 with the lexicographically next string.

AR DN

2. simulator tape Simulate the next branch of N's computation by going to stage 2.
—
3. index for computation path in the tree - @ X
. inputtape . inputtape ¢
alphabet 2, = {l,...,b} A @\
- y BX B
[[2[3[zlz[e[t]z]t]1]=]a]... midress mpe [1]2]s]8]2]az 22 1 =]u]- - addresstape @/ X @ @
a7 XX © @
S:mu:;ﬁsﬁz TM D simulating nondeterministic TM N
Informatik Theorie Il (A) WS2009/10 21 Informatik Theorie Il (A) WS2009/10 22
acs-06: Turing Machines acs-06: Turing Machines
Enumerators
Theorem
A language is Turing-recognizable if and only if some
printer
non-deterministic TM recognizes it.
[o]1]o[o]u]... work tape
Corollary Turing recognizable = Recursively enumerable
A language is decidable if and only if some non-deterministic Therefore, alternative model of TM, enumerator
TM decides it. Works with input tape (initially empty) and output tape (printer).
The language enumerated by an Enumerator E, is the collection of
all strings that it eventually prints out (in any order, with possible
repetitions).
Informatik Theorie Il (A) WS2009/10 23 Informatik Theorie Il (A) WS2009/10 24

acs-06: Turing Machines

Theorem 3.13

A language is Turing-recognizable if and only if some enumerator enumerates it.

PROOF

First we show that if we have an enumerator E that enumerates a languages A,

aTM M recognizes A.

Informatik Theorie Il (A) WS2009/10

25

acs-06: Turing Machines

Theorem 3.13 (cont.)

A language is Turing-recognizable if and only if some enumerator enumerates it.

PROOF (other direction)
If TM M recognizes a language A, we can construct the
following enumerator E for A.
Say that s,,S,,S;,... is a list of all possible strings in X".
E="Ignore the input.
1. Repeat tho following fori=1,2,3,...
2. Run M for i steps on each input, S;,S, ,...,S;.
3. If any computations accept, print out the corresponding s; "
If M accepts a particular string S, eventually it will appear on the list genereated
by E. In fact, it will appear on the list infinitely many times because M runs from
the beginning on each string for each repetition of step 1. This procedure gives

the effect of running M in parallel on all possible input strings.

Informatik Theorie 11 (A) WS2009/10 26

acs-06: Turing Machines

Equivalence with other models

#* Many variants of TMs (and related constructs) exist.

#* All of them turn out to be equivalent in power (under
reasonable assumptions, such as finite amount of work
in single step)

* Programming languages : Lisp, Haskell, Pascal, Java, C,

#* The class of algorithms described is natural and identical
for all these constructs.

#* For a given task, one type of construct may be more
elegant.

Informatik Theorie Il (A) WS2009/10

27

acs-06: Turing Machines

The definition of an algorithm

¥ David Hilbert
* Paris, 1900, Intern. Congress of Maths.
* 23 mathematical problems formulated
#* 10t problem
*“to devise an algorithm that tests whether a
polynomial has an integral root”

* Algorithm = “a process according to which it
can be determined by a finite number of
operations”

Informatik Theorie Il (A) WS2009/10 28

acs-06: Turing Machines

Integral roots of polynomials

6X’yz +3xy> = x> —10
root = assignment of values to variables so that
value of polynomial equals 0

integral root = all values in assignment are integers

There is no

Aformal no! [ntyitive notion of algorithm
Alonso Chu

Allen Turing —

Turing machine algorithms

acs-06: Turing Machines

Integral roots of polynomials

D ={p]| p is a polynomial with an integral root}

Informatik Theorie II (A) WS2009/10 29

Informatik Theorie Il (A) WS2009/10

30

acs-06: Turing Machines

Turing machines

acs-06: Turing Machines

Connected graphs

#* Three levels of description
* Formal description
* Implementation level

* High-level description
* The algorithm is described
* From now on, we use this level of description

"
STRINGSH! \<O> : describes object O

<Ol,...,0k> :describes objects O,,...,0,
Encodings can be done in multiple manners;
often not relevant because one encoding (and therefore TM

can be transformed into another one)

A= {<G> | G is a connected undirected graph}

connected = every node can be reached from every other node

G=

A (connected) graph G

Informatik Theorie 11 (A) WS2009/10 31

Informatik Theorie Il (A) WS2009/10

32

acs-06: Turing Machines

<G> =(1,2,3,4) ((1,2),(2,3),(3,1),(1,4))

A (connected) graph G and its encoding

M ="On input <G> the encoding of a graph G:

acs-06: Turing Machines

Summary

Informatik Theorie Il (A) WS2009/10

33

#* Turing machines

#* Variants of Turing machines
* Multi-tape
* Non-deterministic
X,

#* The definition of algorithm
*The Church-Turing Thesis

Informatik Theorie 11 (A) WS2009/10 34

