acs-05: Context-free Languages

Context-free Languages

Andreas Karwath & Malte Helmert

acs-05: Context-free Languages

Overview

Informatik Theorie Il (A) WS2009/10

#* Context free grammars
% Pushdown Automata
#* Equivalence of PDAs and CFGs

#* Non-context free grammars
* Pumping lemma

Informatik Theorie Il (A) WS2009/10

acs-05: Context-free Languages

Context free languages

* Extend regular languages
* First studied for natural languages

#* Often used in computer languages
* Compilers
* Parsers

¥ Pushdown automata

acs-05: Context-free Languages

Key Concepts: Context-free Grammar

Informatik Theorie Il (A) WS2009/10

Grammar G, : A
A—0Al A
A—>B A
B—# (/ Am

Terminals 0,1,# (correspond to the alphabet X) 000 ﬁ 111

Nonterminals / Variables A, B

Rules Symbol — String A parse tree for 000#111

Startsymbol in grammar G,

The sequence of substitutions to obtain a string is called a derivation.
Example, derivation for 000#111.:

A= 0Al= 00A11= 000A111= 000B111= 000#111

L(G,) ={0"#1" |n> 0}

Language defined by grammar G,

Informatik Theorie Il (A) WS2009/10

acs-05: Context-free Languages

Natural language example:

<SENTENCE> - <NOUN-PHRASE><VERB-PHRASE>
<NOUN-
PHRASE>
<VERB-PHRASE> - <CMPLX-VERB>|<CMPLX-VERB><PREP-PHRASE>

— <CMPLX-NOUN>|<CMPLX-NOUN><PREP-PHRASE>

<PREP-PHRASE> - <PREP><CMPLX-NOUN>
<CMPLX-NOUN> - <ARTICLE><NOUN>
<CMPLX-VERB> - <VERB>|<VERB><NOUN-PHRASE>
<ARTICLE> - a]the
<NOUN> - boy | girl | flower
<VERB> - touches | likes | sees

<PREP> - with

a boy sees
the boy sees a flower
a girl with a flower likes the boy

acs-05: Context-free Languages

Informatik Theorie Il (A) WS2009/10

<SENTENCE> - <NOUN-PHRASE><VERB-PHRASE>

<CMPLX-NOUN>|<CMPLX-NOUN><PREP-
PHRASE>

<VERB-PHRASE> - <CMPLX-VERB>|<CMPLX-VERB><PREP-PHRASE>

<NOUN-PHRASE> -

<PREP-PHRASE> - <PREP><CMPLX-NOUN>
<CMPLX-NOUN> - <ARTICLE><NOUN>
<CMPLX-VERB> - <VERB>|<VERB><NOUN-PHRASE>
<ARTICLE> - a|the
<NOUN> - boy | girl | flower
<VERB> - touches | likes | sees

<PREP> - with

Informatik Theorie Il (A) WS2009/10

acs-05: Context-free Languages

Definition Context free grammar

A context-free grammar is a 4-tuple (V,%,R,S), where

1.V is a finite set called the variables

2.2 is a finite set, disjoint from V, called the terminals

3.R is a finite set of rules, with each rule being a variable and
a string of variables and terminals

4.S €V is the start symbol

GS = ({S},{a, b}, R, S)
S —aSh|SS | &

Informatik Theorie Il (A) WS2009/10

acs-05: Context-free Languages G3 = (\/,Z, R,< EXpI’ >}
. V ={< Expr >,<Term >, < Factor >}
Parsing S —{a,+.% ()}
Ris
< Expr >—>< Expr >+ < Term >|< Term >
<Term >—< Term > x < Factor >|< Factor >
* Construct meaning (parse tree) < Factor >— (< Expr >)|a
{EXPR)
(TERM}
.
{EXPR} (TEEM)
(Exl’{b \\ [FACTOR) {FACTOR)
rd (TERM) !
(TERM)
¢rERM)
{FACTOR} / {FACTOR)
(FACTOR)
a + a s a = a

* Parse trees for the stringsa+axaand (a+a)xa

Informatik Theorie Il (A) WS2009/10

acs-05: Context-free Languages

Constructing CFGs

#* As the union of simpler CFGs

acs-05: Context-free Languages

Constructing CFGs

S, —>0S1| ¢ L(G,) ={0"1" |n>0}
S, »15,0] ¢ L(G,) ={1"0" |n > 0}
S—35,|S, L(G) =L(G) v L(G,)

#* When given a DFA (i.e. constructing a CFG for reg. languages)

For each state g,
Make a variable R,

For each transition 6(q;,a) =q;
Add the rule R; — aR,

For each accept state g
Add the rule R, — ¢ A

FIGUReE 1.6
State diagram of the two-state (inite antomaton Az

Informatik Theorie 11 (A) WS2009/10 10

acs-05: Context-free Languages

Constructing CFGs

#* Languages consisting of “linked” strings

L(G,) ={0"" | n >0}

Use rules of the form
R — uRv

S, > 0S.1| &

acs-05: Context-free Languages

Constructing CFGs

Informatik Theorie 11 (A) WS2009/10 1

#* Strings that may contain structures that appear
recursively as part of other (or the same) structures

< Expr >—>< Expr >+ <Term >< Term >
<Term >—<Term > x < Factor >< Factor >
< Factor >— (< Expr >)|a

Informatik Theorie 11 (A) WS2009/10 12

acs-05: Context-free Languages

Ambiguity

* If a CFG generates the same string in several ways, then
the grammar is ambiquous

* E.g. grammar G

< Expr >—>< EXpr > + < Expr >|< Expr > x < Expr >| (< Expr >)|a
* The grammar does not capture usual precedence
relations

#* One of the main problems in natural language
processing

* “the boy touches the girl with the flower”

Informatik Theorie II (A) WS2009/10 13

acs-05: Context-free Languages

< Expr >—>< EXpr > + < Expr >|< Expr > x < Expr >| (< Expr >) |a

(F‘.K’PR\ *’EXPR
(EXPR) !EAPR HhKPR; gl:XPR)
Ve N
(EXPR} | (EXPR) Q]:XPR {FXPR}

a + a

The two parse trees for the string a + a x a in grammar G,

Informatik Theorie 11 (A) WS2009/10 14

acs-05: Context-free Languages

Defining ambiguity

* [eftmost derivation :
* At every step in the derivation the leftmost variable is replaced

#* A string is derived ambiguously in a CFG if it has two or
more different leftmost derivations

#* A grammar is ambiguous if it generates some string
ambiguously

#* Some context free languages are inherently ambiguous,
ie. every grammar for the language is ambiguous

{012 [i=jorj=k}

Informatik Theorie 11 (A) WS2009/10 15

acs-05: Context-free Languages

Chomsky-Normal-Form

Definition
A context-free grammar is in Chomsky-Normal-Form, if
each rule is the following form:
*A —»>BC or
*A —>a or
*S >¢
where
*A,B,C,S are the variables
*ais aterminal
* S is the start variable.
* B,C are not the start variable,

Informatik Theorie 11 (A) WS2009/10 16

acs-05: Context-free Languages

Chomsky-Normal-Form

Theorem

Every context-free language is generated by a grammar in Chomsky-
Normal-Form

Example

context-free grammar:
*G = ({AB}, {0,1.#}, R, A}
*R={A—>0A1,A—>B,B—>#

A grammar of the same language in Chomsky-Normal-Form:

*G'= ({A,B,C,N,E}, {0,1,#}, R, S}
*R={S > NC,N->0,S > #,
A—>NC,C—>AE, E->1,A>#

acs-05: Context-free Languages

Chomsky-Normal-Form

Proof idea:
*Reuwrite all rules, which are not conform with the Chomsky-Normal-Form
*If necessary, introduce new variables

Four Problems

1.Start variable is on the right site of arule
— Solution: introduce a new start variable and a new rule for the derivation
2.Epsilon-Rules: A > ¢

— Solution: if A occurs in the right part of a rule, infroduce new rules without A on the
right part of the rule

3.Unit-Rules: A > B

— Solution: directly replace B by its own production
4.Long and/or mixed rules: A — aBCcAbA

— Solution: new variables/new rules

Informatik Theorie II (A) WS2009/10 17

Informatik Theorie 11 (A) WS2009/10 18

acs-05: Context-free Languages

Proof by Construction

acs-05: Context-free Languages

Proof by Construction (cont.)

1. Add a new start symbol S, and the rule S, - S,
where S is the old start symbol

2. Remove all rules A— ¢:
For each occurrence of A in arule R —uAv add R — uv
(ifuand v are ¢ then add R — &). Repeat this step until
all such rules (except a rule refering to the start variable)
are removed

3.Remove all unit rules A— B : Whenever B — u appears,
then add A — u.
Repeat this step until all unit rules removed.

4a. Convert remaining rules A — u,u,...u, where k > 3into rules
A—uA

A = UA

Az = U Uy
where the Aare new variables
4b. If k = 2 then replace any terminal u; in the rules with a new
variable U, and the new rule U, — u,

Do not allow for cycles (i.e. first remove, then add rule)

Informatik Theorie Il (A) WS2009/10 19

Informatik Theorie Il (A) WS2009/10 20

acs-05: Context-free Languages

Example 2.7

Let G, be the following CFG and convert it to Chomsky normal form by using

the conversion precedure just given. The following series of grammars

illustrates the steps in the conversion. Rules shown in bold have been just added.
Rules shown in blue have just been removed.

1. The original CFG G, is shown on the left. The result of applying the first step to
make a new start symbol appears on the right.

S — ASA|aB
A—>B|S
B—ble

acs-05: Context-free Languages

Example 2.7

Informatik Theorie II (A) WS2009/10 21

2. Remove ¢ rules B — ¢, shown on the left, and A — ¢, shown on the right.

S, —>S

S — ASA|aB|a
A—>B|S|e
B—oble

Informatik Theorie 11 (A) WS2009/10 22

acs-05: Context-free Languages

Example 2.7 (cont.)

3a. Remove unit rules S — S, shown on the left, and S; — S, shown on the right.

S, —S

S — ASA|aB|a|SA|AS|S
A—>B]|S

B—b

acs-05: Context-free Languages

Example 2.7 (cont.)

Informatik Theorie Il (A) WS2009/10 23

3b. Remove unit rules A— B and A— S.

S, &> ASA|aB|a|SA| AS
S — ASA|aB|a|SA| AS
A—> B[S |b
B—b

Informatik Theorie 11 (A) WS2009/10 24

acs-05: Context-free Languages

Example 2.7 (cont.)

4.) Convert the remaining rules

S, = AA |UB|a|SA| AS

S — AA |UB|a|SA| AS

A—Db|AA |UB|a|SA|AS
A — SA

U—>a

B—b

S, = ASA|aB|a|SA| AS

S — ASA|aB|a|SA| AS
A—>S|b|ASA|aB|a|SA| AS
B—>b

Informatik Theorie Il (A) WS2009/10

25

acs-05: Context-free Languages

Pushdown automata

#* Schema of a finite automaton

state
control

alalblb] input

Informatik Theorie Il (A) WS2009/10

26

acs-05: Context-free Languages

Pushdown automaton

* Includes a stack
* Push something on top of stack
* Pop something from top of stack
* Last in first out principle
* As in cafeteria — tray
* Schematic of a pushdown automaton:

state
control

X

Ly |
stack

L(G,) ={0"" | n >0}

1 alalb[b input

Informatik Theorie Il (A) WS2009/10

27

acs-05: Context-free Languages

An example PDA

State diagram for the PDA M, that recognizes {0"1" | n> 0}

Informatik Theorie Il (A) WS2009/10

28

acs-05: Context-free Languages

Formal definition (Definition 2.8)

A pushdown automaton is a 6-tuple (Q,%,T',0,q,,F)
1.Qis a finite set of states

2. ¥ is a finite set, the input alphabet

3. T is a finite set, the stack alphabet

4. 5:QxX_xI', > P(QxT,)is the transition function
5. g, €Q is the start state

6. F — Qis the set of accept states

Transition function Meaning:

maps (state, inputsymbol, stacksymbol) stacksymbol is replaced by nstackymbol
onto set of (nstate, nstacksymbol) input, stack, and nstacksymbol can be ¢ !

Informatik Theorie II (A) WS2009/10 29

acs-05: Context-free Languages

Example 2.9

The following is the formal description of a PDA that recognizes the language
{0"1"|n>0} Let M, be (Q,%,7,8,q,,F), where

Q :{qpqz 103.0, }:

> ={0,1},

I ={0,%$},

F={q,.q,} and

3 is given by the following table, wherein blank entries signify &.

Input 0 1 €

Stack 0|$ € 0 $(e|O $ €
% {(9,$)}
d, {(a,.00} {(aze)}
s {(az.€} {(a,.€}
9

Informatik Theorie 11 (A) WS2009/10 30

acs-05: Context-free Languages

Computation with PDAs

To compute, one can keep track of (0011,q,,¢)
1. rest of the input string (to read)
2. state of PDA
3. string on stack

Use a tree structure as for NFAs !

Informatik Theorie Il (A) WS2009/10 31

acs-05: Context-free Languages

Formal Definition of Computation

Let M be a pushdown automaton (Q,%,T,6,q,,F)
Letw=w,...w, be a string over X

M accepts wif we X" and w=w,...w, wherew, €X_and a sequence of
states r,,...,r, exists in Q and strings s,,...,s, exists in [such that
1.rh,=0,ands,=¢
2foralli=0,..,n-1

(r,;,b) e d(r,,w,,,a) where s;=atand s, ,=bt

forsome a,bel’, and sometel”
3r eF

No explicit test for empty stack and end of input

Informatik Theorie Il (A) WS2009/10 32

acs-05: Context-free Languages

Another example

PDA M, recognizing {a' bi cXi,jk>0andi=jori=Kk}

ba-e€ C,E-€

ae-a be-¢€ ca-e€

State diagram for PDA M2 that recognizes the language {abick | ijk = 0and i =jor =k}

* Non determinism essential for this language

acs-05: Context-free Languages

Another example

PDA M, recognizing {wwR|w 2 {0,1}"}

e$-e 00_¢
Y @ 11>¢€

Informatik Theorie II (A) WS2009/10 33 Informatik Theorie 11 (A) WS2009/10 34
acs-05: Context-free Languages acs-05: Context-free Languages
Theorem 2.12 and Lemma 2.13 Lemma 2.13 Proof idea
Theorem 2.12
A language is context free if and only if some pushdown automaton recognizes it
state }
Lemma 2.13 control
. . . 1
If a language is context free then some pushdown automaton recognizes it
[0[1[1]0]0[1] (0]
<SENTENCE> [] <NOUN-PHRASE><VERB-PHRASE> “
[1 <CMPLX-NOUN><VERB-PHRASE> -
*A CFL accepts a string if there exists [l <ARTICLE><NOUN><VERB-PHRASE:
a derivation of the string B o NS ED A P presenting the intermediate string 01A1A0
*Involves intermediate strings [l a boy <VERB-PHRASE>
. . . [1 a boy <CMPLX-VERB>
*Represent intermediate strings on . . .
PD K g [] a boy <VERB> * Substitute variables by strings
[a boy sees #* Replace top variable on stack by string
Informatik Theorie Il (A) WS2009/10 35 Informatik Theorie Il (A) WS2009/10 36

acs-05: Context-free Languages

Lemma 2.13 Proof by construction

Construction
1. Place the marker $ and the start symbol on the stack
2. Repeat forever
a. if top(stack)=variable A
then non-deterministically select one of the rules for A
and substitute A by right hand side of rule
b. if top(stack)=terminal symbol a
then read next input symbol be i
if a <> i then fail
c. if top(stack)=$ and all input read
then enter accept state

Informatik Theorie II (A) WS2009/10 37

acs-05: Context-free Languages

Resulting PDA

.a

€, - S$*

Je,$ae

#* State diagram of P

e,A - w*: for rule A»w

a,a-¢€ : for terminal a

* shorthand notation

Informatik Theorie Il (A) WS2009/10

38

acs-05: Context-free Languages

About , Shorthand”

© Do

a,s - xyz 1 €e-Yy

o

#* Implementing shorthand: (r,xyz) € &a,a,s)

acs-05: Context-free Languages

Resulting PDA

e,A - w*: for rule A—»w CFG G:
a,a—e : for terminal a)
S—alb|b
T—Tale
ee€ - S$*
s~ b ee—T
aa-e 6
bb— e N eToa~ ceT | ce—a
! Gioop -/
e,T—e
ed_¢
(\
qaccep A
S / * shorthand notation

Informatik Theorie Il (A) WS2009/10 39

Informatik Theorie Il (A) WS2009/10

40

acs-05: Context-free Languages

Lemma 2.15

Lemma 2.15:

If a pushdown automaton recognizes some language, then it is
context-free.

Construction

Assume PDA satisfies the following conditions

1. It has a single accept state, 0,

2. It empties the stack before accepting

3. Each transition either pushes symbol onto the stack
or removes a symbol from the stack

acs-05: Context-free Languages

Proof

Informatik Theorie II (A) WS2009/10 41

Say that P =(Q,%,77,8,0y { Uaecepe 1) @d construct G. The variables
of G are { A, | p,q € Q}. The start variable is A,

lo +Gaccept *

Now we describe G’s rules.

eForeachp,q,r,seQ;tel’,andabeX_, if5(p,ac)
contains (r,t) and &(s,b,t) contains (q,e) put the
rule A, > aAbinG.
e Foreach p,q,r €Q puttherule A, — A, A, inG.
e Finally, for each p e Q puttherule A, - ¢inG.
You may gain some intuition for this construction from the following figures.

Informatik Theorie 11 (A) WS2009/10 42

acs-05: Context-free Languages

T

acs-05: Context-free Languages

Stack
heighe
generated
" _ by Apq
e
put string o g
\ J\)
Y hd
generated generated
by Ay; by Arq
FIGURE 2.13
PDA computation corresponding to the rule Ay, — A, A,
Informatik Theorie Il (A) WS2009/10 43

f

Stack
height

Input string

generared

by Ay,

FIGURE 2.14
PDA computation corresponding to the rule A, — aA,.b

Informatik Theorie Il (A) WS2009/10 44

acs-05: Context-free Languages

Claim 2.16
If A,, generates X, then x can bring P from p with empty stack to q with empty stack

Proof

Basis : derivation has 1 step, i.e. A,, = X must use a rule with no variables in right hand side
only type A,, — &

Induction : Assume true for derivations of length at most k >1 and prove for k +1

Suppose A, = x with k +1 steps
First step is either a. A, = aAb orb. A, = A A,

Casea. x=ayb and A, : y in k steps with empty stack
Now, because A,, = aAbin G we have 5(p,a,¢) > (r,t) and
o(s,b,t)>(g,¢)
Therefore x can bring P from p to g with empty stack

Case b. letx=yzsuchthat A, =y and A =z
both derivations use at most k steps
Therefore x can bring P from p to q via r with empty stack

Claim 2.17

If x can bring P from p with empty stack to q with empty stack, then A, generates x
Proof

Basis : computation has 0 steps

— Therefore, it starts and ends in same state, so we must prove that A, : X,
In O steps, x must be ¢
Thisrule A, > ¢isinG
Induction : Assume true for computations of length at most k > 0 and prove for k +1.
Suppose P has a computation where x brings p to g with emtpy stack in k +1 steps. Either stack is empty
a. only at the beginning and end, or b. also somewhere else.
Case a. symbol that is pushed first = symbol that is popped last = t
let abe the input read in first move, r be the state after first move
let bbe the input read in last move, s be the state before last move
Then &(p,a,&)>(r,t)and &(s,b,t)>(q,&)
So, A, > aAbinG

g
Let x = ayb; then A, =y in k —1steps
So, qu =X
Case b. let r be the state where the stack becomes empty
then computations from p to r and from r to q take at most k steps

hence, A, =y and A, =z

Informatik Theorie Il (A) WS2009/10 45 Because A, — A, A, inG, A Sx 46
acs-05: Context-free Lanquages . acs-05: Context-free Languages
Every regular language is context-free P) |
(because NFA is PDA without stack) umping lemma
Theorem Pumping Lemma
If A is a context free language, then there is a number p
gﬁ;’;‘;‘;ﬁ such that if s is any string in A of length at least p
then s may be dived into s = uvxyz such that
1. For each i > 0; uv'xy'ze A
2|vy|>0
FIGURE 2,15 3|vxy|<p
Relationship of the regular and context-free languages
Informatik Theorie Il (A) WS2009/10 47 Informatik Theorie Il (A) WS2009/10 48

acs-05: Context-free Languages

Proof Idea

acs-05: Context-free Languages

Proof Idea

Informatik Theorie Il (A) WS2009/10 49 Informatik Theorie 11 (A) WS2009/10 50
acs-05: Context-free Languages acs-05: Context-free Languages
Proof Idea Proof Idea
51 52

Informatik Theorie Il (A) WS2009/10

Informatik Theorie Il (A) WS2009/10

acs-05: Context-free Languages

Proof elements
b: max number of elements on right hand side of rule

b > 2 because CFG (look at CNF)

number of leaves in a parse tree of height h <b" '
hence, length of string in a parse tree of height h <b" ﬁ

V|- number of vars in Grammar

choose p =b""2;s0 p > b""* (because b > 2)
assume |s|> p

50, parse tree for s has height at least V' |+2 voox oy
take smallest parse tree for s

apply pigeonhole principle on longest path: R repeating var

Prove 1), 2) see figures

3) choose R in bottom |V |+1 vars.

Subtree generating R has height at most |V |+ 2

——String vxy generated by R at most length p = pli2

Informatk 1 neorie I (A) VWW>ZUuy/'1u 53

acs-05: Context-free Languages

B={a"b"c" |n >0} is not context free

choose s =a’p”c” 1. Foreachi>0; uv'xy'ze A

clearlyin B

because 2) either vor y not empty
Consider two cases :

A. both vand y contain only one type of alphabet symbol

2.|vy|>0

3lvxy|<p

Then uv’xy’z ¢ B (does not contain equal no. of a,b,c)
B. either vor y contain more than one type of symbol
Then uv®xy®z ¢ B (does not have right order of a,b,c)

Informatik Theorie 11 (A) WS2009/10 54

acs-05: Context-free Languages

C ={a'b'c*|0<i< j<k} is not context free

acs-05: Context-free Languages

Overview

PRPAD. . 1. For each i > 0; uv'xy'ze A
choose s=a’bPc”; clearly in C 24w]>0
because 2) either vor y not empty; Consider two cases : 3wyl<p

A. both vand y contain only one type of alphabet symbol
Three subcases :
Al. adoes not appear invand y
Then uvxy°z ¢ B (contains fewer b, c)
A2. b does not appear invand y
If a appears then uv?xy®z ¢ B (contains more a than b)
If ¢ appears then uv’xy°z ¢ B (contains less ¢ than b)
A3. ¢ does not appear invand y
Then uv?xy?z ¢ B
B. either vory contain more than one symbol
Then uvxy®z ¢ B (does not have right order of a,b,c)

#* Context free grammars
#* Pushdown Automata
#*Equivalence of PDAs and CFGs

#*Non-context free grammars
* Pumping lemma

Informatik Theorie 11 (A) WS2009/10 55

Informatik Theorie 11 (A) WS2009/10 56

acs-05: Context-free Languages

Proof by Construction

1. Add a new start symbol S, and the rule S, — S where S is the old start symbol
2. Remove all rules A — ¢ :For each occurrence of A in a rule R — uAv add R — uv
(if uand v are ¢ then add R — ¢). Repeat this step until all such rules (except

a rule refering to the start variable) are removed
3.Remove all unit rules A— B : Whenever B — u appears, then add A—u
Repeat this step until all unit rules removed.
4a. Convert remaining rules A— u,u,...u, where k > 3into rules
A—>uA

A UA

A > U gUy
where the Aare new variables
4b. If k > 2 then replace any terminal u; in the rules with a new variable U; and the new
rule U, - u;
Do not allow for cycles (i.e. first remove,then add rule)

Informatik Theorie II (A) WS2009/10 57

