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Overview

Context free grammars

Pushdown Automata

Equivalence of PDAs and CFGs

Non-context free grammars
Pumping lemma
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Context free languages

Extend regular languages

First studied for natural languages

Often used in computer languages
Compilers
Parsers

Pushdown automata
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Key Concepts: Context-free Grammar
1Grammar :

         0 1
         
         #
Terminals 0,1,# (correspond to the alphabet )
Nonterminals / Variables ,
Rules 
Startsymbol

G
A A
A B
B

A B
Symbol String

→
→
→

Σ

→

The sequence of substitutions to obtain a string is called a 
Example, derivation for 000#111:

0 1 00 11 000 111 000 111 000#111

.

A A A A B

derivation

⇒ ⇒ ⇒ ⇒ ⇒

1

1

( ) {0 #1 | 0}
Language defined by grammar 

n nL G n
G

= >

A parse tree for 000#111 
in grammar G1

A
A
A
A
B

0  0  0  #  1  1  1
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Natural language example:

a boy sees
the boy sees a flower
a girl with a flower likes the boy

with→<PREP>

touches | likes | sees→<VERB>

boy | girl | flower→<NOUN>

a | the→<ARTICLE>

<VERB>|<VERB><NOUN-PHRASE>→<CMPLX-VERB>

<ARTICLE><NOUN>→<CMPLX-NOUN>

<PREP><CMPLX-NOUN>→<PREP-PHRASE>

<CMPLX-VERB>|<CMPLX-VERB><PREP-PHRASE>→<VERB-PHRASE>

<CMPLX-NOUN>|<CMPLX-NOUN><PREP-PHRASE>→<NOUN-
PHRASE>

<NOUN-PHRASE><VERB-PHRASE>→<SENTENCE>
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with→<PREP>

touches | likes | sees→<VERB>

boy | girl | flower→<NOUN>

a | the→<ARTICLE>

<VERB>|<VERB><NOUN-PHRASE>→<CMPLX-VERB>

<ARTICLE><NOUN>→<CMPLX-NOUN>

<PREP><CMPLX-NOUN>→<PREP-PHRASE>

<CMPLX-VERB>|<CMPLX-VERB><PREP-PHRASE>→<VERB-PHRASE>

<CMPLX-NOUN>|<CMPLX-NOUN><PREP-
PHRASE>→<NOUN-PHRASE>

<NOUN-PHRASE><VERB-PHRASE>→<SENTENCE>

a boy sees→

a boy <VERB>→

a boy <CMPLX-VERB>→

a boy <VERB-PHRASE>→

a <NOUN><VERB-PHRASE>→

<ARTICLE><NOUN><VERB-PHRASE>→

<CMPLX-NOUN><VERB-PHRASE>→

<NOUN-PHRASE><VERB-PHRASE>→<SENTENCE>
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Definition Context free grammar

A  is a 4-tuple ( , , , ),  where
1.  is a finite set called the 
2.  is a finite set, disjoint from ,  call

variables
terminalsed the 

3.  is a finite set of 

contex

rules,

t-fre

 with each rule be

e gra

in

m r

g

ma V R S
V

V
R

Σ

Σ
a variable and

  a string of variables and terminals
4.  i stars t t  she ymbolS V∈

3 ({ },{ , }, , )
| | 

G S a b R S
S aSb SS ε

=
→
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Parsing

Construct meaning (parse tree)

Parse trees for the strings a + a x a and (a + a) x a

3 ( , , , }
{ , , }
{ , , , (, )}

is
|

|
( ) |

G V R Expr
V Expr Term Factor

a
R

Expr Expr Term Term
Term Term Factor Factor
Factor Expr a

= Σ < >
= < > < > < >

Σ = + ×

< >→< > + < > < >
< >→< > × < > < >
< >→ < >
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Constructing CFGs

As the union of simpler CFGs

1 1

2 2

1 2

0 1| 
1 0 | 

|

S S
S S
S S S

ε
ε

→
→

→

1

2

1 2

( ) {0 1 | 0}
( ) {1 0 | 0}
( ) ( ) ( )

n n

n n

L G n
L G n
L G L G L G

= ≥

= ≥
= ∪
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Constructing CFGs

When given a DFA (i.e. constructing a CFG for reg. languages)

For each state 
   Make a variable 
For each transition ( , )

   Add the rule 

For each accept state 
   Add the rule  

i

i

i j

i j

i

i

q
R

q a q

R aR

q
R

δ

ε

=

→

→
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Constructing CFGs

Languages consisting of “linked” strings

1( ) {0 1 | 0}n nL G n= ≥

Use rules of the form
   R uRv→

1 10 1| S S ε→
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Constructing CFGs

Strings that may contain structures  that appear 
recursively as part of other (or the same) structures

|
|

( ) |

Expr Term Term
Term Term Factor Factor

E

Factor

xpr

Exp ar

< >→ + < > < >
< >→< > × < > < >

<

<→ >< >

>
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Ambiguity

If a CFG generates the same string in several ways, then 
the grammar is ambiguous
E.g. grammar G5:

The grammar does not capture usual precedence 
relations
One of the main problems in natural language 
processing
“the boy touches the girl with the flower”

| | ( ) |Expr Expr Expr Expr Expr Expr a< >→< > + < > < > × < > < >
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| | ( ) |Expr Expr Expr Expr Expr Expr a< >→< > + < > < > × < > < >

The two parse trees for the string a + a x a in grammar G5
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Defining ambiguity

Leftmost derivation :
At every step in the derivation the leftmost variable is replaced

A string is derived ambiguously in a CFG if it has two or 
more different leftmost derivations 

A grammar is ambiguous if it generates some string 
ambiguously

Some context free languages are inherently ambiguous, 
ie. every grammar for the language is ambiguous 
{01 2 | or }i j k i j j k= =
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Chomsky-Normal-Form

Definition
A context-free grammar is in Chomsky-Normal-Form, if 
each rule is the following form:

A → BC or
A → a or
S → ε

where
A,B,C,S are the variables
a is a terminal
S is the start variable.
B,C are not the start variable,
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Chomsky-Normal-Form

Theorem
Every context-free language is generated by a grammar in Chomsky-
Normal-Form

Example

context-free grammar:
G = ({A,B}, {0,1,#}, R, A}
R = {A → 0A1, A → B, B → #}

A grammar of the same language in Chomsky-Normal-Form:

G’= ({A,B,C,N,E}, {0,1,#}, R, S}
R = {S → NC, N→ 0,S → #,
A → NC, C → AE, E →1, A → #}
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Chomsky-Normal-Form
Proof idea: 

Rewrite all rules, which are not conform with the Chomsky-Normal-Form
If necessary, introduce new variables

Four Problems

1.Start variable is on the right site of a rule
– Solution: introduce a new start variable and a new rule for the derivation

2.Epsilon-Rules: A → ε
– Solution: if A occurs in the right part of a rule, introduce new rules without A on the 

right part of the rule
3.Unit-Rules: A → B

– Solution: directly replace B by its own production
4.Long and/or mixed rules: A → aBcAbA

– Solution: new variables/new rules
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Proof by Construction

0 0

:

)

S S S
S

A
A R uAv R uv

u v R

ε

ε ε

→

→
→ →

→

1. Add a new start symbol  and the rule  ,
    where  is the old start symbol
2. Remove all rules 
    For each occurrence of  in a rule  add 
    (if and  are  then add . Repe

.
A B B u

A u
→ →

→

at this step until 
    all such rules (except a rule refering to the start variable) 
    are removed
3.Remove all unit rules  : Whenever appears, 
   then add 
   Repeat this step until all unit rules removed.
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Proof by Construction (cont.)

1 2

1 1

1 2 2

2 1

... 3

2

k

k k k

i

i

A u u u k
A u A
A u A

A u u
A

k u

− −

→ ≥
→
→

→

=

4a. Convert remaining rules where into rules
         
        
        ...
        
        where the are new variables
4b. If  then replace any terminal  in th

i i iU U u

Do not allow for cycles (i.e. first remove, then add rule)

→
e rules with a new 

      variable  and the new rule 
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6GLet  be the following CFG and convert it to Chomsky normal form by using 
the conversion precedure just given. The following series of grammars 
illustrates the  steps in the conversion. Rules shown i

6G

n  have been just added. 
Rules shown in  have just been removed.

1. The original CFG  is shown on the left. The result of applying the first step to 
make a new start symbol appears on 

b

the rig

lue
bold

S ASA| aB
A B | S S ASA| aB
B b | A B | S

B b |

→ →
→ →
→ ε →

→ ε

0S S

ht.

          
       

                                  
               

        

Example 2.7
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0 0

|

B A

S S S S
S ASA| aB | S ASA| aB | a | |

A B | S | A

ε → ε → ε

→ →
→ →

→
a SA AS S

ε

2. Remove  rules , shown on the left, and , shown on the right.

                                              

                               
        B | S |

B b | B b→
ε

ε
→

→
                         

                                                

Example 2.7
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0

0 0

S S S S

S S S | | | | |
S ASA| aB | a | SA| AS | S ASA| aB | a | SA| AS

A B

S

|
S

S

→ →

→ →
→ →

→

ASA aB a SA AS

3a. Remove unit rules , shown on the left, and , shown on the right.

                                
       

          
              A B | S

B b B b
→

→ →
                                               

                                                                        

Example 2.7 (cont.)
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0 0

A B A S.

S ASA| aB | a | SA| AS S ASA| aB | a | SA| AS
S ASA| aB | a | SA| AS S ASA| aB | a | SA| AS

A | S A |b | | | | |
B b

B S

→ →

→ →
→ →

→ →
→

b ASA aB a SA AS

3b. Remove unit rules  and 

      
          

     
 |                         

                      B b→                                                   

Example 2.7 (cont.)
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4.) Convert the remaining rules

Example 2.7 (cont.)

0 1

1

1

1

S AA |UB | a | SA| AS
S AA |UB | a | SA| AS
A b | AA |UB | a | SA| AS
A SA
U a
B b

→
→
→
→
→
→

      
          

                        
                                        

0S ASA| aB | a | SA| AS
S ASA| aB | a | SA| AS
A |b | | | | |
B b

S

→
→
→
→

ASA aB a SA AS
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Pushdown automata

Schema of a finite automaton

state
control

a a b b input
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Pushdown automaton

Includes a stack
Push something on top of stack
Pop something from top of stack
Last in first out principle
As in cafeteria – tray
Schematic of a pushdown automaton:

1( ) {0 1 | 0}n nL G n= ≥
state

control
a a b b input

x
y
z stack
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An example PDA

State diagram for the PDA M1 that recognizes {0n1n | n> 0} 

q2q2q1q1

q4q4 q3q3

є,є → $
0,є → 0

1,0 → є

1,0 → є

є,$ → є
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Formal definition (Definition 2.8)

0( , , , , , )
1.

: P( )

Q q F

Q Q

Q

ε ε ε

δ

δ

Γ

×Σ ×

Σ Γ

Γ ×

Σ

→ Γ

A  is a 6-tuple  
is a finite set of states

2.  is a finite set, th
3.  is a finite set, the stack al

pushdown au

e input alp
phabet 

is the t

tomato

ransit

ha

io

n

n

bet

4.  func

oq Q
F Q

∈
⊆

5.  is the start state
6. is the set of accept st

tion

ates

Transition function
maps (state, inputsymbol, stacksymbol)
onto set of (nstate, nstacksymbol)

Meaning:
stacksymbol is replaced by nstackymbol
input, stack, and nstacksymbol can be ε !
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Example 2.9
The following is the formal description of a PDA  that recognizes the language 

. Let  be , where
      
      
      
       and
       

n n
1 1

1 2 3 4

1 4

{0 1 | n 0 } M ( Q, , , ,q ,F )
Q { q ,q ,q ,q },

{0,1},
{0,$},

F { q ,q },

Γ

Γ

≥ Σ δ
=

Σ =
=
=

δ is given by the following table, wherein blank entries signify .∅

q4

{(q4,є)}{(q3,є)}q3

{(q3,є)}{(q2,0)}q2

{(q2,$)}q1

є$0є$0є$0Stack

є10Input
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Computation with PDAs

To compute, one can keep track of 
   1. rest of the input string (to read)
   2. state of PDA
   3. string on stack
Use a tree structure as for NFAs !

1

2

2

2

3

3

4

(0011, , )

(0011, ,$)

(011, ,0$)

(11, ,00$)

(1, ,0$)

( , ,$)

( , ) accept

q

q

q

q

q

q

q

ε

ε

ε

↓

↓

↓

↓

↓

↓

q2q2q1q1

q4q4 q3q3

є,є → $
0,є → 0

1,0 → є

1,0 → є

є,$ → є
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Formal Definition of Computation

0 0

0

1

*
1

( , , , , , )
....

....

, ,.. .. .., ,
n i

n n

n

M Q q F
w w w

M w w w w w w

r s sr Q
ε

δΣ Γ
= Σ

∈Σ =

Γ

∈Σ

Let  be a pushdown automaton 
Let  be a string over 

  if and  where   and a seque
str

nce of
states exists 

accept
 in ings exists  and  in 

s
*

00 0

1 1 1
*

2. 0,..., 1
( , ) ( , , )

,
3.

i i i i i

n

r q
i n

r r w s at s b

s

t

a b

b

t
F

a

r
ε

ε

δ+ + +

=
= −

∈

∈Γ ∈Γ
∈

=1.
for all 

   where = and =
   for some   and some 

No explicit test for empty stack and 

s

e

uch that
and 

nd of input
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Another example

PDA M2 recognizing {ai bj ck|i,j,k ≥ 0 and i = j or i = k}

State diagram for PDA M2 that recognizes the language {aibjck | i.j.k ≥ 0 and i = j or i = k}

Non determinism essential for this language

q4q4q3q3

q5q5 q6q6

є,$ → є

q7q7

є,є → $

q2q2

q1q1

b,є → єa,є → a c,a → є

b,a → є c, є → є

є,$ → єє,є → є є,є → є
є,є

→
є
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Another example

PDA M3 recognizing {wwR|w 2 {0,1}*}

q2q2q1q1

q4q4 q3q3

є,є → $ 0,є → 0
1,є → 1

є, є → є

0,0 → є
1,1 → є

є,$ → є
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Theorem 2.12 and Lemma 2.13

2.12
A language is context free if and only if some pushdown automaton recognizes it
Theorem

2.13
If a language is context free then some pushdown automaton recognizes it
Lemma

•A CFL accepts a string if there exists
a derivation of the string

•Involves intermediate strings

•Represent intermediate strings on 
PDA

a boy sees�

a boy <VERB>�

a boy <CMPLX-VERB>�

a boy <VERB-PHRASE>�

a <NOUN><VERB-PHRASE>�

<ARTICLE><NOUN><VERB-PHRASE>�

<CMPLX-NOUN><VERB-PHRASE>�

<NOUN-PHRASE><VERB-PHRASE>�<SENTENCE>



Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

36

Lemma 2.13 Proof idea

Substitute variables by strings
Replace top variable on stack by string

state
control

0 1 1 0

A
1
A0 1 0
$

0 1A 1 A 00 1A 1 A 0

P presenting the intermediate string 01A1A0
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Lemma 2.13 Proof by construction

1. Place the marker $ and the start symbol on the stack
2. Repeat forever
   a. if top(stack)=variable 
       then non-deterministically select one of the rules for 
       and substitute  

A
A

A

Construction

by right hand side of rule
   b. if top(stack)=terminal symbol 
       then read next input symbol be 
             if then fail

     c. if top(stack)=$ and all input read
         then enter accept s

a
i

a i<>

tate
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Resulting PDA

State diagram of P

qacceptqaccept

є,A → w* : for rule A→w
qloopqloop

є,є → S$*

є,$ → є

a,a → є : for terminal a

qstartqstart

* shorthand notation
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About „Shorthand“

Implementing shorthand: (r,xyz) ∈ δ(a,a,s)

rr

qq

a,s → xyz

rr

qq a,s → z

q1q1

q2q2

є,є → y

є,є → x
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Resulting PDA

CFG G:
S → aTb | b
T → Ta | є

qacceptqaccept

є,A → w* : for rule A→w
a,a → є : for terminal a

qloopqloop

є,є → S$*

є,$ → є

qstartqstart

* shorthand notation

a,a → є

b,b → є

є,T → є

є,S → b є,є → T

є,є → aє,T → a є,є → T
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Lemma 2.15
Lemma 2.15:

If a pushdown automaton recognizes some language, then it is
context-free.

Assume PDA satisfies the following conditions
1. It has a single accept state, 
2. It empties the stack before accepting
3. Each transition either pushes symbol onto the stack
    or re

acceptq

Construction

moves a symbol from the stack

Now generate one variable for each pair of states  and 
The variable accepts all strings that lead from to with empty stack

pq

pq

Can be enforced easily !

A p q
A p q
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Proof

Say that  and construct . The variables

of  are  The start variable is  

Now we describe ´s rules.

   For each  and , if  
 

0 accept

0 accept

pq q ,q

P ( Q, , , q ,{ q }) G

G { A | p,q Q }. A .

G

p,q,r ,s Q;t a,b ( p,a, )

Γ

ε

= Σ δ,

∈

• ∈ ∈ Γ, ∈Σ δ ε
       contains  and  contains  put the 
        rule  in 

   For each  put the rule  in 

   Finally, for each  put the rule  in 

You may gain s

pq rs

pq pr rq

pp

( r ,t ) ( s,b,t ) ( q, )
A aA b G.

p,q,r Q A A A G.

p Q A G.

δ ε
→

• ∈ →

• ∈ → ε

ome intuition for this construction from the following figures.
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2.16
If generates ,  then can bring from  with empty stack to with empty stackpqA x x P p q
Claim

: derivation has 1 step, i.e.  must use a rule with no variables in right hand side 
only type 

: Assume true for derivations of length at most 1 and prove for 1

Suppose 

pq

pp

p

A x
A

k k

A

ε

⇒

→

≥ +

Proof
Basis

Induction
*

*

with 1 steps
First step is either a.  or b. 

Case a.  and  in steps with empty stack
            Now, because in  we have ( , , ) ( , ) and
                  

q

pq rs pq pr rq

rs

pq rs

x k
A aA b A A A

x ayb A y k
A aA b G p a r tδ ε

⇒ +

⇒ ⇒

= ⇒
⇒ ∋

* *

         ( , , ) ( , )
            Therefore  can bring from to with empty stack

Case b. let such that  and 
             both derivations use at most steps
             Therefore  

pr rq

s b t q
x P p q

x yz A y A z
k

x

δ ε∋

= ⇒ ⇒

can bring from to via  with empty stackP p q r
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*

2.17
If can bring from with empty stack to with empty stack, then  generates 

: computation has 0 steps

Therefore, it starts and ends in same state, so we must prove that ,
In 

pq

pp

x P p q A x

A x⇒

Claim

Proof
Basis

0 steps,  must be 
This rule  is in 

: Assume true for computations of length at most 0 and prove for 1.
Suppose has a computation where  brings to with emtpy stack in 1 steps. E

pp

x
A G

k k
P x p q k

ε
ε→

≥ +
+

Induction
ither stack is empty 

a. only at the beginning and end, or b. also somewhere else.
Case a. symbol that is pushed first = symbol that is popped last = 
            let be the input read in first move,  

t
a r be the state after first move

            let be the input read in last move, be the state before last move
            Then    ( , , ) ( , ) and  ( , , ) ( , )
            So, in 

            

pq rs

b s
p a r t s b t q

A aA b G
δ ε δ ε∋ ∋
→

*

*

Let ; then  in 1steps 

            So, 
Case b. let  be the state where the stack becomes empty
            then computations from to  and from  to  take at most  steps

            

rs

pq

x ayb A y k

A x
r

p r r q k

= ⇒ −

⇒

* *

*

hence,   and 

            Because in ,  

pr rq

pq pr rq pq

A y A z

A A A G A x

⇒ ⇒

→ ⇒



Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

47

Every regular language is context-free
(because NFA is PDA without stack)
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Pumping lemma

 Pumping Lemma
If  is a context free language, then there is a number 
such that if  is any string in of length at least 
then may be dived into  such that
1. For each 0;  
2.

i i

A p
s A p

s s uvxyz
i uv xy z A

v

=

≥ ∈

Theorem

0

3.

y

vxy p

>

≤
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Proof Idea

T

R

R

u v x y z



Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

50

Proof Idea

T

R

R

u

v

x y z

R

yx
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Proof Idea

T

R

R

u v x y z
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Proof Idea

T

R

u

x

z
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:  max number of elements on right hand side of rule
2 because CFG (look at CNF)

number of leaves in a parse tree of height 
hence, length of string in a parse tree of height 

: numb

h

h

b
b

h b
h b

V

≥

≤

≤

Proof elements

2 1

er of vars in 

choose ; so  (because 2)
assume 

so, parse tree for has height at least 2
take smallest parse tree for 
apply pigeonhole principle on longest path: repeating var
Pr

V V

Grammar

p b p b b
s p

s V
s

R

+ += > ≥

≥

+

2

ove 1), 2) see figures
3) choose in bottom 1 vars.

Subtree generating has height at most 2

String  generated by at most length  V

R V

R V

vxy R p b +

+

+

=

T

R

R

u v x y z T

R

R

u

v

x y z

R

yx

T

R

u

x

z
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{ | 0} is not context freen n nB a b c n= ≥

2 2

choose 
clearly in 
because 2) either or not empty
Consider two cases :
A. both and contain only one type of alphabet symbol
   Then (does not contain equal no. of , , )
B. either or 

p p ps a b c
B

v y

v y
uv xy z B a b c

v

=

∉

2 2

 contain more than one type of symbol
   Then (does not have right order of  , , )

y
uv xy z B a b c∉

1. For each 0;  
2. 0

3.

i ii uv xy z A
vy

vxy p

≥ ∈

>

≤
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{ | 0 } is not context freei j kC a b c i j k= ≤ ≤ ≤

choose ; clearly in 
because 2) either or not empty; Consider two cases :
A. both and contain only one type of alphabet symbol
   Three subcases :
   A1. does not appear in  and 
         T

p p ps a b c C
v y

v y

a v y

=

0 0

2 2

0 0

hen (contains fewer , )
   A2. does not appear in  and 
          If  appears then (contains more  than )
          If  appears then (contains less  than )
    A3. do

uv xy z B b c
b v y

a uv xy z B a b
c uv xy z B c b

c

∉

∉

∉

2 2

2 2

es not appear in  and 
          Then 
B. either or  contain more than one symbol
   Then (does not have right order of  , , )

v y
uv xy z B

v y
uv xy z B a b c

∉

∉

1. For each 0;  
2. 0

3.

i ii uv xy z A
vy

vxy p

≥ ∈

>

≤
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Overview

Context free grammars
Pushdown Automata
Equivalence of PDAs and CFGs
Non-context free grammars

Pumping lemma
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Proof by Construction

0 0

:
)

S S S S
A A R uAv R uv

u v R
ε

ε ε

→
→ → →

→

1. Add a new start symbol  and the rule  where  is the old start symbol
2. Remove all rules For each occurrence of  in a rule  add 
    (if and  are  then add . Repeat this s

A B B u A u→ → →

tep until all such rules (except 
    a rule refering to the start variable) are removed
3.Remove all unit rules  : Whenever appears, then add 
    Repeat this step until all unit rules removed.
4 1 2

1 1

1 2 2

2 1

... 3

2

k

k k k

i

i

A u u u k
A u A
A u A

A u u
A

k u

− −

→ ≥
→
→

→

≥

a. Convert remaining rules where into rules
         
        
        ...
        
        where the are new variables
4b. If  then replace any terminal  in the i

i i

U
U u

Do not allow for cycles (i.e. first remove, then add rule)
→

rules with a new variable  and the new
      rule 


