
Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

1

Context-free Languages

Andreas Karwath & Malte Helmert

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

2

Overview

Context free grammars

Pushdown Automata

Equivalence of PDAs and CFGs

Non-context free grammars
Pumping lemma

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

3

Context free languages

Extend regular languages

First studied for natural languages

Often used in computer languages
Compilers
Parsers

Pushdown automata

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

4

Key Concepts: Context-free Grammar
1Grammar :

 0 1

 #
Terminals 0,1,# (correspond to the alphabet)
Nonterminals / Variables ,
Rules
Startsymbol

G
A A
A B
B

A B
Symbol String

→
→
→

Σ

→

The sequence of substitutions to obtain a string is called a
Example, derivation for 000#111:

0 1 00 11 000 111 000 111 000#111

.

A A A A B

derivation

⇒ ⇒ ⇒ ⇒ ⇒

1

1

() {0 #1 | 0}
Language defined by grammar

n nL G n
G

= >

A parse tree for 000#111
in grammar G1

A
A
A
A
B

0 0 0 # 1 1 1

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

5

Natural language example:

a boy sees
the boy sees a flower
a girl with a flower likes the boy

with→<PREP>

touches | likes | sees→<VERB>

boy | girl | flower→<NOUN>

a | the→<ARTICLE>

<VERB>|<VERB><NOUN-PHRASE>→<CMPLX-VERB>

<ARTICLE><NOUN>→<CMPLX-NOUN>

<PREP><CMPLX-NOUN>→<PREP-PHRASE>

<CMPLX-VERB>|<CMPLX-VERB><PREP-PHRASE>→<VERB-PHRASE>

<CMPLX-NOUN>|<CMPLX-NOUN><PREP-PHRASE>→<NOUN-
PHRASE>

<NOUN-PHRASE><VERB-PHRASE>→<SENTENCE>

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

6

with→<PREP>

touches | likes | sees→<VERB>

boy | girl | flower→<NOUN>

a | the→<ARTICLE>

<VERB>|<VERB><NOUN-PHRASE>→<CMPLX-VERB>

<ARTICLE><NOUN>→<CMPLX-NOUN>

<PREP><CMPLX-NOUN>→<PREP-PHRASE>

<CMPLX-VERB>|<CMPLX-VERB><PREP-PHRASE>→<VERB-PHRASE>

<CMPLX-NOUN>|<CMPLX-NOUN><PREP-
PHRASE>→<NOUN-PHRASE>

<NOUN-PHRASE><VERB-PHRASE>→<SENTENCE>

a boy sees→

a boy <VERB>→

a boy <CMPLX-VERB>→

a boy <VERB-PHRASE>→

a <NOUN><VERB-PHRASE>→

<ARTICLE><NOUN><VERB-PHRASE>→

<CMPLX-NOUN><VERB-PHRASE>→

<NOUN-PHRASE><VERB-PHRASE>→<SENTENCE>

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

7

Definition Context free grammar

A is a 4-tuple (, , ,), where
1. is a finite set called the
2. is a finite set, disjoint from , call

variables
terminalsed the

3. is a finite set of

contex

rules,

t-fre

 with each rule be

e gra

in

m r

g

ma V R S
V

V
R

Σ

Σ
a variable and

 a string of variables and terminals
4. i stars t t she ymbolS V∈

3 ({ },{ , }, ,)
| |

G S a b R S
S aSb SS ε

=
→

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

8

Parsing

Construct meaning (parse tree)

Parse trees for the strings a + a x a and (a + a) x a

3 (, , , }
{ , , }
{ , , , (,)}

is
|

|
() |

G V R Expr
V Expr Term Factor

a
R

Expr Expr Term Term
Term Term Factor Factor
Factor Expr a

= Σ < >
= < > < > < >

Σ = + ×

< >→< > + < > < >
< >→< > × < > < >
< >→ < >

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

9

Constructing CFGs

As the union of simpler CFGs

1 1

2 2

1 2

0 1|
1 0 |

|

S S
S S
S S S

ε
ε

→
→

→

1

2

1 2

() {0 1 | 0}
() {1 0 | 0}
() () ()

n n

n n

L G n
L G n
L G L G L G

= ≥

= ≥
= ∪

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

10

Constructing CFGs

When given a DFA (i.e. constructing a CFG for reg. languages)

For each state
 Make a variable
For each transition (,)

 Add the rule

For each accept state
 Add the rule

i

i

i j

i j

i

i

q
R

q a q

R aR

q
R

δ

ε

=

→

→

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

11

Constructing CFGs

Languages consisting of “linked” strings

1() {0 1 | 0}n nL G n= ≥

Use rules of the form
 R uRv→

1 10 1| S S ε→

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

12

Constructing CFGs

Strings that may contain structures that appear
recursively as part of other (or the same) structures

|
|

() |

Expr Term Term
Term Term Factor Factor

E

Factor

xpr

Exp ar

< >→ + < > < >
< >→< > × < > < >

<

<→ >< >

>

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

13

Ambiguity

If a CFG generates the same string in several ways, then
the grammar is ambiguous
E.g. grammar G5:

The grammar does not capture usual precedence
relations
One of the main problems in natural language
processing
“the boy touches the girl with the flower”

| | () |Expr Expr Expr Expr Expr Expr a< >→< > + < > < > × < > < >

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

14

| | () |Expr Expr Expr Expr Expr Expr a< >→< > + < > < > × < > < >

The two parse trees for the string a + a x a in grammar G5

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

15

Defining ambiguity

Leftmost derivation :
At every step in the derivation the leftmost variable is replaced

A string is derived ambiguously in a CFG if it has two or
more different leftmost derivations

A grammar is ambiguous if it generates some string
ambiguously

Some context free languages are inherently ambiguous,
ie. every grammar for the language is ambiguous
{01 2 | or }i j k i j j k= =

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

16

Chomsky-Normal-Form

Definition
A context-free grammar is in Chomsky-Normal-Form, if
each rule is the following form:

A → BC or
A → a or
S → ε

where
A,B,C,S are the variables
a is a terminal
S is the start variable.
B,C are not the start variable,

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

17

Chomsky-Normal-Form

Theorem
Every context-free language is generated by a grammar in Chomsky-
Normal-Form

Example

context-free grammar:
G = ({A,B}, {0,1,#}, R, A}
R = {A → 0A1, A → B, B → #}

A grammar of the same language in Chomsky-Normal-Form:

G’= ({A,B,C,N,E}, {0,1,#}, R, S}
R = {S → NC, N→ 0,S → #,
A → NC, C → AE, E →1, A → #}

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

18

Chomsky-Normal-Form
Proof idea:

Rewrite all rules, which are not conform with the Chomsky-Normal-Form
If necessary, introduce new variables

Four Problems

1.Start variable is on the right site of a rule
– Solution: introduce a new start variable and a new rule for the derivation

2.Epsilon-Rules: A → ε
– Solution: if A occurs in the right part of a rule, introduce new rules without A on the

right part of the rule
3.Unit-Rules: A → B

– Solution: directly replace B by its own production
4.Long and/or mixed rules: A → aBcAbA

– Solution: new variables/new rules

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

19

Proof by Construction

0 0

:

)

S S S
S

A
A R uAv R uv

u v R

ε

ε ε

→

→
→ →

→

1. Add a new start symbol and the rule ,
 where is the old start symbol
2. Remove all rules
 For each occurrence of in a rule add
 (if and are then add . Repe

.
A B B u

A u
→ →

→

at this step until
 all such rules (except a rule refering to the start variable)
 are removed
3.Remove all unit rules : Whenever appears,
 then add
 Repeat this step until all unit rules removed.

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

20

Proof by Construction (cont.)

1 2

1 1

1 2 2

2 1

... 3

2

k

k k k

i

i

A u u u k
A u A
A u A

A u u
A

k u

− −

→ ≥
→
→

→

=

4a. Convert remaining rules where into rules

 ...

 where the are new variables
4b. If then replace any terminal in th

i i iU U u

Do not allow for cycles (i.e. first remove, then add rule)

→
e rules with a new

 variable and the new rule

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

21

6GLet be the following CFG and convert it to Chomsky normal form by using
the conversion precedure just given. The following series of grammars
illustrates the steps in the conversion. Rules shown i

6G

n have been just added.
Rules shown in have just been removed.

1. The original CFG is shown on the left. The result of applying the first step to
make a new start symbol appears on

b

the rig

lue
bold

S ASA| aB
A B | S S ASA| aB
B b | A B | S

B b |

→ →
→ →
→ ε →

→ ε

0S S

ht.

Example 2.7

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

22

0 0

|

B A

S S S S
S ASA| aB | S ASA| aB | a | |

A B | S | A

ε → ε → ε

→ →
→ →

→
a SA AS S

ε

2. Remove rules , shown on the left, and , shown on the right.

 B | S |

B b | B b→
ε

ε
→

→

Example 2.7

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

23

0

0 0

S S S S

S S S | | | | |
S ASA| aB | a | SA| AS | S ASA| aB | a | SA| AS

A B

S

|
S

S

→ →

→ →
→ →

→

ASA aB a SA AS

3a. Remove unit rules , shown on the left, and , shown on the right.

 A B | S

B b B b
→

→ →

Example 2.7 (cont.)

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

24

0 0

A B A S.

S ASA| aB | a | SA| AS S ASA| aB | a | SA| AS
S ASA| aB | a | SA| AS S ASA| aB | a | SA| AS

A | S A |b | | | | |
B b

B S

→ →

→ →
→ →

→ →
→

b ASA aB a SA AS

3b. Remove unit rules and

 |

 B b→

Example 2.7 (cont.)

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

25

4.) Convert the remaining rules

Example 2.7 (cont.)

0 1

1

1

1

S AA |UB | a | SA| AS
S AA |UB | a | SA| AS
A b | AA |UB | a | SA| AS
A SA
U a
B b

→
→
→
→
→
→

0S ASA| aB | a | SA| AS
S ASA| aB | a | SA| AS
A |b | | | | |
B b

S

→
→
→
→

ASA aB a SA AS

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

26

Pushdown automata

Schema of a finite automaton

state
control

a a b b input

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

27

Pushdown automaton

Includes a stack
Push something on top of stack
Pop something from top of stack
Last in first out principle
As in cafeteria – tray
Schematic of a pushdown automaton:

1() {0 1 | 0}n nL G n= ≥
state

control
a a b b input

x
y
z stack

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

28

An example PDA

State diagram for the PDA M1 that recognizes {0n1n | n> 0}

q2q2q1q1

q4q4 q3q3

є,є → $
0,є → 0

1,0 → є

1,0 → є

є,$ → є

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

29

Formal definition (Definition 2.8)

0(, , , , ,)
1.

: P()

Q q F

Q Q

Q

ε ε ε

δ

δ

Γ

×Σ ×

Σ Γ

Γ ×

Σ

→ Γ

A is a 6-tuple
is a finite set of states

2. is a finite set, th
3. is a finite set, the stack al

pushdown au

e input alp
phabet

is the t

tomato

ransit

ha

io

n

n

bet

4. func

oq Q
F Q

∈
⊆

5. is the start state
6. is the set of accept st

tion

ates

Transition function
maps (state, inputsymbol, stacksymbol)
onto set of (nstate, nstacksymbol)

Meaning:
stacksymbol is replaced by nstackymbol
input, stack, and nstacksymbol can be ε !

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

30

Example 2.9
The following is the formal description of a PDA that recognizes the language

. Let be , where

 and

n n
1 1

1 2 3 4

1 4

{0 1 | n 0 } M (Q, , , ,q ,F)
Q { q ,q ,q ,q },

{0,1},
{0,$},

F { q ,q },

Γ

Γ

≥ Σ δ
=

Σ =
=
=

δ is given by the following table, wherein blank entries signify .∅

q4

{(q4,є)}{(q3,є)}q3

{(q3,є)}{(q2,0)}q2

{(q2,$)}q1

є$0є$0є$0Stack

є10Input

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

31

Computation with PDAs

To compute, one can keep track of
 1. rest of the input string (to read)
 2. state of PDA
 3. string on stack
Use a tree structure as for NFAs !

1

2

2

2

3

3

4

(0011, ,)

(0011, ,$)

(011, ,0$)

(11, ,00$)

(1, ,0$)

(, ,$)

(,) accept

q

q

q

q

q

q

q

ε

ε

ε

↓

↓

↓

↓

↓

↓

q2q2q1q1

q4q4 q3q3

є,є → $
0,є → 0

1,0 → є

1,0 → є

є,$ → є

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

32

Formal Definition of Computation

0 0

0

1

*
1

(, , , , ,)
....

....

, ,.., ,
n i

n n

n

M Q q F
w w w

M w w w w w w

r s sr Q
ε

δΣ Γ
= Σ

∈Σ =

Γ

∈Σ

Let be a pushdown automaton
Let be a string over

 if and where and a seque
str

nce of
states exists

accept
 in ings exists and in

s
*

00 0

1 1 1
*

2. 0,..., 1
(,) (, ,)

,
3.

i i i i i

n

r q
i n

r r w s at s b

s

t

a b

b

t
F

a

r
ε

ε

δ+ + +

=
= −

∈

∈Γ ∈Γ
∈

=1.
for all

 where = and =
 for some and some

No explicit test for empty stack and

s

e

uch that
and

nd of input

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

33

Another example

PDA M2 recognizing {ai bj ck|i,j,k ≥ 0 and i = j or i = k}

State diagram for PDA M2 that recognizes the language {aibjck | i.j.k ≥ 0 and i = j or i = k}

Non determinism essential for this language

q4q4q3q3

q5q5 q6q6

є,$ → є

q7q7

є,є → $

q2q2

q1q1

b,є → єa,є → a c,a → є

b,a → є c, є → є

є,$ → єє,є → є є,є → є
є,є

→
є

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

34

Another example

PDA M3 recognizing {wwR|w 2 {0,1}*}

q2q2q1q1

q4q4 q3q3

є,є → $ 0,є → 0
1,є → 1

є, є → є

0,0 → є
1,1 → є

є,$ → є

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

35

Theorem 2.12 and Lemma 2.13

2.12
A language is context free if and only if some pushdown automaton recognizes it
Theorem

2.13
If a language is context free then some pushdown automaton recognizes it
Lemma

•A CFL accepts a string if there exists
a derivation of the string

•Involves intermediate strings

•Represent intermediate strings on
PDA

a boy sees�

a boy <VERB>�

a boy <CMPLX-VERB>�

a boy <VERB-PHRASE>�

a <NOUN><VERB-PHRASE>�

<ARTICLE><NOUN><VERB-PHRASE>�

<CMPLX-NOUN><VERB-PHRASE>�

<NOUN-PHRASE><VERB-PHRASE>�<SENTENCE>

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

36

Lemma 2.13 Proof idea

Substitute variables by strings
Replace top variable on stack by string

state
control

0 1 1 0

A
1
A0 1 0
$

0 1A 1 A 00 1A 1 A 0

P presenting the intermediate string 01A1A0

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

37

Lemma 2.13 Proof by construction

1. Place the marker $ and the start symbol on the stack
2. Repeat forever
 a. if top(stack)=variable
 then non-deterministically select one of the rules for
 and substitute

A
A

A

Construction

by right hand side of rule
 b. if top(stack)=terminal symbol
 then read next input symbol be
 if then fail

 c. if top(stack)=$ and all input read
 then enter accept s

a
i

a i<>

tate

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

38

Resulting PDA

State diagram of P

qacceptqaccept

є,A → w* : for rule A→w
qloopqloop

є,є → S$*

є,$ → є

a,a → є : for terminal a

qstartqstart

* shorthand notation

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

39

About „Shorthand“

Implementing shorthand: (r,xyz) ∈ δ(a,a,s)

rr

qq

a,s → xyz

rr

qq a,s → z

q1q1

q2q2

є,є → y

є,є → x

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

40

Resulting PDA

CFG G:
S → aTb | b
T → Ta | є

qacceptqaccept

є,A → w* : for rule A→w
a,a → є : for terminal a

qloopqloop

є,є → S$*

є,$ → є

qstartqstart

* shorthand notation

a,a → є

b,b → є

є,T → є

є,S → b є,є → T

є,є → aє,T → a є,є → T

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

41

Lemma 2.15
Lemma 2.15:

If a pushdown automaton recognizes some language, then it is
context-free.

Assume PDA satisfies the following conditions
1. It has a single accept state,
2. It empties the stack before accepting
3. Each transition either pushes symbol onto the stack
 or re

acceptq

Construction

moves a symbol from the stack

Now generate one variable for each pair of states and
The variable accepts all strings that lead from to with empty stack

pq

pq

Can be enforced easily !

A p q
A p q

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

42

Proof

Say that and construct . The variables

of are The start variable is

Now we describe ´s rules.

 For each and , if

0 accept

0 accept

pq q ,q

P (Q, , , q ,{ q }) G

G { A | p,q Q }. A .

G

p,q,r ,s Q;t a,b (p,a,)

Γ

ε

= Σ δ,

∈

• ∈ ∈ Γ, ∈Σ δ ε
 contains and contains put the
 rule in

 For each put the rule in

 Finally, for each put the rule in

You may gain s

pq rs

pq pr rq

pp

(r ,t) (s,b,t) (q,)
A aA b G.

p,q,r Q A A A G.

p Q A G.

δ ε
→

• ∈ →

• ∈ → ε

ome intuition for this construction from the following figures.

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

43

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

44

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

45

2.16
If generates , then can bring from with empty stack to with empty stackpqA x x P p q
Claim

: derivation has 1 step, i.e. must use a rule with no variables in right hand side
only type

: Assume true for derivations of length at most 1 and prove for 1

Suppose

pq

pp

p

A x
A

k k

A

ε

⇒

→

≥ +

Proof
Basis

Induction
*

*

with 1 steps
First step is either a. or b.

Case a. and in steps with empty stack
 Now, because in we have (, ,) (,) and

q

pq rs pq pr rq

rs

pq rs

x k
A aA b A A A

x ayb A y k
A aA b G p a r tδ ε

⇒ +

⇒ ⇒

= ⇒
⇒ ∋

* *

 (, ,) (,)
 Therefore can bring from to with empty stack

Case b. let such that and
 both derivations use at most steps
 Therefore

pr rq

s b t q
x P p q

x yz A y A z
k

x

δ ε∋

= ⇒ ⇒

can bring from to via with empty stackP p q r

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

46

*

2.17
If can bring from with empty stack to with empty stack, then generates

: computation has 0 steps

Therefore, it starts and ends in same state, so we must prove that ,
In

pq

pp

x P p q A x

A x⇒

Claim

Proof
Basis

0 steps, must be
This rule is in

: Assume true for computations of length at most 0 and prove for 1.
Suppose has a computation where brings to with emtpy stack in 1 steps. E

pp

x
A G

k k
P x p q k

ε
ε→

≥ +
+

Induction
ither stack is empty

a. only at the beginning and end, or b. also somewhere else.
Case a. symbol that is pushed first = symbol that is popped last =
 let be the input read in first move,

t
a r be the state after first move

 let be the input read in last move, be the state before last move
 Then (, ,) (,) and (, ,) (,)
 So, in

pq rs

b s
p a r t s b t q

A aA b G
δ ε δ ε∋ ∋
→

*

*

Let ; then in 1steps

 So,
Case b. let be the state where the stack becomes empty
 then computations from to and from to take at most steps

rs

pq

x ayb A y k

A x
r

p r r q k

= ⇒ −

⇒

* *

*

hence, and

 Because in ,

pr rq

pq pr rq pq

A y A z

A A A G A x

⇒ ⇒

→ ⇒

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

47

Every regular language is context-free
(because NFA is PDA without stack)

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

48

Pumping lemma

 Pumping Lemma
If is a context free language, then there is a number
such that if is any string in of length at least
then may be dived into such that
1. For each 0;
2.

i i

A p
s A p

s s uvxyz
i uv xy z A

v

=

≥ ∈

Theorem

0

3.

y

vxy p

>

≤

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

49

Proof Idea

T

R

R

u v x y z

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

50

Proof Idea

T

R

R

u

v

x y z

R

yx

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

51

Proof Idea

T

R

R

u v x y z

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

52

Proof Idea

T

R

u

x

z

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

53

: max number of elements on right hand side of rule
2 because CFG (look at CNF)

number of leaves in a parse tree of height
hence, length of string in a parse tree of height

: numb

h

h

b
b

h b
h b

V

≥

≤

≤

Proof elements

2 1

er of vars in

choose ; so (because 2)
assume

so, parse tree for has height at least 2
take smallest parse tree for
apply pigeonhole principle on longest path: repeating var
Pr

V V

Grammar

p b p b b
s p

s V
s

R

+ += > ≥

≥

+

2

ove 1), 2) see figures
3) choose in bottom 1 vars.

Subtree generating has height at most 2

String generated by at most length V

R V

R V

vxy R p b +

+

+

=

T

R

R

u v x y z T

R

R

u

v

x y z

R

yx

T

R

u

x

z

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

54

{ | 0} is not context freen n nB a b c n= ≥

2 2

choose
clearly in
because 2) either or not empty
Consider two cases :
A. both and contain only one type of alphabet symbol
 Then (does not contain equal no. of , ,)
B. either or

p p ps a b c
B

v y

v y
uv xy z B a b c

v

=

∉

2 2

 contain more than one type of symbol
 Then (does not have right order of , ,)

y
uv xy z B a b c∉

1. For each 0;
2. 0

3.

i ii uv xy z A
vy

vxy p

≥ ∈

>

≤

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

55

{ | 0 } is not context freei j kC a b c i j k= ≤ ≤ ≤

choose ; clearly in
because 2) either or not empty; Consider two cases :
A. both and contain only one type of alphabet symbol
 Three subcases :
 A1. does not appear in and
 T

p p ps a b c C
v y

v y

a v y

=

0 0

2 2

0 0

hen (contains fewer ,)
 A2. does not appear in and
 If appears then (contains more than)
 If appears then (contains less than)
 A3. do

uv xy z B b c
b v y

a uv xy z B a b
c uv xy z B c b

c

∉

∉

∉

2 2

2 2

es not appear in and
 Then
B. either or contain more than one symbol
 Then (does not have right order of , ,)

v y
uv xy z B

v y
uv xy z B a b c

∉

∉

1. For each 0;
2. 0

3.

i ii uv xy z A
vy

vxy p

≥ ∈

>

≤

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

56

Overview

Context free grammars
Pushdown Automata
Equivalence of PDAs and CFGs
Non-context free grammars

Pumping lemma

Informatik Theorie II (A) WS2009/10

acs-05: Context-free Languages

57

Proof by Construction

0 0

:
)

S S S S
A A R uAv R uv

u v R
ε

ε ε

→
→ → →

→

1. Add a new start symbol and the rule where is the old start symbol
2. Remove all rules For each occurrence of in a rule add
 (if and are then add . Repeat this s

A B B u A u→ → →

tep until all such rules (except
 a rule refering to the start variable) are removed
3.Remove all unit rules : Whenever appears, then add
 Repeat this step until all unit rules removed.
4 1 2

1 1

1 2 2

2 1

... 3

2

k

k k k

i

i

A u u u k
A u A
A u A

A u u
A

k u

− −

→ ≥
→
→

→

≥

a. Convert remaining rules where into rules

 ...

 where the are new variables
4b. If then replace any terminal in the i

i i

U
U u

Do not allow for cycles (i.e. first remove, then add rule)
→

rules with a new variable and the new
 rule

