
Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

1

Regular Languages

Andreas Karwath & Malte Helmert

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

2

Overview

Deterministic finite automata
Regular languages
Nondeterministic finite automata
Closure operations
Regular expressions
Nonregular languages
The pumping lemma

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

3

Finite Automata
An intuitive example : supermarket door controller

Probabilistic counterparts exist
Markov chains, Bayesian nets, etc.
Not in this course

Transition table for the automatic door controler:

openopenopenclosedopen

closedclosedopenclosedclosed

bothrearfrontneither

closed open

front

neither

rear
both

neither

front
rear
both

State diagram for the automatic door controler

front
pad

rear
pad

door

Top view of an automatic door

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

4

A finite automaton

Figure 1.4 Formally

1 2 3

1

2

States : , ,
Startstate :
Acceptstate :
Transitions
Output : or

q q q
q

q

accept reject

0A is a 5-tuple (, , , ,)
1. is a finite set of states
2. is a finite set, the alphabet
3. : is the transition function
4. is the start sta

finite automaton

te
5. is the set of accept stat

o

Q q F
Q

Q Q
q Q
F Q

δ

δ

Σ

Σ
×Σ →

∈
⊆ es

q1 q2

0
1

1
q3

0

0,1

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

5

1

1 2 3

1 1 2

2 3 2

3 2 2

1

2

Describe
{ , , }
{0,1}

defined by
0 1

 start state
{ }

M
Q q q q

q q q
q q q
q q q

q
F q

δ

=
Σ =

=

is the language of machine
 we write ()

{ | contains at least one 1 and an
 even number of 0s follows the last 1 }

A M
L M A

A w w
=

=

q1 q2

0
1

1
q3

0

0

1

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

6

q1 q2

0
11

0

State diagram of the two-state finite automaton M2

q1 q2

0
11

0

State diagram of the two-state finite automaton M3

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

7

Other examples

7,8,9

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

8

Another example

0 1

 is the language of all strings where the sum of the numbers
is a multiple of except that the sum is reset to 0 whenever the symbol a
 A generalisation :

Autom

ppears

1. { ,...,
aton =

}
2

i

i

i i

A
i reset

Q
B

q q −=

0

. ={0,1,2, }
3. (,0)

 (,1) where (1) mod
 (, 2) where (2) mod

 (,)

4. is start and accept state

j j

j k

j k

j

o

reset
q q

q q k j i
q q k j i

q reset q

q Q

δ

δ

δ

δ

Σ

=

= = +

= = +

=

∈

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

9

Formal definition of computation

0

1

0

0 0

1 1

Let be a finite automaton (, , , ,)
Let be a string over

 if a sequence of states ,..., exists in such that
1.
2. (,) for all 0,..., 1
3.

accepts

recogn

n

n

i i i

n

M Q q F
w w w

M w r r Q
r q

r w r i n
r F

M

δ

δ + +

Σ
= Σ

=
= = −

∈

language if { | accepts }

A language is if some finite automa

iz

to

es

n recognizes it.

regular

A A w M w=

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

10

Designing finite automata

Design automaton for language consisting of binary
strings with an odd number of 1s
Design first states
Then transitions
Start state and accept states

qeven qodd

0
01

1

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

11

Another example

Design an automaton to recognize the language of binary strings
containing the string 001 as substring
We have four possibilities:
1. we haven‘t seen any symbol of the pattern yet, or
2. we have seen a 0, or
3. we have seen a 00, or
4. we have seen the pattern 001

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

12

Another example

Design an automaton to recognize the language of binary strings
containing the string 001 as substring
We have four possibilities:
1. we haven‘t seen any symbol of the pattern yet, or
2. we have seen a 0, or
3. we have seen a 00, or
4. we have seen the pattern 001

q q0

1 0

1

q001q00

0

0 0, 1

1

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

13

The Regular Operations

*
1 2

*

Union
Concatenation
Sta

Let and be languages
We define :

 : { | or }
 : { | and }

: { ... | 0 and each }

 note: always

Exampl

r

e
{ , }
{ ,

}
{

n i

A B

A B x x A x B
A B xy x A y B

A x x x n x A

A

A good bad
B boy girl
A B g

ε

∪ = ∈ ∈
= ∈ ∈

= ≥ ∈

∈

=
=
∪ =

o

*

, , , }
 { , , , }

 { , , , , ,
, , , ,...}

ood bad boy girl
A B goodboy goodgirl badboy badgirl
A good bad goodgood goodbad

badgood badbad goodgoodgood goodgoodbad
ε

=

=

o

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

14

Regular languages are closed under …

 A set is under an operation if applying on
elements of yields elements of .

Example: multiplication on natural numbers
Counterexample :division of nat

ural numbe

c

r

sed

s

loS o o
S S

1 2 1 2

 1.12
The class of the regular languages is closed under the union operation.
In other words, if and are regular languages, so is A A A A∪

Theorem

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

15

Proof 1.12 (by construction)

{ }

1 1 1 1 1 1 1

2 2 2 2 2 2 2

1 2 0

1 2 1 1 2 2

Let recognize , where , and
 recognize , where .

Construct to recognize , where .

1. and
 This set is

M A M (Q , , ,q ,F)
M A M (Q , , ,q ,F)

M A A M (Q, q ,F)

Q (r ,r)| r Q r Q .

Σ δ
Σ δ

=
=

∪ = Σ,δ,

= ∈ ∈

1 2 1 2

1 2

1 2

the of sets and (written)
 It is the set of all pairs of states, the first from and the second from .
2. , the alphabet, is the same as in and The theorem r

Q Q Q Q .
Q Q

M M .Σ

×Cartesian product

1 2

1 2

emains true if they have
 different alphabets, and We would then modify the proof to let

.
.

Σ Σ
Σ Σ Σ= ∪

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

16

1 2

1 2 1 1 2 2

3. , the transition function, is defined as follows. For each and
 each , let

 Hence gets a state of (wh

(r ,r) Q
a

((r ,r),a) ((r ,a), (r ,a)).
M

δ
Σ

δ δ δ
δ

∈
∈

=

1 2

0 1 2

ich actually is a pair of states from and),
 together with an input symbol, and returns 's next state.
4. is the pair
5. is the set of pairs in which either member is an accept st

M M
M

q (q ,q).
F 1 2

1 2 1 1 2 2

1 2 1 2

1 2

ate of and .
 We can write it as
 or
 This expression is the same as

Note that it is not the same as Wh

M M

F {(r ,r)| r F r F }.
F (F Q) (Q F).

F F F .

= ∈ ∈
= × ∪ ×

= × at would that give us?

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

17

Example
1 1 1 1 1 1 2 2 2 2 2 2

1 2 1 1 2 2

1 2

1 2 1 1 2 2

1 2

1 2 1 1 2 2

(, , , ,)

constructed from (, , , ,) and (, , , ,)
Define
1. {(,) | and }
2.
3. ((,),) ((,), (,))
4. (,)
5. {(,) | or }

M Q q F

M Q q F M Q q F

Q r r r Q r Q

r r a r a r a
q q q
F r r r F r F

δ

δ δ

δ δ δ

= Σ

= Σ = Σ

= ∈ ∈
Σ = Σ ∪ Σ

=
=
= ∈ ∈

M1 with L(M1) = {w|w contains a 1}

q1 q2

0 0,1

1

p2p1 p3

1 0,1

0 0

1

M2 with L(M2) = {w|w contains at least two 0s}

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

18

1 2 1 2

 1.13
The class of the regular languages is closed under the concatenation operation.
In other words, if and are regular languages, so is A A A A

Theorem

o

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

19

Non deterministic finite automata

Deterministic
One successor state
ε transitions not allowed

Non deterministic
Several successor states possible
ε transitions possible

q2q1 q3 q4

0,1
0,1

1 0,ε
1

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

20

Deterministic versus non deterministic
computation

Figure 15

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

21

q1

q1

q3q2q1

q3q1

q2q1 q3 q4

q4

q4

q2q1 q3

q3q1

q4

q4

0

0

1

1

0

1

q2q1 q3 q4

0,1 0,1

1 0,ε 1

Input: w = 010110

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

22

Another NFA

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

23

Nondeterministic finite automaton

0A is a 5-tuple (, , , ,)
1. is a finite set of states
2. is a finite set, the alphabet

nondeterministic

P3. : () is the transition function
4. is the start s

fini

tate
5.

te automa

 is

th

ton

o

Q q F
Q

Q Q
q Q
F Q

ε

δ

δ

Σ

Σ

×Σ →
∈
⊆

 includes

e set of

P() the powerset o

accept sta

f

tes

Q Q
ε εΣ

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

24

Example

q2q1 q3 q4

0,1
0,1

1 0,ε 1

1 2 3 4

1 1 1 2

2 3 3

3 4

4 4 4

1

4

1. { , , , }
2. = {0,1}
3. is given as:

0 1
{ } { , } {}
{ } {} { }
{} { } {}
{ } { } {}

4. is the start state
5. { }

Q q q q q

q q q q
q q q
q q
q q q

q
F q

δ
ε

=
Σ

=

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

25

Formal definition of computation

0

1

0

0 0

1 1

Let be a finite automaton (, , , ,)
Let be a string over

 if a sequence of states ,..., exists in such that
1.
2. (,) for all 0,..

nondeterministic

., 1

accepts

n

n

i i i

M Q q F
w w w

M w r r Q
r q
r r w i n

δ

δ+ +

Σ
= Σ

=
∈ = −

3. nr F∈

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

26

Every NFA has an equivalent DFA

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

27

Equivalence NFA and DFA

Two machines are if they recognize the same language

 1.19
Every nondeterministic finite automaton has an equivalent finite automaton

 1.20
A language is regular if and onl f

y i

equivalent

Theorem

Corollary
some nondeterministic finite

automaton recognizes it.

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

28

Proof: Theorem 1.19

0 0Let be the NFA recognizing some language .
Construct a DFA recognizing .
First we consider the easier case wherein has no arrows. The
arrows are taken into account later.

N (Q, , ,q ,F) A
M A

N ε ε

= Σ δ

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

29

Proof: Theorem 1.19 (cont.)

0Construct
 1.
 Every state of is a set of states of . (Recall that is the power set
 of
 2. For and let for som

0= Σ δ
=

∈ ∈Σ δ = ∈ ∈δ

' 'M (Q', , ,q ,F ').
Q' P(Q).

M N P(Q)
Q).
R Q' a '(R,a) { q Q | q (r ,a) e

 If is a state of it is also a set of states of When reads a symbol
 in state it shows where takes each state in Because each state leads to
 to a set of

∈r R }.
R M , N. M

a R, a R.

0 0

states, we take the union of all these sets. Alternativly we write:

 3.
 starts in the state corresponding to the collection contai

∈

δ = δ

=

U
r R

'

'(R,a) (r ,a).

q { q }.
M ning just the start state of .

 4. contains an accept state of
 The machine accepts if one of the possible states that could be in at this point is an
 accept state.

= ∈
N

F' { R Q' | R N }.
M N

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

30

Now for the arrows one needs to set up an extra bit of notation.
For any state of we define to be the collection of states that
can be reached from by going only along arrows, includi

R M E(R)
R

ε

ε

 can be reached from by traveling along 0 or m

ng the members of
 themselves. Formally,

ore arrow
 for let

The transition function of is then modified to take in o c

s
t ac

R R
E(R) { q |

M
q R

Q
.}ε

⊆
=

ount all
states that can be reached by going along arrows after every step.
Replacing by achieves this. Thus

Additionally the sta
 for some '(R,a) { q Q | q E((r ,a

(r,a) E((r ,
)) r R }.

a))
ε

δ δ
δ = ∈ ∈ δ ∈

0 0

rt state of has to be modified to cater for all possible states
that can be reached from the start state of along the arrows.
Changing to be achieves this effect.
We have now complet

'

M
N

q E({ q })
ε

ed the construction of the DFA that simulates the NFA M N.

Proof: Theorem 1.19 (cont.)

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

31

An example

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

32

An example

The resulting DFA after removing redundant states

The resulting DFA

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

33

Closure under the regular operations

1 2 1 2

 1.12/1.22
The class of the regular languages is closed under the union operation.
In other words, if and are regular languages, so is A A A A∪

Theorem

 1.23
The class of the regular languages is closed under the
concatenation operation.

Theorem

 1.24
The class of the regular languages is closed under the star operation.
Theorem

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

34

Proof idea

1 2 1 2

 1.12/1.22
The class of the regular languages is closed under the union operation.
In other words, if and are regular languages, so is A A A A∪

Theorem

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

35

Proof 1.12/1.22
1 1 1 1 1 1

2 2 2 2 2 2

0 1 2

0 1 2

1 2

Let recognize , and
 recognize

Construct to recognize

 1.
 The states of are all the states of and , w

N (Q , , ,q ,F) A
N (Q , , ,q ,F) A .

N (Q, , ,q ,F) A A .

Q { q } Q Q .
N N N

= Σ δ
= Σ δ

= Σ δ ∪

= ∪ ∪

0

0

1 2

1 2

ith the addition of a new start state
 2. The state is the start state of
 3. The accept states
 The accept states of are all the accept states of and . That way

q .
q N.

F F F .
N N N N
= ∪

1 2

1 1

2

accepts
 if either accepts or accepts.
 4. Define so that for any and any

N N
q Q a ,

(q,a) q Q
(q,a) q Q

(q,a)

δ ε

2

∈ ∈ Σ

δ ∈
δ ∈

 δ =
1 2 0

0

 and
 and

{ q ,q } q q a
q q a

⎧
⎪
⎪
⎨ = = ε⎪
⎪∅ = ≠ ε⎩

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

36

Proof idea

 1.23
The class of the regular languages is closed under the concatenation operation.
Theorem

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

37

Proof 1.23
1 1 1 1 1 1

2 2 2 2 2 2

1 2 1 2

1 2

1 2

Let recognize , and
 recognize

Construct to recognize

 1.
 The states of are all the states of and
 2.

N (Q , , ,q ,F) A
N (Q , , ,q ,F) A .

N (Q, , ,q ,F) A A .

Q Q Q .
N N N .

= Σ δ
= Σ δ

= Σ δ

= ∪

o

1 1

2 2

 The state is the same as the start state of
 3. The accept states are the same as the accept states of .
 4. Define so that for any and any

q N .
F N

q Q a ,δ ε∈ ∈ Σ

1 1 1

1

2 1

2 2

 and
 and

 and

(q,a) q Q q F
(q,a) q F a

(q,a)
(q,a) { q } q F a
(q,a) q Q

1

1

δ ∈ ∉⎧
⎪δ ∈ ≠ ε⎪δ = ⎨δ ∪ = = ε⎪
⎪δ ∈⎩

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

38

Proof idea

 1.24
The class of the regular languages is closed under the star operation.
Theorem

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

39

Proof 1.24
1 1 1 1 1 1

0 1

0 1

1

0

Let recognize .

Construct recognize

 1.
 The states of are the states of plus a new start state
 2. The state is the new start st

*

N (Q , , ,q ,F) A

N (Q, , ,q ,F) A .

Q { q } Q .
N N .

q

= Σ δ

= Σ δ

= ∪

0 1

1

ate
 3.
 The accept states are the old accept states plus the new start state.
 4. Define so that for any and any

.
F { q } F

q Q a ,
(q,a)

(q,a)

δ ε

= ∪

∈ ∈ Σ

δ

 δ =

1 1

1

1 1

1 0

0

 and
 and

 and
 and

 and

q Q q F
(q,a) q F a
(q,a) { q } q F a

{ q } q q a
q q a

1

1

∈ ∉⎧
⎪δ ∈ ≠ ε ⎪⎪δ ∪ ∈ = ε ⎨
⎪ = = ε ⎪

∅ = ≠ ε ⎪⎩

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

40

Regular expressions

1 2 1 2

1 2 1 2

Definition
Say that is a regular expression if is

1. for some in the alphabet
2.
3.
4. where and are regular expressions,
5. where and are regular expressions

R R

a a
,
,

(R R), R R
(R R), R R

ε
Σ,

∅
∪
o

1 1

, or

6. where is a regular expression.*R , R

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

41

RE Examples

In the following examples we assume that the alphabet is

1. has exactly a single
2. has at least one
3. contains the string as a substring
4.

* *

{0,1}.

0 10 { w| w 1}.
1 { w| w 1}.
001 { w| w 001 }.

(

∗ ∗

∗ ∗

Σ

=

Σ Σ =

Σ Σ =

ΣΣ) is a string of even length
5. the length of is a multiple of three
6.
7. starts and ends with the same symbol

*

{ w| w }.
() { w| w }.
01 10 {01,10 }.
0 0 1 1 0 1 { w| w }.

∗

∗ ∗

=

ΣΣΣ =
∪ =

Σ ∪ Σ ∪ ∪ =

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

42

RE Examples (cont.)

=
=

R R
R R
R R
R R

ε
ε

∪ ∅

∪ ≠
∅ ≠

o

o

*

8.
 The expression describes the language , so the concatenation
 operation adds either or before every string in 1 .
9.
10.
 Concat

* * *

*

(0)(1) 01 1 .
0 {0, }

0
(0)(1) { ,0,1,01}.
1 .

∪ ε ∪ ε = ∪
∪ ε ε

ε
∪ ε ∪ ε = ε

∅ = ∅
enating the empty set to any set yields the empty set.

11.
 The star operation puts together any number of strings from the language
 to get a string in the result. If the language is empty

* { }.∅ = ε

, the star operation can
 put together string, giving only the empty string.0

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

43

Applications

Design of compilers

awk, grep, vi … in unix (search for strings)
Perl, Python, or Java programming languages
Bioinformatics

So called motifs (patterns occurring in sequences, e.g. proteins)

* * * *{ , , }(. .)
where {0,...,9}

DD DD D D DD
D

ε+ − ∪ ∪
=

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

44

Equivalence RE and NFA

Proof through :

 1.28
A language is regular if and only if some regular expression describes it
Theorem

 1.29
If a language is described by some regular expression, then it is regular
Lemma

 1.32
If a language is regular, then it is described by some regular expression
Lemma

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

45

Proof for Lemma 1.29
Convert into an NFA . Consider the six cases in the formal
definition of regular expressions.

1. for some in .
 Then and the following NFA recognizes

Note that this machine fi

R N

R a a
L(R) { a }, L(R).

= Σ
=

ts the definition of an NFA but not that of a DFA,
as not all input symbols possess exiting arrows.

 Formally, , where we describe by saying that
 for

1 2 1 2 1 2N ({ q ,q }, , ,q ,{ q }) (q ,a) { q },
(r ,b)

= Σ δ δ δ =
δ = ∅ or 1r q b a.≠ ≠

a

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

46

Proof for Lemma 1.29 (cont.)

2.
 Then and the following NFA recognizes

 Formally,
 where for any and .

1 1 1

R .
L(R) { }, L(R).

N ({ q }, , ,q ,{ q }),
(r ,b) r b

= ε
= ε

= Σ δ
δ = ∅

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

47

Proof for Lemma 1.29 (cont.)

3. Then , and the following NFA recognizes

 Formally, where for any and .

R . L(R) L(R).

N ({ q }, , ,q,), (r ,b) r b

= ∅ = ∅

= Σ δ ∅ δ = ∅

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

48

Proof for Lemma 1.29 (cont.)

4.
5.

6.

 For the last three cases we use the constructions given in the proofs that the
class of regular languages is closed under the regular operations. In other words,
we co

1 2

1 2
*
1

R R R .
R R R .

R R .

= ∪
=

=

o

nstruct the NFA for from the NFAs for and (or just in case 6)
and the appropriate closure construction.

1 2 1R R R R

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

49

Example 1.30

We convert the regular expression to an NFA in a sequence of stages.
We build up from the smallest subexpressions to larger subexpressions until we
have an NFA for the original expression, as sh

*(ab a)∪

own in the following diagram. Note
that this procedure generally doesn't give the NFA with the fewest states!

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

50

a:

b:

ab:

ab ∪ a

(ab ∪ a)*

Example: NFA for: (ab ∪ a)*
a

b

a bε

a bε

a
ε

ε

a bε

a
ε

ε

ε

ε

ε

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

51

Exercise: NFA for: (a ∪ b)*aba

a:

b:

a ∪ b

(a ∪ b)*

a

b

a

b
ε

ε

a

b
ε

ε
ε

ε

ε

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

52

a

b
ε

ε
ε

a

b
ε

ε
ε

Example: NFA for: (a ∪ b)*aba (cont.)

aba:

(a ∪ b)*aba:

a bε aε

a bε aε

a bε aεε

ε

ε

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

53

Two steps
DFA into GNFA (generalized nondeterministic finite automaton)
Convert GNFA into regular expression

 1.32
If a language is regular, then it is described by some regular expression
Lemma

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

54

GNFAs

Labels are regular
expressions
Two states q and r are
connected in both
directions (fully
connected)
Exception :

One direction only
Start state (exiting
transition arrows)
Accept state (only one!)
(only incoming transition
arrows)

qstart

qaccept

b
ab

Ø

b*

ab*

ab ∪ baa*

(aa)*

aa

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

55

Formally
A is a 5-tuple (, , , ,)

1. is a finite set of states
2. is a finite set, the

generalized nondeterministic finite au

al

tomat

phabe
: ({ }) ({ }) is the tran

o

t
3. sition

n

 fun

star

accept

t accep

start

t

Q q

Q q q

Q

Q q

δ

δ − × − → ℜ

Σ

Σ

4. is the start state
5. the accept stat

ction

e
start

accept

q Q
q Q

∈
∈

*
1

0

0

1

A GNFA ... where each
if a sequence of states ,..., exists in such that
1.
2.
3. for all 0,..., 1, we ha () ve that
 where (,)

accepts k i

n

start

k accept

i i

i

i

i

w w w w
r r Q

r q
r q

i n
R r r

w L R
δ −

= ∈Σ

=
=

= −
=

∈

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

56

Convert DFA into GNFA

Add new start state, with arrow to old start state
Add new accept state, with arrows from old accept states
If any arrows have multiple labels and , replace by
Add arrows with label between sta

a b a b

ε
ε

∪

∅ *tes where necessary
 (*:between states that had no arrows before)

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

57

Convert GNFA into regular expression

3 state DFA 5 state GNFA 4 state GNFA

2 state GNFA 3 state GNFARegular
Expression

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

58

Ripping of states

q2

qrip

q1

R4

R1

R2

R3

q2q1

(R1)

Replace one state by the corresponding RE

qrip

(R1)(R2)(R1)(R2)* (R3) ∪ R4(R1)(R2)* (R3)(R1)(R2)*

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

59

Convert(G)

1. Let be the number of states of
2. If , then must consist of a start state, an accept state, and a single
 arrow connectiong them and labeled with a regular expression
 Re

Convert(G) :
k G.

k 2 G
R.

=

turn the expression
3. If , we select any state different from and and let

 be the GNFA , where

rip start accept

start accept

rip

R.
k 2 q Q q q G'

(Q', , ',q ,q)

Q' Q { q },

> ∈

Σ δ

= −

 and for any and any let

 for and

4. Compute and

i accept j start

*
i j 1 2 3 4

1 i rip 2 rip rip 3 rip j 4 i j

q Q' { q } q Q' { q }

'(q ,q) (R)(R) (R) (R),

R (q ,q),R (q ,q),R (q ,q), R (q ,q).

Convert(G')

∈ − ∈ −

δ = ∪

= δ = δ = δ = δ

 return this value.

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

60

Example

Rip 2: Rip 1:

q2

qrip

q1

R4

R1

R2

R3

q2q1

qrip

(R1)(R2)* (R3) ∪ R4

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

61

Another Example

1 2
a

a

3

b
b a

b

s

1 2
a

a

3

b
b a

b

ε
a

ε

ε

s

2

3
a

b

a

ε

ε

a

aa ∪ b

ab

b

ba ∪ a

bb

Rip 1: Rip 2:

GNFA:DFA:

s

3

a
a(aa ∪ b)*

a(aa ∪ b)*ab ∪ b (ba ∪ a) (aa ∪ b)* ∪ ε

(ba ∪ a) (aa ∪ b)*ab ∪ bb

s a
Rip 3:

(a(aa ∪ b)*ab ∪ b)((ba ∪ a) (aa ∪ b)*ab ∪ bb)*((ba ∪ a) (aa ∪ b)* ∪ ε) ∪ a(aa ∪ b)*

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

62

Induction Proof
Claim
For any GNFA , is equivalent to

We prove this claim by induction on , the number of states
of the GNFA.

Basis: Prove the claim true for states. If has only two
states, it can

G Convert(G) G.

k

k 2 G=
have only a single arrow, which goes from the start

state to the accept state. The regular expression label on this
arrow describes all the strings that allow to get to the accept
state. Hence this

G
 expression is equivalent to

Induction step: Assume that the claim is true for states and
use this assumption to prove that the claim is true for states.
First we show that and recognize

G.

k 1
k

G G'

−

the same language.
Suppose that accepts an input . Then in an accepting branch
of the computation enters a sequence of states

If non
start 1 2 3 accept

G w
G

q ,q ,q ,q ,...,q .

e of them is the removed state , clearly also accepts

The reason is that each of the new regular expressions labeling the
arrows of contains the old regular expression as part of a union

ripq G' w.

G' .

q2

qrip

q1

R4

R1

R2

R2

q2q1

qrip

(R1)(R2)* (R3) ∪ R4

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

63

Induction Proof (cont.)

 If does appear, removing each run of consecutive states

forms an accepting computation for The states and bracketing

a run have a new regular expression on the arrow between th

rip rip

i j

q q

G' . q q

em that
describes all strings taking to via on So accepts

 For the other direction, suppose that accepts an input As each
arrow between any two states and in descri

i j rip

i j

q q q G. G' w.

G' w.
q q G' bes the collection

of strings taking to in , either directly or via must also

accept thus and are equivalent.
 The induction hypothesis states that when the alorithm calls itself

i j ripq q G q ,G

w G G'

recursively on input the result is a regular expression that is equivalent
to because has states. Hence the regular expression also is
equivalent to and the algorithm is proved corr

G',
G' G' k 1

G,
−

ect.

This concludes the proof of Claim 1.34, Lemma 1.32, and theorem 1.28.

q2

qrip

q1

R4

R1

R2

R2

q2q1

qrip

(R1)(R2)* (R3) ∪ R4

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

64

Nonregular Languages

Finite Automata have a finite memory
Are the following languages regular ?

Mathematical proof necessary

{0 1 | 0}
{ | has an equal number of 0s and 1s}
{ | has an equal number of occurences of 01 and 10}

n nB n
C w w
D w w

= ≥
=
=

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

65

The pumping lemma

If is regular language, then there is a number (the pumping length),
where, if is any string in of length at least then may be
divided into three pieces
such that
 1. for e

A p
s A p s

s xyz=

ach 0,
 2. | | 0
 3. | |

Note from 2:

ii xy z A
y
xy p

y ε

≥ ∈
>
≤

≠

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

66

Proof Idea

Let M be a DFA recognizing A. Assign p to be the number of states in M.
Show that string s, with length at least p, can be broken into xyz.

Now prove that all three conditions are met

Pigeonhole princip
le

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

67

Proof: Pumping Lemma
Let M = (Q, Σ, δ, q1, F) be a DFA recognizing A and |Q| = p.

Let s = s1s2 ...sn be a string in A, with |s| = n, and n ≥ p

Let r =r1, ...,rn+1 be the sequence of states that M enters for s,
so ri+1 = δ(ri , si) with 1 ≤ i ≤ n. |r1, ...,rn+1| = n+1, n+1 ≥ p+1.
Amoung the first p+1 elements in r, there must be a rj and a rl being the
same state qm, with j ≠ l.
As rl occurs in the first p+1 states: l ≤ p+1.

Let x = s1...sj-1, y = sj...sl-1 and z = sl...sn:
as x takes M from r1 to rj, y from rj to rl, and z from rl to rn+1, being an accept
state, M must accept xyiz for i ≥ 0
with j ≠ l, |y| > 0
with l ≤ p+1,|xy| ≤ p

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

68

Pumping Lemma (cont.)

Use pumping lemma to prove that a language A is not
regular:

1. Assume that A is regular (Proof by contradiction)
2. use the lemma to guarantee the existence of p, such

that strings of length p or greater can be pumped
3. find string s of A, with |s| ≥ p that cannot be pumped
4. demonstrate that s cannot be pumped using all

different ways of dividing s into x,y, and z (using
condition 3. is here very useful)

5. the existence of s contradicts the assumption, therefore
A is not a regular language

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

69

Nonregular languages examples

{0 1 | 0}n nB n= ≥

Choose 0 1
If we would now only consider condition2,
 then we would have that:
1. string consists only of 0s
2. string consists only of 1s
3. string consists of both 0s and 1s

p ps

y
y
y

=

for s p:

1. for each 0,
2. | | 0
3. | |

ii xy z A
y
xy p

≥

≥ ∈
>
≤

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

70

{ | has an equal number of 0s and 1s}C w w=

Choose 0 1
Would seem possible without condition 3!
However, condition 3 of lemma states | |
Thus consists of 0s only
Then

o cCh i

p ps

xy p
y
xyyz C

=

≤

∉

* *

Alternative proof :
is nonregular

If were

e

under inter

of crucial. Consid

 regular, then 0 1 regular
Regular languages closed sect

er)

o

1

i n

(0 p

B

s

C

s

B
C ∩ =

=

for s p:

1. for each 0,
2. | | 0
3. | |

ii xy z A
y
xy p

≥

≥ ∈
>
≤

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

71

Example language B again

{0 1 | 0}n nB n= ≥

Choose 0 1
condition 3 of lemma states | |
Thus consists of 0s only
Then

p ps
xy p

y
xyyz B

=
≤

∉

for s p:

1. for each 0,
2. | | 0
3. | |

ii xy z A
y
xy p

≥

≥ ∈
>
≤

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

72

*{ | {0,1} }F ww w= ∈

Choose 0 10 1
Condition 3 of lemma states | |
Thus consists of 0s only
Then

0 0 would not work, as it can be pumpe

d !

p

p p

ps
xy p

y
xyyz F

=
≤

∉

for s p:

1. for each 0,
2. | | 0
3. | |

ii xy z A
y
xy p

≥

≥ ∈
>
≤

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

73

{ | 0 1 where }i jE w i j= >

1

0

Choose 0 1
Condition 3 of lemma states | |
Thus consists of 0s only
Then

p ps
xy p

y
xy z F

+=
≤

∉

for s p:

1. for each 0,
2. | | 0
3. | |

ii xy z A
y
xy p

≥

≥ ∈
>
≤

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

74

for s p:

1. for each 0,
2. | | 0
3. | |

ii xy z A
y
xy p

≥

≥ ∈
>
≤Example Exam Question

Q: Use the pumping lemma to prove that
L = {0k1j : k,j ≥ 0 and k ≥ 2j} is not regular.

A: Assume that L = {0k1j : k,j ≥ 0 and k ≥ 2j} is regular. Let p be the pumping
length of L. The pumping lemma states that for any string s � L of at least
length p, there exist string x,y, and z such that s = xyz, |xy|≤p, |y| > 0, and
for all i ≥0: xyiz � L.

Choose s = 02p1p. Because s � L and |s|=3p ≥ p, we obtain from the
pumping lemma the strings x,y, and z with the above properties. As s = xyz,
|xy|≤p, and s begins with 2p zeros, one can see that xy can only consist of
zeros. If we pump s down, i.e. select i = 0, the string xy0z = xz = 02p-|y|1p.

As xz has p ones, and |y| > 0, xz has fewer than 2p zeros.
Hence xz ∉ L � CONTRADICTION.
Therfore L is not regular!

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

75

for s p:

1. for each 0,
2. | | 0
3. | |

ii xy z A
y
xy p

≥

≥ ∈
>
≤Example Exam Question

Q: Use the pumping lemma to prove that
L = {0k1j : k,j ≥ 0 and k ≥ 2j} is not regular.

A: Assume that L = {0k1j : k,j ≥ 0 and k ≥ 2j} is regular. Let p be the pumping
length of L. The pumping lemma states that for any string s � L of at least
length p, there exist string x,y, and z such that s = xyz, |xy|≤p, |y| > 0, and
for all i ≥0: xyiz � L.

Choose s = 02p1p. Because s � L and |s|=3p ≥ p, we obtain from the
pumping lemma the strings x,y, and z with the above properties. As s = xyz,
|xy|≤p, and s begins with 2p zeros, one can see that xy can only consist of
zeros. If we pump s down, i.e. select i = 0, the string xy0z = xz = 02p-|y|1p.

As xz has p ones, and |y| > 0, xz has fewer than 2p zeros.
Hence xz ∉ L � CONTRADICTION.
Therfore L is not regular!

Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages

76

Summary

Deterministic finite automata
Regular languages
Nondeterministic finite automata
Closure operations
Regular expressions
Nonregular languages
The pumping lemma

