Regular Languages

Andreas Karwath \& Malte Helmert

Overview

* Deterministic finite automata
* Regular languages
* Nondeterministic finite automata
* Closure operations
* Regular expressions
* Nonregular languages
* The pumping lemma

Finite Automata

* An intuitive example : supermarket door controller

*Probabilistic counterparts exist
*Markov chains, Bayesian nets, etc.
*Not in this course

Transition	ble fo	the a	matic	or co
	neither	front	rear	both
${ }_{\text {closed }}$	closed	open	closed	closed
open	closed	open	open	open

A finite automaton

* Figure 1.4

States : q_{1}, q_{2}, q_{3}
Startstate $: q_{1}$
Acceptstate $: q_{2}$

* Formally

A finite automaton is a 5-tuple ($\left.Q, \Sigma, \delta, q_{0}, F\right)$

1. Q is a finite set of states
2. Σ is a finite set, the alphabet
3. $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
4. $q_{o} \in Q$ is the start state
5. $F \subseteq Q$ is the set of accept states

Transitions
Output : accept or reject

A is the language of machine M
we write $L(M)=A$
$A=\{w \mid w$ contains at least one 1 and an even number of 0 follows the last 1$\}$

Describe M_{1}
$Q=\left\{q_{1}, q_{2}, q_{3}\right\}$
$\Sigma=\{0,1\}$
δ defined by

	0	1
q_{1}	q_{1}	q_{2}
q_{2}	q_{3}	q_{2}
q_{3}	q_{2}	q_{2}

q_{1} start state
$F=\left\{q_{2}\right\}$

State diagram of the two-state finite automaton M_{2}

State diagram of the two-state finite automaton M_{3}

Other examples

* $7,8,9$

FIGURE 1.8
Finite automaton M_{4}

FIGURE 1.9
Finite automaton M_{5}

acs-04: Regular Languages

Another example

A generalisation : A_{i} is the language of all strings where the sum of the numbers is a multiple of i except that the sum is reset to 0 whenever the symbol \langle reset \rangle appears

Automaton $B_{i}=$

1. $Q_{i}=\left\{q_{0}, \ldots, q_{i-1}\right\}$
2. $\Sigma=\{0,1,2,\langle$ reset $\rangle\}$
3. $\delta\left(q_{j}, 0\right)=q_{j}$
$\delta\left(q_{j}, 1\right)=q_{k}$ where $k=(j+1) \bmod i$
$\delta\left(q_{j}, 2\right)=q_{k}$ where $k=(j+2) \bmod i$
$\delta\left(q_{j},\langle r e s e t\rangle\right)=q_{0}$
4. $q_{o} \in Q$ is start and accept state

Formal definition of computation

Let M be a finite automaton ($\left.Q, \Sigma, \delta, q_{0}, F\right)$
Let $w=w_{1} \ldots . w_{n}$ be a string over Σ
M accepts w if a sequence of states r_{0}, \ldots, r_{n} exists in Q such that

1. $r_{0}=q_{0}$
2. $\delta\left(r_{i}, w_{i+1}\right)=r_{i+1}$ for all $i=0, \ldots, n-1$
3. $r_{n} \in F$
M recognizes language A if $A=\{w \mid M$ accepts $w\}$

A language is regular if some finite automaton recognizes it.

Designing finite automata

* Design automaton for language consisting of binary strings with an odd number of 1s
* Design first states
* Then transitions
* Start state and accept states

Another example

* Design an automaton to recognize the language of binary strings containing the string 001 as substring
* We have four possibilities:

1. we haven't seen any symbol of the pattern yet, or
2. we have seen a 0 , or
3. we have seen a 00 , or
4. we have seen the pattern 001

Another example

* Design an automaton to recognize the language of binary strings containing the string 001 as substring
* We have four possibilities:

1. we haven't seen any symbol of the pattern yet, or
2. we have seen a 0 , or
3. we have seen a 00 , or
4. we have seen the pattern 001

The Regular Operations

Let A and B be languages
We define :
Union : $A \cup B=\{x \mid x \in A$ or $x \in B\}$
Concatenation : $A \circ B=\{x y \mid x \in A$ and $y \in B\}$
Star : $A^{*}=\left\{x_{1} x_{2} \ldots x_{n} \mid n \geq 0\right.$ and each $\left.x_{i} \in A\right\}$
note: always $\varepsilon \in A^{*}$

Example
$A=\{$ good,$b a d\}$
$B=\{b o y$, girl $\}$
$A \cup B=\{$ good, bad,boy, girl $\}$
$A \circ B=\{$ goodboy, goodgirl,badboy,badgirl $\}$
$A^{*}=\{\varepsilon$, good,bad, goodgood, goodbad, badgood,badbad,goodgoodgood,goodgoodbad,...\}

Regular languages are closed under ...

A set S is closed under an operation o if applying o on elements of S yields elements of S.
Example: multiplication on natural numbers
Counterexample :division of natural numbers

Theorem 1.12
The class of the regular languages is closed under the union operation.
In other words, if A_{1} and A_{2} are regular languages, so is $A_{1} \cup A_{2}$

Proof 1.12 (by construction)

Let M_{1} recognize A_{1}, where $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$, and
M_{2} recognize A_{2}, where $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$.

Construct M to recognize $A_{1} \cup A_{2}$, where $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$.

1. $Q=\left\{\left(r_{1}, r_{2}\right) \mid r_{1} \in Q_{1}\right.$ and $\left.r_{2} \in Q_{2}\right\}$.

This set is the Cartesian product of sets Q_{1} and Q_{2} (written $Q_{1} \times Q_{2}$).
It is the set of all pairs of states, the first from Q_{1} and the second from Q_{2}.
2. Σ, the alphabet, is the same as in M_{1} and M_{2}. The theorem remains true if they have different alphabets, Σ_{1} and Σ_{2}. We would then modify the proof to let $\Sigma=\Sigma_{1} \cup \Sigma_{2}$.
3. δ, the transition function, is defined as follows. For each $\left(r_{1}, r_{2}\right) \in Q$ and each $a \in \Sigma$, let

$$
\delta\left(\left(r_{1}, r_{2}\right), a\right)=\left(\delta_{1}\left(r_{1}, a\right), \delta_{2}\left(r_{2}, a\right)\right)
$$

Hence δ gets a state of M (which actually is a pair of states from M_{1} and M_{2}), together with an input symbol, and returns M 's next state.
4. q_{0} is the pair $\left(q_{1}, q_{2}\right)$.
5. F is the set of pairs in which either member is an accept state of M_{1} and M_{2}. We can write it as

$$
F=\left\{\left(r_{1}, r_{2}\right) \mid r_{1} \in F_{1} \text { or } r_{2} \in F_{2}\right\} .
$$

This expression is the same as $F=\left(F_{1} \times Q_{2}\right) \cup\left(Q_{1} \times F_{2}\right)$.

Note that it is not the same as $F=F_{1} \times F_{2}$. What would that give us?

$$
\left.\begin{array}{|l|}
M=(Q, \Sigma, \delta, q, F) \\
\text { constructed from } M_{1}=\left(Q_{1}, \Sigma_{1}, \delta_{1}, q_{1}, F_{1}\right) \text { and } M_{2}=\left(Q_{2}, \Sigma_{2}, \delta_{2}, q_{2}, F_{2}\right) \\
\text { Define } \\
\text { 1. } Q=\left\{\left(r_{1}, r_{2}\right) \mid r_{1} \in Q_{1} \text { and } r_{2} \in Q_{2}\right\} \\
\text { 2. } \Sigma=\Sigma_{1} \cup \Sigma_{2} \\
\text { 3. } \left.\delta\left(r_{1}, r_{2}\right), a\right)=\left(\delta_{1}\left(r_{1}, a\right), \delta_{2}\left(r_{2}, a\right)\right) \\
4 \text { 4. } q=\left(q_{1}, q_{2}\right) \\
5 . F=\left\{\left(r_{1}, r_{2}\right) \mid r_{1} \in F_{1} \text { or } r_{2} \in F_{2}\right\}
\end{array} \right\rvert\,-
$$

M_{1} with $L\left(M_{1}\right)=\{w \mid w$ contains a 1$\}$

M_{2} with $L\left(M_{2}\right)=\{w \mid w$ contains at least two 0s $\}$

Theorem 1.13

The class of the regular languages is closed under the concatenation operation. In other words, if A_{1} and A_{2} are regular languages, so is $A_{1} \circ A_{2}$

Non deterministic finite automata

* Deterministic
* One successor state
* ε transitions not allowed
* Non deterministic
* Several successor states possible
* ε transitions possible

Deterministic versus non deterministic computation

FIGURE 1.15
Deterministic and nondeterministic computations with an accepting branch

acs-04: Regular Languages

Another NFA

FIGURE 1.19
The NFA N_{3}

Nondeterministic finite automaton

A nondeterministic finite automaton is a 5-tuple ($\left.Q, \Sigma, \delta, q_{0}, F\right)$
$1 . Q$ is a finite set of states
2. Σ is a finite set, the alphabet
3. $\delta: Q \times \Sigma_{\varepsilon} \rightarrow \mathrm{P}(Q)$ is the transition function
4. $q_{o} \in Q$ is the start state
5. $F \subseteq Q$ is the set of accept states
Σ_{ε} includes ε
$\mathrm{P}(Q)$ the powerset of Q

Example

Formal definition of computation

Let M be a nondeterministic finite automaton ($\left.Q, \Sigma, \delta, q_{0}, F\right)$
Let $w=w_{1} \ldots w_{n}$ be a string over Σ
M accepts w if a sequence of states r_{0}, \ldots, r_{n} exists in Q such that

1. $r_{0}=q_{0}$
2. $r_{i+1} \in \delta\left(r_{i}, w_{i+1}\right)$ for all $i=0, \ldots, n-1$
3. $r_{n} \in F$

Every NFA has an equivalent DFA

Figure 1.17
The NFA N_{2} recognizing A

FIGURE 1.18
A DFA recognizing A

Equivalence NFA and DFA

Two machines are equivalent if they recognize the same language

Theorem 1.19
Every nondeterministic finite automaton has an equivalent finite automaton

Corollary 1.20
A language is regular if and only if some nondeterministic finite automaton recognizes it.

Proof: Theorem 1.19

Let $N=\left(Q, \Sigma, \delta_{0}, q_{0}, F\right)$ be the NFA recognizing some language A.
Construct a DFA M recognizing A.
First we consider the easier case wherein N has no ε arrows. The ε arrows are taken into account later.

Proof: Theorem 1.19 (cont.)

Construct $M=\left(Q^{\prime}, \Sigma, \delta_{0}^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$.

1. $Q^{\prime}=P(Q)$.

Every state of M is a set of states of N. (Recall that $P(Q)$ is the power set of Q).
2. For $R \in Q^{\prime}$ and $a \in \Sigma$ let $\delta^{\prime}(R, a)=\{q \in Q \mid q \in \delta(r, a)$ for some $r \in R\}$.

If R is a state of M, it is also a set of states of N. When M reads a symbol
a in state R, it shows where a takes each state in R. Because each state leads to
to a set of states, we take the union of all these sets. Alternativly we write:

$$
\delta^{\prime}(R, a)=\bigcup_{r \in R} \delta(r, a) .
$$

3. $q_{0}^{\prime}=\left\{q_{0}\right\}$.
M starts in the state corresponding to the collection containing just the start state of N.
4. $F^{\prime}=\left\{R \in Q^{\prime} \mid R\right.$ contains an accept state of $\left.N\right\}$.

The machine M accepts if one of the possible states that N could be in at this point is an accept state.

Proof: Theorem 1.19 (cont.)

Now for the ε arrows one needs to set up an extra bit of notation.
For any state R of M we define $E(R)$ to be the collection of states that can be reached from R by going only along ε arrows, including the members of R themselves. Formally, for $R \subseteq Q$ let

$$
E(R)=\{q \mid q \text { can be reached from } R \text { by traveling along } 0 \text { or more } \varepsilon \text { arrows }\} .
$$

The transition function of M is then modified to take into account all
states that can be reached by going along ε arrows after every step.
Replacing $\delta(r, a)$ by $E(\delta(r, a))$ achieves this. Thus

$$
\delta^{\prime}(R, a)=\{q \in Q \mid q \in E(\delta(r, a)) \text { for some } r \in R\} .
$$

Additionally the start state of M has to be modified to cater for all possible states that can be reached from the start state of N along the ε arrows.
Changing q_{0}^{\prime} to be $E\left(\left\{q_{0}\right\}\right)$ achieves this effect.
We have now completed the construction of the DFA M that simulates the NFA N.
acs-04: Regular Languages

An example

An example

The resulting DFA

The resulting DFA after removing redundant states

Closure under the regular operations

Theorem 1.12/1.22
The class of the regular languages is closed under the union operation.
In other words, if A_{1} and A_{2} are regular languages, so is $A_{1} \cup A_{2}$
Theorem 1.23
The class of the regular languages is closed under the concatenation operation.

Theorem 1.24
The class of the regular languages is closed under the star operation.

Proof idea

Theorem 1.12/1.22

The class of the regular languages is closed under the union operation.
In other words, if A_{1} and A_{2} are regular languages, so is $A_{1} \cup A_{2}$

Proof 1.12/1.22

Let $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognize A_{1}, and

$$
N_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right) \text { recognize } A_{2} .
$$

Construct $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ to recognize $A_{1} \cup A_{2}$.

1. $Q=\left\{q_{0}\right\} \cup Q_{1} \cup Q_{2}$.

The states of N are all the states of N_{1} and N_{2}, with the addition of a new start state q_{0}.
2. The state q_{0} is the start state of N.
3. The accept states $F=F_{1} \cup F_{2}$.

The accept states of N are all the accept states of N_{1} and N_{2}. That way N accepts if either N_{1} accepts or N_{2} accepts.
4. Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,

$$
\delta(q, a)= \begin{cases}\delta_{1}(q, a) & q \in Q_{1} \\ \delta_{2}(q, a) & q \in Q_{2} \\ \left\{q_{1}, q_{2}\right\} & q=q_{0} \text { and } a=\varepsilon \\ \varnothing & q=q_{0} \text { and } a \neq \varepsilon\end{cases}
$$

Proof idea

Theorem 1.23

The class of the regular languages is closed under the concatenation operation.

Proof 1.23

Let $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognize A_{1}, and

$$
N_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right) \text { recognize } A_{2} .
$$

Construct $N=\left(Q, \Sigma, \delta, q_{1}, F_{2}\right)$ to recognize $A_{1} \circ A_{2}$.

1. $Q=Q_{1} \cup Q_{2}$.

The states of N are all the states of N_{1} and N_{2}.
2. The state q_{1} is the same as the start state of N_{1}.
3. The accept states F_{2} are the same as the accept states of N_{2}.
4. Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,

$$
\delta(q, a)= \begin{cases}\delta_{1}(q, a) & q \in Q_{1} \text { and } q \notin F_{1} \\ \delta_{1}(q, a) & q \in F_{1} \text { and } a \neq \varepsilon \\ \delta_{1}(q, a) \cup\left\{q_{2}\right\} & q=F_{1} \text { and } a=\varepsilon \\ \delta_{2}(q, a) & q \in Q_{2}\end{cases}
$$

Proof idea

Theorem 1.24
The class of the regular languages is closed under the star operation.

Proof 1.24

Let $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognize A_{1}.
Construct $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ recognize A_{1}^{*}.

1. $Q=\left\{q_{0}\right\} \cup Q_{1}$.

The states of N are the states of N_{1} plus a new start state.
2. The state q_{0} is the new start state.
3. $F=\left\{q_{0}\right\} \cup F_{1}$

The accept states are the old accept states plus the new start state.
4. Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,

$$
\delta(q, a)= \begin{cases}\delta_{1}(q, a) & q \in Q_{1} \text { and } q \notin F_{1} \\ \delta_{1}(q, a) & q \in F_{1} \text { and } a \neq \varepsilon \\ \delta_{1}(q, a) \cup\left\{q_{1}\right\} & q \in F_{1} \text { and } a=\varepsilon \\ \left\{q_{1}\right\} & q=q_{0} \text { and } a=\varepsilon \\ \varnothing & q=q_{0} \text { and } a \neq \varepsilon\end{cases}
$$

Regular expressions

Definition
Say that R is a regular expression if R is

1. a for some a in the alphabet Σ,
2. ε,
3. \varnothing,
4. ($R_{1} \cup R_{2}$), where R_{1} and R_{2} are regular expressions,
5. ($R_{1} \circ R_{2}$), where R_{1} and R_{2} are regular expressions, or
6. R_{1}^{*}, where R_{1} is a regular expression.

RE Examples

In the following examples we assume that the alphabet Σ is $\{0,1\}$.

1. $0^{*} 10^{*}=\{w \mid w$ has exactly a single 1$\}$.
2. $\Sigma^{*} 1 \Sigma^{*}=\{w \mid w$ has at least one 1$\}$.
3. $\Sigma^{*} 001 \Sigma^{*}=\{w \mid w$ contains the string 001 as a substring $\}$.
4. $(\Sigma \Sigma)^{*}=\{w \mid w$ is a string of even length $\}$.
5. $(\Sigma \Sigma \Sigma)^{*}=\{w \mid$ the length of w is a multiple of three $\}$.
6. $01 \cup 10=\{01,10\}$.
7. $0 \Sigma^{*} 0 \cup 1 \Sigma^{*} 1 \cup 0 \cup 1=\{w \mid w$ starts and ends with the same symbol $\}$.

RE Examples (cont.)

8. $(0 \cup \varepsilon)\left(1^{*} \cup \varepsilon\right)=01^{*} \cup 1^{*}$.
$R \cup \varnothing$
The expression $0 \cup \varepsilon$ describes the language $\{0, \varepsilon\}$, so the concatenation operation adds either 0 or ε before every string in 1^{*}.
9. $(0 \cup \varepsilon)(1 \cup \varepsilon)=\{\varepsilon, 0,1,01\}$. $R \circ \varepsilon$ $R \cup \varepsilon$
10. $1^{*} \varnothing=\varnothing$.

Concatenating the empty set to any set yields the empty set.
$R \circ \varnothing$
11. $\varnothing^{*}=\{\varepsilon\}$.

The star operation puts together any number of strings from the language to get a string in the result. If the language is empty, the star operation can put together 0 string, giving only the empty string.

Applications

* Design of compilers

$$
\begin{aligned}
& \{+,-, \varepsilon\}\left(D D^{*} \cup D D^{*} . D \cup D^{*} . D D^{*}\right) \\
& \text { where } D=\{0, \ldots, 9\}
\end{aligned}
$$

* awk, grep, vi ... in unix (search for strings)
* Perl, Python, or Java programming languages
* Bioinformatics
* So called motifs (patterns occurring in sequences, e.g. proteins)

Equivalence RE and NFA

Theorem 1.28
A language is regular if and only if some regular expression describes it

Proof through :

Lemma 1.29
If a language is described by some regular expression, then it is regular

Lemma 1.32
If a language is regular, then it is described by some regular expression

Proof for Lemma 1.29

Convert R into an NFA N. Consider the six cases in the formal definition of regular expressions.

1. $R=a$ for some a in Σ.

Then $L(R)=\{a\}$, and the following NFA recognizes $L(R)$.

Note that this machine fits the definition of an NFA but not that of a DFA, as not all input symbols possess exiting arrows.

Formally, $N=\left(\left\{q_{1}, q_{2}\right\}, \Sigma, \delta, q_{1},\left\{q_{2}\right\}\right)$, where we describe δ by saying that $\delta\left(q_{1}, a\right)=\left\{q_{2}\right\}$, $\delta(r, b)=\varnothing$ for $r \neq q_{1}$ or $b \neq a$.

Proof for Lemma 1.29 (cont.)

2. $R=\varepsilon$.

Then $L(R)=\{\varepsilon\}$, and the following NFA recognizes $L(R)$.

Formally, $N=\left(\left\{q_{1}\right\}, \Sigma, \delta, q_{1},\left\{q_{1}\right\}\right)$,
where $\delta(r, b)=\varnothing$ for any r and b.

Proof for Lemma 1.29 (cont.)

3. $R=\varnothing$. Then $L(R)=\varnothing$, and the following NFA recognizes $L(R)$.

Formally, $N=(\{q\}, \Sigma, \delta, q, \varnothing)$, where $\delta(r, b)=\varnothing$ for any r and b.

Proof for Lemma 1.29 (cont.)

4. $R=R_{1} \cup R_{2}$.
5. $R=R_{1} \circ R_{2}$.
6. $R=R_{1}^{*}$.

For the last three cases we use the constructions given in the proofs that the class of regular languages is closed under the regular operations. In other words, we construct the NFA for R from the NFAs for R_{1} and R_{2} (or just R_{1} in case 6) and the appropriate closure construction.

Example 1.30

We convert the regular expression $(a b \cup a)^{*}$ to an NFA in a sequence of stages. We build up from the smallest subexpressions to larger subexpressions until we have an NFA for the original expression, as shown in the following diagram. Note that this procedure generally doesn't give the NFA with the fewest states!

Example: NFA for: $(\mathbf{a b} \cup \mathbf{a})^{*}$

* a :

* b :

* ab :

* $\mathrm{ab} \cup \mathrm{a}$
* $(a b \cup a)^{*}$

Exercise: NFA for: $(\mathbf{a} \cup \mathbf{b}) * a b a$

* a :

* b :

* $a \cup b$

* $(a \cup b)^{*}$

Example: NFA for: $(\mathbf{a} \cup \mathbf{b}) * a b a$ (cont.)

* aba:

* $(a \cup b)^{*} a b a:$

Lemma 1.32

If a language is regular, then it is described by some regular expression

* Two steps
* DFA into GNFA (generalized nondeterministic finite automaton)
* Convert GNFA into regular expression

GNFAs

* Labels are regular expressions
* Two states q and r are connected in both directions (fully connected)
* Exception :
* One direction only
* Start state (exiting transition arrows)
* Accept state (only one!)

Formally

A generalized nondeterministic finite automaton is a 5-tuple $\left(Q, \Sigma, \delta, q_{\text {start }}, q_{\text {accept }}\right)$

1. Q is a finite set of states
2. Σ is a finite set, the alphabet
3. $\delta:\left(Q-\left\{q_{\text {accept }}\right\}\right) \times\left(Q-\left\{q_{\text {start }}\right\}\right) \rightarrow \Re$ is the transition function
4. $q_{\text {start }} \in Q$ is the start state
5. $q_{\text {accept }} \in Q$ the accept state

A GNFA accepts $w=w_{1} \ldots w_{k}$ where each $w_{i} \in \Sigma^{*}$
if a sequence of states r_{0}, \ldots, r_{n} exists in Q such that

1. $r_{0}=q_{\text {start }}$
2. $r_{k}=q_{\text {accept }}$
3. for all $i=0, \ldots, n-1$, we have that $w_{i} \in L\left(R_{i}\right)$ where $R_{i}=\delta\left(r_{i-1}, r_{i}\right)$

Convert DFA into GNFA

Add new start state, with ε arrow to old start state
Add new accept state, with ε arrows from old accept states
If any arrows have multiple labels a and b, replace by $a \cup b$
Add arrows with label \varnothing between states where necessary ${ }^{*}$
(*:between states that had no arrows before)

(a)

(b)

Convert GNFA into regular expression

Ripping of states

Replace one state by the corresponding RE

R_{2}

Convert(G)

Convert(G) :

1. Let k be the number of states of G.
2. If $k=2$, then G must consist of a start state, an accept state, and a single arrow connectiong them and labeled with a regular expression R.
Return the expression R.
3. If $k>2$, we select any state $q_{\text {rip }} \in Q$ different from $q_{\text {start }}$ and $q_{\text {accept }}$ and let G^{\prime} be the GNFA ($Q^{\prime}, \Sigma, \delta^{\prime}, q_{\text {start }}, q_{\text {accept }}$), where

$$
Q^{\prime}=Q-\left\{q_{r i p}\right\},
$$

and for any $q_{i} \in Q^{\prime}-\left\{q_{\text {accept }}\right\}$ and any $q_{j} \in Q^{\prime}-\left\{q_{\text {start }}\right\}$ let

$$
\delta^{\prime}\left(q_{i}, q_{j}\right)=\left(R_{1}\right)\left(R_{2}\right)^{*}\left(R_{3}\right) \cup\left(R_{4}\right),
$$

for $R_{1}=\delta\left(q_{i}, q_{\text {rip }}\right), R_{2}=\delta\left(q_{r i p}, q_{r i p}\right), R_{3}=\delta\left(q_{r i p}, q_{j}\right)$, and $R_{4}=\delta\left(q_{i}, q_{j}\right)$.
4. Compute Convert (G^{\prime}) and return this value.
acs-04: Regular Languages

Example

(a)

Another Example

Rip 3:
\rightarrow S $\stackrel{\left(a(a a \cup b)^{*} a b \cup b\right)\left((b a \cup a)(a a \cup b)^{*} a b \cup b b\right)^{*}\left((b a \cup a)(a a \cup b)^{*} \cup \varepsilon\right) \cup a(a a \cup b)^{*}, ~}{\text { a }}$

Induction Proof

Induction Proof (cont.)

If $q_{\text {rip }}$ does appear, removing each run of consecutive $q_{\text {rip }}$ states forms an accepting computation for G^{\prime}. The states q_{i} and q_{j} bracketing a run have a new regular expression on the arrow between them that describes all strings taking q_{i} to q_{j} via $q_{\text {rip }}$ on G. So G^{\prime} accepts w.
For the other direction, suppose that G^{\prime} accepts an input w. As each arrow between any two states q_{i} and q_{j} in G^{\prime} describes the collection of strings taking q_{i} to q_{j} in G, either directly or via $q_{r i p}, G$ must also accept w thus G and G^{\prime} are equivalent.
The induction hypothesis states that when the alorithm calls itself recursively on input G^{\prime}, the result is a regular expression that is equivalent to G^{\prime} because G^{\prime} has $k-1$ states. Hence the regular expression also is equivalent to G, and the algorithm is proved correct.

This concludes the proof of Claim 1.34, Lemma 1.32, and theorem 1.28.

Nonregular Languages

* Finite Automata have a finite memory
* Are the following languages regular ?
$B=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
$C=\{w \mid w$ has an equal number of 0 s and 1 s$\}$
$D=\{w \mid w$ has an equal number of occurences of 01 and 10
* Mathematical proof necessary

The pumping lemma

If A is regular language, then there is a number p (the pumping length), where, if s is any string in A of length at least p then s may be divided into three pieces $s=x y z$
such that

1. for each $i \geq 0, x y^{i} z \in A$
2. $|y|>0$
3. $|x y| \leq p$

Note from 2: $y \neq \varepsilon$

Proof Idea

Let M be a DFA recognizing A. Assign \boldsymbol{p} to be the number of states in M. Show that string s, with length at least p, can be broken into $x y z$.

Now prove that all three conditions are met

Proof: Pumping Lemma

* Let $M=\left(Q, \Sigma, \delta, q_{1}, F\right)$ be a DFA recognizing A and $|Q|=p$.
* Let $s=s_{1} s_{2} \ldots s_{n}$ be a string in A, with $|s|=n$, and $n \geq p$
* Let $r=r_{1}, \ldots, r_{n+1}$ be the sequence of states that M enters for s, so $r_{i+1}=\delta\left(r_{i}, s_{i}\right)$ with $1 \leq i \leq n$. $\left|r_{1}, \ldots, r_{n+1}\right|=n+1, n+1 \geq p+1$.
Amoung the first $p+1$ elements in r, there must be a r_{j} and a r_{1} being the same state q_{m}, with $j \neq 1$.
As r_{1} occurs in the first $p+1$ states: $l \leq p+1$.
* Let $\mathbf{x}=s_{1} \ldots s_{j-1}, \mathbf{y}=s_{j} \ldots s_{l-1}$ and $\mathbf{z}=s_{1} \ldots s_{n}$:
* as \mathbf{x} takes M from r_{1} to r_{j}, \mathbf{y} from r_{j} to r_{1}, and \mathbf{z} from r_{1} to r_{n+1}, being an accept state, M must accept $x y^{1} \mathbf{Z}$ for $i \geq 0$
* with $j \neq 1,|y|>0$
* with $1 \leq p+1,|x y| \leq p$

Pumping Lemma (cont.)

Use pumping lemma to prove that a language A is not regular:

1. Assume that A is regular (Proof by contradiction)
2. use the lemma to guarantee the existence of p, such that strings of length p or greater can be pumped
3. find string \mathbf{s} of A, with $|\mathrm{s}| \geq p$ that cannot be pumped
4. demonstrate that s cannot be pumped using all different ways of dividing s into x, y, and z (using condition 3 . is here very useful)
5. the existence of s contradicts the assumption, therefore A is not a regular language

Nonregular languages examples

$$
B=\left\{0^{n} 1^{n} \mid n \geq 0\right\}
$$

Choose $s=0^{p} 1^{p}$
If we would now only consider condition2, then we would have that:

1. string y consists only of 0 s
2. string y consists only of 1 s
3. string y consists of both 0 s and 1 s

$C=\{w \mid w$ has an equal number of 0 s and 1 s$\}$

Choose $s=0^{p} 1^{p}$
Would seem possible without condition 3!
However, condition 3 of lemma states $|x y| \leq p$

1. for each $i \geq 0, x y^{i} z \in A$
2. $|y|>0$
3. $|x y| \leq p$

Thus y consists of 0 s only
Then xyyz $\notin C$

Choice of s crucial. Consider $s=(01)^{p}$
Alternative proof :
B is nonregular
If C were regular, then $C \cap 0^{*} 1^{*}=B$ regular
Regular languages closed under intersection

Example language B again

$$
B=\left\{0^{n} 1^{n} \mid n \geq 0\right\}
$$

for $\|\mathrm{s}\| \geq \mathrm{p}:$
1. for each $i \geq 0, x y^{i} z \in A$
2. $\|y\|>0$
3. $\|x y\| \leq p$

Choose $s=0^{p} 1^{p}$
condition 3 of lemma states $|x y| \leq p$
Thus y consists of 0 s only
Then $x y y z \notin B$

$$
F=\left\{w w \mid w \in\{0,1\}^{*}\right\}
$$

Choose $s=0^{p} 10^{p} 1$

for $\|\mathrm{s}\| \geq \mathrm{p}:$
1. for each $i \geq 0, x y^{i} z \in A$
2. $\|y\|>0$
3. $\|x y\| \leq p$

Condition 3 of lemma states $|x y| \leq p$
Thus y consists of 0s only
Then $x y y z \notin F$
$0^{p} 0^{p}$ would not work, as it can be pumped !
acs-04: Regular Languages

$E=\left\{w \mid 0^{i} 1^{j}\right.$ where $\left.i>j\right\}$

for $\|\mathrm{s}\| \geq \mathrm{p}$:
1. for each $i \geq 0, x y^{i} z \in A$
2. $\|y\|>0$
3. $\|x y\| \leq p$

Choose $s=0^{p+1} 1^{p}$
Condition 3 of lemma states $|x y| \leq p$
Thus y consists of 0s only
Then $x y^{0} z \notin F$

Example Exam Question

```
for }|\textrm{s}|\textrm{p}\mathrm{ :
1. for each i\geq0, x\mp@subsup{y}{}{i}z\inA
2. }|y|>
3. }|xy|\leq
```

Q: Use the pumping lemma to prove that $L=\left\{0^{k} 1 j: k, j \geq 0\right.$ and $\left.k \geq 2 j\right\}$ is not regular.

A: Assume that $L=\left\{0^{k} 1 j: k, j \geq 0\right.$ and $\left.k \geq 2 j\right\}$ is regular. Let p be the pumping length of L. The pumping lemma states that for any string $s \quad L$ of at least length p, there exist string x, y, and z such that $s=x y z,|x y| \leq p,|y|>0$, and for all $i \geq 0: x y^{i z} \quad L$.

Choose $s=0^{2 p 1 p}$. Because $s \quad L$ and $|s|=3 p \geq p$, we obtain from the pumping lemma the strings x, y, and z with the above properties. As $s=x y z$, $|x y| \leq p$, and s begins with $2 p$ zeros, one can see that $x y$ can only consist of zeros. If we pump s down, i.e. select $i=0$, the string $x y^{0} z=x z=0^{2 p-y \mid 1 p}$.

As $x z$ has p ones, and $|y|>0, x z$ has fewer than $2 p$ zeros. Hence $x z \notin L \quad$ CONTRADICTION.
Therfore L is not regular!

Example Exam Question

```
for }|\textrm{s}|\textrm{p}\mathrm{ :
1. for each i\geq0, x\mp@subsup{y}{}{i}z\inA
2. }|y|>
3. }|xy|\leq
```

Q: Use the pumping lemma to prove that $L=\left\{0^{k} 1^{j}: k, j \geq 0\right.$ and $\left.k \geq 2 j\right\}$ is not regular.

A: Assume that $L=\left\{0^{k} 1 j: k, j \geq 0\right.$ and $\left.k \geq 2 j\right\}$ is regular. Let p be the pumping length of L. The pumping lemma states that for any string $s \quad L$ of at least length p, there exist string x, y, and z such that $s=x y z,|x y| \leq p,|y|>0$, and for all $i \geq 0: x y^{i} z \quad L$.

Choose $s=0^{2 p 1 p}$. Because $s \quad L$ and $|s|=3 p \geq p$, we obtain from the pumping lemma the strings x, y, and z with the above properties. As $s=x y z$, $|x y| \leq p$, and s begins with $2 p$ zeros, one can see that $x y$ can only consist of zeros. If we pump s down, i.e. select $i=0$, the string $x y^{0} z=x z=0^{2 p-y \mid 1 p}$.

As $x z$ has p ones, and $|y|>0, x z$ has fewer than $2 p$ zeros. Hence $x z \notin L \quad$ CONTRADICTION.
Therfore L is not regular!

Summary

* Deterministic finite automata
* Regular languages
* Nondeterministic finite automata
* Closure operations
* Regular expressions
* Nonregular languages
* The pumping lemma

