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Overview

Deterministic finite automata
Regular languages
Nondeterministic finite automata
Closure operations
Regular expressions
Nonregular languages
The pumping lemma
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Finite Automata
An intuitive example : supermarket door controller

Probabilistic counterparts exist
Markov chains, Bayesian nets, etc.
Not in this course

Transition table for the automatic door controler:

openopenopenclosedopen

closedclosedopenclosedclosed

bothrearfrontneither

closed open

front

neither

rear
both

neither

front
rear
both

State diagram for the automatic door controler

front
pad

rear
pad

door

Top view of an automatic door
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A finite automaton

Figure 1.4 Formally

1 2 3

1

2

States : , ,
Startstate :
Acceptstate :
Transitions
Output :  or 

q q q
q

q

accept reject

0A is a 5-tuple ( , , , , )
1. is a finite set of states
2.  is a finite set, the alphabet
3. : is the transition function
4.  is the start sta

finite automaton 

te
5. is the set of accept stat

o

Q q F
Q

Q Q
q Q
F Q

δ

δ

Σ

Σ
×Σ →

∈
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q1 q2

0
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1
q3
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1

1 2 3

1 1 2

2 3 2

3 2 2

1

2

Describe 
{ , , }
{0,1}

defined by
0 1

       

 start state
{ }

M
Q q q q

q q q
q q q
q q q

q
F q

δ

=
Σ =

=

is the language of machine 
 we write ( )

{ | contains at least one 1 and an 
             even number of 0s follows the last 1  }

A M
L M A

A w w
=

=

q1 q2

0
1

1
q3

0

0

1
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q1 q2

0
11

0

State diagram of the two-state finite automaton M2

q1 q2

0
11

0

State diagram of the two-state finite automaton M3
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Other examples

7,8,9
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Another example

0 1

 is the language of all strings where the sum of the numbers
is a multiple of except that the sum is reset to 0 whenever the symbol  a
 A generalisation : 

Autom

ppears

1. { ,...,
aton  =

}
2

i

i

i i

A
i reset

Q
B

q q −=

0

.  ={0,1,2, }
3. ( ,0)

   ( ,1) where ( 1) mod
   ( , 2) where ( 2) mod

  ( , )

4.  is start and accept state

j j

j k

j k

j

o

reset
q q

q q k j i
q q k j i

q reset q

q Q

δ

δ

δ

δ

Σ

=

= = +

= = +

=

∈
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Formal definition of computation

0

1

0

0 0

1 1

Let  be a finite automaton ( , , , , )
Let ....  be a string over 

  if a sequence of states ,..., exists  in  such that 
1. 
2. ( , ) for all 0,..., 1
3. 

accepts

recogn 

n

n

i i i

n

M Q q F
w w w

M w r r Q
r q

r w r i n
r F

M

δ

δ + +

Σ
= Σ

=
= = −

∈

language if { | accepts }

A language is if some finite automa

iz

to

es

n recognizes it.

 

regular 

A A w M w=
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Designing finite automata

Design automaton for language consisting of binary 
strings with an odd number of 1s
Design first states
Then transitions
Start state and accept states

qeven qodd

0
01

1
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Another example

Design an automaton to recognize the language of binary strings 
containing the string 001 as substring
We have four possibilities:
1. we haven‘t seen any symbol of the pattern yet, or
2. we have seen a 0, or
3. we have seen a 00, or
4. we have seen the pattern 001
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Another example

Design an automaton to recognize the language of binary strings 
containing the string 001 as substring
We have four possibilities:
1. we haven‘t seen any symbol of the pattern yet, or
2. we have seen a 0, or
3. we have seen a 00, or
4. we have seen the pattern 001

q q0

1 0

1

q001q00

0

0 0, 1

1
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The Regular Operations

*
1 2

*

Union
Concatenation
Sta

Let  and be languages
We define :

 :  { |  or }
 :  { |  and }

:  { ... | 0 and each }

         note: always 

Exampl

r

e
{ , }
{ ,

 

}
{

n i

A B

A B x x A x B
A B xy x A y B

A x x x n x A

A

A good bad
B boy girl
A B g

ε

∪ = ∈ ∈
= ∈ ∈

= ≥ ∈

∈

=
=
∪ =

o

*

, , , }
 { , , , }

    { , , , , ,
, , , ,...}

ood bad boy girl
A B goodboy goodgirl badboy badgirl
A good bad goodgood goodbad

badgood badbad goodgoodgood goodgoodbad
ε

=

=

o
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Regular languages are closed under …

 A set is under an operation if applying on 
elements of  yields elements of .

Example: multiplication on natural numbers
Counterexample :division of nat

 

ural numbe

c

r

sed

s

loS o o
S S

1 2 1 2

 1.12
The class of the regular languages is closed under the union operation.
In other words, if  and  are regular languages, so is    A A A A∪

Theorem
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Proof 1.12 (by construction)

{ }

1 1 1 1 1 1 1

2 2 2 2 2 2 2

1 2 0

1 2 1 1 2 2

Let  recognize , where   , and 
       recognize , where   .

Construct  to recognize , where .

1.  and 
   This set is 

M A M (Q , , ,q ,F )
M A M (Q , , ,q ,F )

M A A M (Q, q ,F )

Q ( r ,r )| r Q r Q .

Σ δ
Σ δ

=
=

∪ = Σ,δ,

= ∈ ∈

1 2 1 2

1 2

1 2

the  of sets  and  (written )
   It is the set of all pairs of states, the first from  and the second from .
2. , the alphabet, is the same as in  and  The theorem r

Q Q Q Q .
Q Q

M M .Σ

×Cartesian product

1 2

1 2

emains true if they have
    different alphabets,  and  We would then modify the proof to let
    

.
.

Σ Σ
Σ Σ Σ= ∪
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1 2

1 2 1 1 2 2

3. , the transition function, is defined as follows. For each  and
    each , let 
                                        
    Hence  gets a state of  (wh

( r ,r ) Q
a

(( r ,r ),a ) ( ( r ,a ), ( r ,a )).
M

δ
Σ

δ δ δ
δ

∈
∈

=

1 2

0 1 2

ich actually is a pair of states from  and ),
    together with an input symbol, and returns 's next state.
4.  is the pair 
5.  is the set of pairs in which either member is an accept st

M M
M

q ( q ,q ).
F 1 2

1 2 1 1 2 2

1 2 1 2

1 2

ate of  and .
   We can write it as
                                        or 
   This expression is the same as  

Note that it is not the same as  Wh

M M

F {( r ,r )| r F r F }.
F ( F Q ) (Q F ).

F F F .

= ∈ ∈
= × ∪ ×

= × at would that give us?
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Example
1 1 1 1 1 1 2 2 2 2 2 2

1 2 1 1 2 2

1 2

1 2 1 1 2 2

1 2

1 2 1 1 2 2

( , , , , )

constructed from ( , , , , ) and ( , , , , )
Define 
1. {( , ) |  and }
2.
3. (( , ), ) ( ( , ), ( , ))
4. ( , )
5. {( , ) |  or }

M Q q F

M Q q F M Q q F

Q r r r Q r Q

r r a r a r a
q q q
F r r r F r F

δ

δ δ

δ δ δ

= Σ

= Σ = Σ

= ∈ ∈
Σ = Σ ∪ Σ

=
=
= ∈ ∈

M1 with L(M1) = {w|w contains a 1}

q1 q2

0 0,1

1

p2p1 p3

1 0,1

0 0

1

M2 with L(M2) = {w|w contains at least two 0s}
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1 2 1 2

 1.13
The class of the regular languages is closed under the concatenation operation.
In other words, if  and  are regular languages, so is    A A A A

Theorem

o
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Non deterministic finite automata

Deterministic 
One successor state
ε transitions not allowed

Non deterministic
Several successor states possible
ε transitions possible

q2q1 q3 q4

0,1
0,1

1 0,ε
1



Informatik Theorie II (A)  WS2009/10

acs-04: Regular Languages

20

Deterministic versus non deterministic 
computation

Figure 15
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q1

q1

q3q2q1

q3q1

q2q1 q3 q4

q4

q4

q2q1 q3

q3q1

q4

q4

0

0

1

1

0

1

q2q1 q3 q4

0,1 0,1

1 0,ε 1

Input: w = 010110
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Another NFA
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Nondeterministic finite automaton

0A is a 5-tuple ( , , , , )
1. is a finite set of states
2.  is a finite set, the alphabet

nondeterministic 

P3. : ( ) is the transition function
4.  is the start s

fini

tate
5.

te automa

 is 

 

th

ton

o

Q q F
Q

Q Q
q Q
F Q

ε

δ

δ

Σ

Σ

×Σ →
∈
⊆

 includes

e set of 

 
P( ) the powerset o

accept sta

f 

tes

Q Q
ε εΣ
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Example

q2q1 q3 q4

0,1
0,1

1 0,ε 1

1 2 3 4

1 1 1 2

2 3 3

3 4

4 4 4

1

4

1. { , , , }
2.  = {0,1}
3.  is given as:

0 1
{ } { , } {}
{ } {} { }
{} { } {}
{ } { } {}

4.  is the start state
5. { }

Q q q q q

q q q q
q q q
q q
q q q

q
F q

δ
ε

=
Σ

=
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Formal definition of computation

0

1

0

0 0

1 1

Let  be a  finite automaton ( , , , , )
Let ....  be a string over 

  if a sequence of states ,..., exists  in  such that 
1.
2. ( , ) for all 0,..

nondeterministic

., 1

accepts

n

n

i i i

M Q q F
w w w

M w r r Q
r q
r r w i n

δ

δ+ +

Σ
= Σ

=
∈ = −

3. nr F∈
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Every NFA has an equivalent DFA
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Equivalence NFA and DFA

Two machines are if they recognize the same language

 1.19
Every nondeterministic finite automaton has an equivalent finite automaton

 1.20
A language is regular if and onl  f

 

y i  

equivalent

Theorem

Corollary
some nondeterministic finite 

automaton recognizes it.
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Proof: Theorem 1.19

0 0Let  be the NFA recognizing some language .
Construct a DFA  recognizing . 
First we consider the easier case wherein  has no  arrows. The  
arrows are taken into account later.
 

N (Q, , ,q ,F ) A
M A

N ε ε

= Σ δ
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Proof: Theorem 1.19 (cont.)

0Construct 
    1. 
        Every state of  is a set of states of . (Recall that  is the power set
        of 
    2. For  and  let  for som

0= Σ δ
=

∈ ∈Σ δ = ∈ ∈δ

' 'M (Q', , ,q ,F ').
Q' P(Q ).

M N P(Q )
Q ).
R Q' a '( R,a ) { q Q | q ( r ,a ) e 

        If  is a state of  it is also a set of states of  When  reads a symbol
         in state  it shows where  takes each state in  Because each state leads to
        to a set of 

∈r R }.
R M , N. M

a R, a R.

0 0

states, we take the union of all these sets. Alternativly we write:
                                

   3. 
        starts in the state corresponding to the collection contai

∈

δ = δ

=

U
r R

'

'( R,a ) ( r ,a ).

q { q }.
M ning just the start state of .

   4.  contains an accept state of 
      The machine  accepts if one of the possible states that  could be in at this point is an
      accept state.

= ∈
N

F' { R Q' | R N }.
M N
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Now for the   arrows one needs to set up an extra bit of  notation. 
For any state  of  we define  to be the collection of states that 
can be reached from  by going only along  arrows, includi

R M E( R )
R

ε

ε

 can be reached from  by traveling along 0 or m

ng the members of
 themselves. Formally,

ore  arrow
 for  let

               
The transition function of  is then modified to take in o c

s
t  ac

R R
E( R ) { q |

M
q R

Q
.}ε

⊆
=

ount  all
states that can be reached by going along  arrows after every step. 
Replacing  by  achieves this. Thus

Additionally the sta
               for some '( R,a ) { q Q | q E( ( r ,a

( r,a ) E( ( r ,
)) r R }.

a ))
ε

δ δ
δ = ∈ ∈ δ ∈

0 0

rt state of  has to be modified to cater for all  possible states 
that can be reached from the start state of  along the  arrows.
Changing  to be  achieves this effect. 
We have now complet

'

M
N

q E({ q })
ε

ed the construction of the DFA  that simulates the NFA M N.

Proof: Theorem 1.19 (cont.)
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An example
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An example

The resulting DFA after removing redundant states

The resulting DFA
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Closure under the regular operations

1 2 1 2

 1.12/1.22
The class of the regular languages is closed under the union operation.
In other words, if  and  are regular languages, so is    A A A A∪

Theorem

 1.23
The class of the regular languages is closed under the 
concatenation operation.

Theorem

 1.24
The class of the regular languages is closed under the star operation.
Theorem
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Proof idea

1 2 1 2

 1.12/1.22
The class of the regular languages is closed under the union operation.
In other words, if  and  are regular languages, so is    A A A A∪

Theorem
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Proof 1.12/1.22
1 1 1 1 1 1

2 2 2 2 2 2

0 1 2

0 1 2

1 2

Let  recognize , and
       recognize 

Construct  to recognize 

    1. 
        The states of  are all the states of  and , w

N (Q , , ,q ,F ) A
N (Q , , ,q ,F ) A .

N (Q, , ,q ,F ) A A .

Q { q } Q Q .
N N N

= Σ δ
= Σ δ

= Σ δ ∪

= ∪ ∪

0

0

1 2

1 2

ith the addition of a new start state 
    2. The state  is the start state of 
    3. The accept states 
        The accept states of  are all the accept states of  and . That way  

q .
q N.

F F F .
N N N N
= ∪

1 2

1 1

2

accepts 
        if either  accepts or  accepts.
    4. Define  so that for any  and any 

                    
                   

N N
q Q a ,

( q,a ) q Q
( q,a ) q Q

( q,a )

δ ε

2

∈ ∈ Σ

δ ∈
δ ∈

                                δ =
1 2 0

0

      and 
               and 

{ q ,q } q q a
q q a

⎧
⎪
⎪
⎨ = = ε⎪
⎪∅ = ≠ ε⎩
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Proof idea

 1.23
The class of the regular languages is closed under the concatenation operation.
Theorem
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Proof 1.23
1 1 1 1 1 1

2 2 2 2 2 2

1 2 1 2

1 2

1 2

Let  recognize , and
       recognize 

Construct  to recognize 

    1. 
        The states of  are all the states of  and 
    2.

N (Q , , ,q ,F ) A
N (Q , , ,q ,F ) A .

N (Q, , ,q ,F ) A A .

Q Q Q .
N N N .

= Σ δ
= Σ δ

= Σ δ

= ∪

o

1 1

2 2

 The state  is the same as the start state of 
    3. The accept states  are the same as the accept states of .
    4. Define  so that for any  and any 

q N .
F N

q Q a ,δ ε∈ ∈ Σ

                                

1 1 1

1

2 1

2 2

                and          
                and            

    and            
                                        

( q,a ) q Q q F
( q,a ) q F a

( q,a )
( q,a ) { q } q F a
( q,a ) q Q

1

1

δ ∈ ∉⎧
⎪δ ∈ ≠ ε⎪δ = ⎨δ ∪ = = ε⎪
⎪δ ∈⎩
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Proof idea

 1.24
The class of the regular languages is closed under the star operation.
Theorem



Informatik Theorie II (A)  WS2009/10

acs-04: Regular Languages

39

Proof 1.24
1 1 1 1 1 1

0 1

0 1

1

0

Let  recognize .

Construct  recognize 

    1.  
        The states of  are the states of  plus a new start state
    2. The state  is the new start st

*

N (Q , , ,q ,F ) A

N (Q, , ,q ,F ) A .

Q { q } Q .
N N .

q

= Σ δ

= Σ δ

= ∪

0 1

1

ate
    3.  
        The accept states are the old accept states plus the new start state.
    4. Define  so that for any  and any 

       

.
F { q } F

q Q a ,
( q,a )

( q,a )

δ ε

= ∪

∈ ∈ Σ

δ

                                δ =

1 1

1

1 1

1 0

0

          and 
                 and 

      and 
                      and 

                          and 

q Q q F
( q,a ) q F a
( q,a ) { q } q F a

{ q } q q a
q q a

1

1

∈ ∉⎧
⎪δ ∈ ≠ ε  ⎪⎪δ ∪ ∈ = ε  ⎨
⎪ = = ε  ⎪

∅ = ≠ ε  ⎪⎩
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Regular expressions

1 2 1 2

1 2 1 2

Definition
Say that  is a regular expression if  is

1.  for some  in the alphabet 
2. 
3. 
4.  where  and  are regular expressions,
5.  where   and  are regular expressions

R R

a a
,
,

( R R ), R R
( R R ), R R

ε
Σ,

∅
∪
o

1 1

, or

6.  where  is a regular expression.*R , R
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RE Examples

In the following examples we assume that the alphabet  is 

1.  has exactly a single 
2.  has at least one 
3.  contains the string  as a substring
4. 

* *

{0,1}.

0 10 { w| w 1}.
1 { w| w 1}.
001 { w| w 001 }.

(

∗ ∗

∗ ∗

Σ

=

Σ Σ =

Σ Σ =

ΣΣ)  is a string of even length
5. the length of  is a multiple of three
6. 
7.  starts and ends with the same symbol

*

{ w| w }.
( ) { w| w }.
01 10 {01,10 }.
0 0 1 1 0 1 { w| w }.

∗

∗ ∗

=

ΣΣΣ =
∪ =

Σ ∪ Σ ∪ ∪ =
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RE Examples (cont.)

= 
= 

R R
R R
R R
R R

ε
ε

∪ ∅

∪ ≠
∅ ≠

o

o

*

8. 
    The expression  describes the language , so the concatenation 
    operation adds either  or  before every string in 1 .
9. 
10. 
    Concat

* * *

*

(0 )(1 ) 01 1 .
0 {0, }

0
(0 )(1 ) { ,0,1,01}.
1 .

∪ ε ∪ ε = ∪
∪ ε ε

ε
∪ ε ∪ ε = ε

∅ = ∅
enating the empty set to any set yields the empty set.

11. 
    The star operation puts together any number of strings from the language
    to get a string in the result. If the language is empty

* { }.∅ = ε

, the star operation can
    put together  string, giving only the empty string.0
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Applications

Design of compilers

awk, grep, vi … in unix (search for strings)
Perl, Python, or Java programming languages
Bioinformatics

So called motifs (patterns occurring in sequences, e.g. proteins)

* * * *{ , , }( . . )
where {0,...,9}

DD DD D D DD
D

ε+ − ∪ ∪
=
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Equivalence RE and NFA

Proof through :

 1.28
A language is regular if and only if some regular expression describes it
Theorem

 1.29
If a language is described by some regular expression, then it is regular
Lemma

 1.32
If a language is regular, then it is described by some regular expression
Lemma
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Proof for Lemma 1.29
Convert  into an NFA . Consider the six cases in the formal
definition of regular expressions.

1.  for some  in . 
   Then  and the following NFA recognizes 

Note that this machine fi

R N

R a a
L( R ) { a }, L( R ).

= Σ
=

ts the definition of an NFA but not that of a DFA,
as not all input symbols possess exiting arrows.

   Formally, , where we describe  by saying that 
    for 

1 2 1 2 1 2N ({ q ,q }, , ,q ,{ q }) ( q ,a ) { q },
( r ,b )

= Σ δ δ δ =
δ = ∅  or 1r q b a.≠ ≠

a
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Proof for Lemma 1.29 (cont.)

2.  
    Then  and the following NFA recognizes 

     Formally,  
     where  for any  and .

1 1 1

R .
L( R ) { }, L( R ).

N ({ q }, , ,q ,{ q }),
( r ,b ) r b

= ε
= ε

= Σ δ
δ = ∅
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Proof for Lemma 1.29 (cont.)

3.  Then , and the following NFA recognizes 

    Formally,  where  for any  and .

R . L( R ) L( R ).

N ({ q }, , ,q, ), ( r ,b ) r b

= ∅ = ∅

= Σ δ ∅ δ = ∅
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Proof for Lemma 1.29 (cont.)

4. 
5. 

6. 

    For the last three cases we use the constructions given in the proofs that the
class of regular languages is closed under the regular operations. In other words,
we co

1 2

1 2
*
1

R R R .
R R R .

R R .

= ∪
=

=

o

nstruct the NFA for  from the NFAs for  and  (or just  in case 6)
and the appropriate closure construction.

1 2 1R R R R



Informatik Theorie II (A)  WS2009/10

acs-04: Regular Languages

49

Example 1.30

We convert the regular expression  to an NFA in a sequence of stages.
We build up from the smallest subexpressions to larger subexpressions until we
have an NFA for the original expression, as sh

*( ab a )∪

own in the following diagram. Note
that this procedure generally doesn't give the NFA with the fewest states! 
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a:

b:

ab:

ab ∪ a

(ab ∪ a)*

Example: NFA for: (ab ∪ a)*
a

b

a bε

a bε

a
ε

ε

a bε

a
ε

ε

ε

ε

ε
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Exercise: NFA for: (a ∪ b)*aba

a:

b:

a ∪ b

(a ∪ b)*

a

b

a

b
ε

ε

a

b
ε

ε
ε

ε

ε
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a

b
ε

ε
ε

a

b
ε

ε
ε

Example: NFA for: (a ∪ b)*aba (cont.)

aba:

(a ∪ b)*aba:

a bε aε

a bε aε

a bε aεε

ε

ε



Informatik Theorie II (A)  WS2009/10

acs-04: Regular Languages

53

Two steps
DFA into GNFA (generalized nondeterministic finite automaton)
Convert GNFA into regular expression

 1.32
If a language is regular, then it is described by some regular expression
Lemma
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GNFAs

Labels are regular 
expressions 
Two states q and r are 
connected in both 
directions (fully 
connected)
Exception :

One direction only
Start state (exiting 
transition arrows)
Accept state (only one!) 
(only incoming transition 
arrows)

qstart

qaccept

b
ab

Ø

b*

ab*

ab ∪ baa*

(aa)*

aa



Informatik Theorie II (A)  WS2009/10

acs-04: Regular Languages

55

Formally
A is a 5-tuple ( , , , , )

1. is a finite set of states
2.  is a finite set, the 

generalized nondeterministic finite au

al

tomat

phabe
: ( { }) ( { })  is the tran

o

t
3. sition

n

 

 

 fun

star

accept

t accep

start

t

Q q

Q q q

Q

Q q

δ

δ − × − → ℜ

Σ

Σ

4.  is the start state
5.  the accept stat

ction

e 
start

accept

q Q
q Q

∈
∈

*
1

0

0

1

A GNFA  ...  where each 
if a sequence of states ,..., exists  in such that 
1.
2.
3. for all 0,..., 1,  we ha ( ) ve that 
    where ( , )

accepts k i

n

start

k accept

i i

i

i

i

w w w w
r r Q

r q
r q

i n
R r r

w L R
δ −

= ∈Σ

=
=

= −
=

∈
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Convert DFA into GNFA

Add new start state, with arrow to old start state
Add new accept state, with arrows from old accept states
If any arrows have multiple labels  and ,  replace by 
Add arrows with label  between sta

a b a b

ε
ε

∪

∅ *tes where necessary
             (*:between states that had no arrows before)
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Convert GNFA into regular expression

3 state DFA 5 state GNFA 4 state GNFA

2 state GNFA 3 state GNFARegular
Expression
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Ripping of states

q2

qrip

q1

R4

R1

R2

R3

q2q1

(R1)

Replace one state by the corresponding RE

qrip

(R1)(R2)(R1)(R2)* (R3) ∪ R4(R1)(R2)* (R3)(R1)(R2)*
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Convert(G)

1. Let  be the number of states of 
2. If , then  must consist of a start state, an accept state, and a single
    arrow connectiong them and labeled with a regular expression 
    Re

Convert(G ) :
k G.

k 2 G
R.

=

turn the expression 
3. If , we select any state  different from  and  and let 

    be the GNFA , where

                                  

   

rip start accept

start accept

rip

R.
k 2 q Q q q G'

(Q', , ',q ,q )

Q' Q { q },

> ∈

Σ δ

= −

 and for any  and any  let

                     

    for  and 

4. Compute  and

i accept j start

*
i j 1 2 3 4

1 i rip 2 rip rip 3 rip j 4 i j

q Q' { q } q Q' { q }

'( q ,q ) ( R )( R ) ( R ) ( R ),

R ( q ,q ),R ( q ,q ),R ( q ,q ), R ( q ,q ).

Convert(G')

∈ − ∈ −

δ = ∪

= δ = δ = δ = δ

 return this value.
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Example

Rip 2: Rip 1:

q2

qrip

q1

R4

R1

R2

R3

q2q1

qrip

(R1)(R2)* (R3) ∪ R4
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Another Example

1 2
a

a

3

b
b a

b

s

1 2
a

a

3

b
b a

b

ε
a

ε

ε

s

2

3
a

b

a

ε

ε

a

aa ∪ b

ab

b

ba ∪ a

bb

Rip 1: Rip 2:

GNFA:DFA:

s

3

a
a(aa ∪ b)*

a(aa ∪ b)*ab ∪ b (ba ∪ a) (aa ∪ b)* ∪ ε

(ba ∪ a) (aa ∪ b)*ab ∪ bb

s a
Rip 3:

(a(aa ∪ b)*ab ∪ b)((ba ∪ a) (aa ∪ b)*ab ∪ bb)*((ba ∪ a) (aa ∪ b)* ∪ ε) ∪ a(aa ∪ b)*
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Induction Proof
Claim
For any GNFA ,  is equivalent to 

We prove this claim by induction on , the number of states 
of the GNFA.

Basis: Prove the claim true for  states. If  has only two 
states, it can 

G Convert(G ) G.

k

k 2 G=
have only a single arrow, which goes from the start 

state to the accept state. The regular  expression label on this 
arrow describes all the strings that allow  to get to the accept 
state. Hence this

G
 expression is equivalent to 

Induction step: Assume that the claim is true for  states and 
use this assumption to prove that the claim is true for  states. 
First we show that  and  recognize 

G.

k 1
k

G G'

−

the same language. 
Suppose that  accepts an input . Then in an accepting branch 
of the computation  enters a sequence of states
                                    

If non
start 1 2 3 accept

G w
G

q ,q ,q ,q ,...,q .

e of them is the removed state , clearly  also accepts  

The reason is that each of the new regular expressions labeling the 
arrows of  contains the old regular  expression as part of a union

ripq G' w.

G' .

q2

qrip

q1

R4

R1

R2

R2

q2q1

qrip

(R1)(R2)* (R3) ∪ R4
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Induction Proof (cont.)

   If  does appear, removing each run of consecutive  states 

forms an accepting computation for  The states  and  bracketing 

a run have a new regular  expression on the arrow between th

rip rip

i j

q q

G' . q q

em that 
describes all strings taking  to  via  on  So  accepts 

   For the other direction, suppose that  accepts an input  As each 
arrow between any two states  and  in  descri

i j rip

i j

q q q G. G' w.

G' w.
q q G' bes the collection 

of strings taking  to  in , either directly or via  must also 

accept  thus  and  are equivalent.
   The induction hypothesis states that when the alorithm calls itself

i j ripq q G q ,G

w G G'
 

recursively on  input  the result is a regular expression that is equivalent 
to  because  has  states. Hence the regular expression also is 
equivalent to  and the algorithm is proved corr

G',
G' G' k 1

G,
−

ect.

This concludes the proof of Claim 1.34, Lemma 1.32, and theorem 1.28.

q2

qrip

q1

R4

R1

R2

R2

q2q1

qrip

(R1)(R2)* (R3) ∪ R4
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Nonregular Languages

Finite Automata have a finite memory
Are the following languages regular ?

Mathematical proof necessary

{0 1 | 0}
{ |  has an equal number of 0s and 1s}
{ | has an equal number of occurences of 01 and 10}

n nB n
C w w
D w w

= ≥
=
=
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The pumping lemma

If  is regular language, then there is a number  (the pumping length),
where, if  is any string in  of length at least  then  may be 
divided into three pieces 
such that 
             1. for e

A p
s A p s

s xyz=

ach 0,  
             2. | | 0
             3. | |

Note from 2:

ii xy z A
y
xy p

y ε

≥ ∈
>
≤

≠
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Proof Idea

Let M be a DFA recognizing A. Assign p to be the number of states in M.
Show that string s, with length at least p, can be broken into xyz.

Now prove that all three conditions are met

Pigeonhole princip
le
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Proof: Pumping Lemma
Let M = (Q, Σ, δ, q1, F) be a DFA recognizing A and |Q| = p.

Let s = s1s2 ...sn be a string in A, with |s| = n, and n ≥ p

Let r =r1, ...,rn+1 be the sequence of states that M enters for s, 
so ri+1 = δ(ri , si) with 1 ≤ i ≤ n. |r1, ...,rn+1| = n+1, n+1 ≥ p+1. 
Amoung the first p+1 elements in r, there must be a rj and a rl being the
same state qm, with j ≠ l. 
As rl occurs in the first p+1 states: l ≤ p+1.

Let x = s1...sj-1, y = sj...sl-1 and z = sl...sn:
as x takes M from r1 to rj, y from rj to rl, and z from rl to rn+1, being an accept
state, M must accept xyiz for i ≥ 0
with j ≠ l, |y| > 0
with l ≤ p+1,|xy| ≤ p
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Pumping Lemma (cont.)

Use pumping lemma to prove that a language A is not
regular:

1. Assume that A is regular (Proof by contradiction)
2. use the lemma to guarantee the existence of p, such 

that strings of length p or greater can be pumped
3. find string s of A, with |s| ≥ p that cannot be pumped
4. demonstrate that s cannot be pumped using all 

different ways of dividing s into x,y, and z (using
condition 3. is here very useful )

5. the existence of s contradicts the assumption, therefore
A is not a regular language
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Nonregular languages examples

{0 1 | 0}n nB n= ≥

Choose 0 1
If we would now only consider condition2, 
  then we would have that:
1. string consists only of 0s
2. string consists only of 1s
3. string consists of both 0s and 1s

p ps

y
y
y

=

for s p:

1. for each 0,  
2. | | 0
3. | |

ii xy z A
y
xy p

≥

≥ ∈
>
≤
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{ |  has an equal number of 0s and 1s}C w w=

Choose 0 1
Would seem possible without condition 3!
However, condition 3 of lemma states | |
Thus consists of 0s only
Then                                                              

o cCh i

p ps

xy p
y
xyyz C

=

≤

∉

* *

Alternative proof :
is nonregular

If  were

e 

under inter

of  crucial. Consid

 regular, then 0 1 regular
Regular languages closed sect

er )

o

1

i n

(0 p

B

s

C

s

B
C ∩ =

=

for s p:

1. for each 0,  
2. | | 0
3. | |

ii xy z A
y
xy p

≥

≥ ∈
>
≤
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Example language B again

{0 1 | 0}n nB n= ≥

Choose 0 1
condition 3 of lemma states | |
Thus consists of 0s only
Then                                                 

p ps
xy p

y
xyyz B

=
≤

∉

for s p:

1. for each 0,  
2. | | 0
3. | |

ii xy z A
y
xy p

≥

≥ ∈
>
≤
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*{ |  {0,1} }F ww w= ∈

Choose 0 10 1
Condition 3 of lemma states | |
Thus consists of 0s only
Then                                                 

0 0 would not work, as it can be pumpe

          

d !

p

p p

ps
xy p

y
xyyz F

=
≤

∉

for s p:

1. for each 0,  
2. | | 0
3. | |

ii xy z A
y
xy p

≥

≥ ∈
>
≤
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{ | 0 1 where }i jE w i j= >

1

0

Choose 0 1
Condition 3 of lemma states | |
Thus consists of 0s only
Then                                                           

p ps
xy p

y
xy z F

+=
≤

∉

for s p:

1. for each 0,  
2. | | 0
3. | |

ii xy z A
y
xy p

≥

≥ ∈
>
≤
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for s p:

1. for each 0,  
2. | | 0
3. | |

ii xy z A
y
xy p

≥

≥ ∈
>
≤Example Exam Question

Q: Use the pumping lemma to prove that
L = {0k1j : k,j ≥ 0 and k  ≥ 2j} is not regular.

A: Assume that L = {0k1j : k,j ≥ 0 and k  ≥ 2j} is regular. Let p be the pumping
length of L. The pumping lemma states that for any string s �  L of at least 
length p, there exist string x,y, and z such that s = xyz, |xy|≤p, |y| > 0, and 
for all i ≥0: xyiz � L.

Choose s = 02p1p. Because s � L and |s|=3p ≥ p, we obtain from the
pumping lemma the strings x,y, and z with the above properties. As s = xyz, 
|xy|≤p, and s begins with 2p zeros, one can see that xy can only consist of 
zeros. If we pump s down, i.e. select i = 0, the string xy0z = xz = 02p-|y|1p. 

As xz has p ones, and |y| > 0, xz has fewer than 2p zeros. 
Hence xz ∉ L � CONTRADICTION. 
Therfore L is not regular!
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for s p:

1. for each 0,  
2. | | 0
3. | |

ii xy z A
y
xy p

≥

≥ ∈
>
≤Example Exam Question

Q: Use the pumping lemma to prove that
L = {0k1j : k,j ≥ 0 and k  ≥ 2j} is not regular.

A: Assume that L = {0k1j : k,j ≥ 0 and k  ≥ 2j} is regular. Let p be the pumping
length of L. The pumping lemma states that for any string s �  L of at least 
length p, there exist string x,y, and z such that s = xyz, |xy|≤p, |y| > 0, and 
for all i ≥0: xyiz � L.

Choose s = 02p1p. Because s � L and |s|=3p ≥ p, we obtain from the
pumping lemma the strings x,y, and z with the above properties. As s = xyz, 
|xy|≤p, and s begins with 2p zeros, one can see that xy can only consist of 
zeros. If we pump s down, i.e. select i = 0, the string xy0z = xz = 02p-|y|1p. 

As xz has p ones, and |y| > 0, xz has fewer than 2p zeros. 
Hence xz ∉ L � CONTRADICTION. 
Therfore L is not regular!
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Summary

Deterministic finite automata
Regular languages
Nondeterministic finite automata
Closure operations
Regular expressions
Nonregular languages
The pumping lemma


